• Aucun résultat trouvé

EVALUATION IN TROUGHS ON S, DAI,INOSUM S.L. LARVAE

N/A
N/A
Protected

Academic year: 2022

Partager "EVALUATION IN TROUGHS ON S, DAI,INOSUM S.L. LARVAE"

Copied!
13
0
0

Texte intégral

(1)

I

a

EVALUATION IN TROUGHS ON S, DAI,INOSUM S.L. LARVAE

oF 3 NElil FORMULATIONS OF GARBOSULFAN (GARBAIIATE )

Technlcal Report OCP/IRU 89.o4

Insecticlde Research Unlt Onchocerclasls Control Programme Programme

de Luttte

Contre l'Onchocercose

World Health Organlzatlon Organlsatlon Mondiale

de la

Sante

Bouak6

-

December 1989

o,Y I C 1

a-

5-'

o

+ 've

,\t ,lr

(2)

l{orld H.alth Orgrntzrtion - OnchocerciasiB Control ProEruoe - Inscctlcldc Roscarch ltrllt oCP/IRU/E9.04 Pego

I

EVALUATIOT{

IN

TROUGHS

ot{ S.

DANNOSUT'I

S.L.

LARVAE OF

3

NEW

FORMULATTO].IS OF CARBOSULFAN (CARBAMATE) T

1. INTROOUCTION

Carbosulfan

is one of the five operatlona! lnsectlcldes currently used

by OCp

to control

Simulium damnosum

larvae ln

West

Africa.

The

current

formulation

is a

25%

a.i. emulsifiable concentrate, produced by

FMC1

under the

name of

MarshalR;

lt ls

used

at a

dosage

rate of

0.OS mg a.i.,/L

for

10 min (0.12

L per

m3ls

of rlver

dlscharge).

Thls

formulation was selected

after testlng

several alternative formulatlons proposed

by

FMC

(Kurtak

1986, Renaud

and Kurtak

1987). Because of

a refatlvely low selectlvlty for S.

damnosum,

lts use ls llmlted to hlgh rlver

dlscharges (>?O

m3ls), which llmits the rlsk of

overdosage,

and lt ls

used

for

a

maxlmum

of 10 cyctes, whlch reduces the envlronmental lmpact. The

other

relatlve

dlsadvantages

of carbosulfan are its high prlce and short carry (S

15

km) when compared

to

temephos.

Three

experlmental

formulations were provlded by

FMC

with the aim

of

improvlng the selectlvlty and carry of carbosulfan. The flrst product

u,as

formulated as mlcro-capsules, relying on the fact that, as fllter-feeders,

S-

damnosum larvae

might

be more exposed

to

them

than other non-target

organisms, and

that the

degradation

of

carbosulfan associated

with rlver transport might

be reduced.

The

mlcro-emutsions

were also devised with the

expectatlon

that

they

may be more selectlve, but mostly that reduced loss and degradation

would lmprove

the carrY of

carbosulfan.

o In a flrst step, these formulations were tested on S.

damnosum

larvae

in

troughs in Soubr6 to compare their performance with the current 25I

EC

formulation.

2.

MATERIALS & METHOOS

The experimental formulations

provided by

FMC were:

-

Carbosulfan 3Os W/W micro-capsule (16-036)

-

Carbosulfan 253 W/W micro-emulsion (15-188)

-

Carbosulfan 12% W/W micro-emulsion (15-1788)

The

trough tests were

performed

ln

Soubr6 (9-11/08/89), according

to

the

standard

OCP

protocol, which is provided in

Annex

1. The larvae

used

for

the

test were taken form the

Sassandra

rlver at

Kop6ragul;

they are mostly

S.

sanctipaul;,

a

species

of the S.

damnosum complex.

The

Kop6ragui populations of

a

t Thia documcnt do€B not constitutc a fornal publication quotect or tmnBleted xithout th€ agreenent of world r€6pon3ible for viere oxpressed in signed articles'

t fUC International AG, Agricultural Chenical Group.

ParadiaBos, Anouroussion, GR-l5t 25 AthenB, Gr€ece.

. It Bhould not bc revieHcd, abBtmcted, Health Organizrtlon. AuthorB a'lona lr.

Agora Center, lO-t2 Kifis6ias Avenue,

(3)

Uorld Harlth Orgrnlz.tlort

-

Onchoc.rclr.ls Control Progrrme

-

Ins.ctlcldo Rcs.rch Unlt ocP/rRu/t9.oa P.go

{

thls

specles

are used regularly for tests, and

show

normal susceptlblllty to

all lnsectlcldes.

3.

RESULTS

? I Carh aerrl f an R69 I^l/l^l mi ^r^--2n<rrl a l'Ratn A f1z.<\

Thls

formulation

is so thick (not unllke

paste)

that it ls difflcult to suck lt ln a plpette, and ldeally It

should

be

welghed. When added

to

water

the

product

sank stralght to the

bottom

and strong and prolonged shaklng was

ne€ded to

obtaln a unlform and

smooth

mlxture. Once well mlxed, lt

sedlmented heavlly

wlthln 2 hours

when

left undlsturbed ln lts

contalner

Data from the 2 tests wlth thls formulatlon are presented ln Table

1

together wlth the results of probit

analysls

(Flg.

t

).

The average LC50 was 0.0150

.mglLxlo

mln and

the

average LC95 0.036 m9/Lx10 mln-

Even

at low

concentratlons

there was a strong lrltant effect on

larvae,

whlch started detachlng after 6 mln of exposure; by the end of the 10

mln

exposure most

larvae had

detached.

It

was

observed,

however,

that

many larvae

were

stlll allve

more

than 5

hours

after

exposure

in the collectlng

nets.

3-2- Carbosulfan 25u W/W mlcro-emulsion (Batch 15-1881

o Thls product ls a thick

emulslon

whlch sank as droplets to the

bottom

wlthout mlxlng in water, and stayed at the bottom.

However,

when glven

a

vlgorous shaklng at mixed well with water, forming a flne off-yellow

coloured

solution, wlth a layer of foam floating on the surface. The solution

remained stable

for at

least 24 hours.

The results of 2 tests (Table 1) show that the

"r".ud"

LCSO was 0.0011

mg,/Lxl0 min, and

the

average LC95 O.@57

mglLxl0 mln (Flg.

2).

Exposed

larvae were strongly lrritated within a few

mlnutes

of

exposure,

glvlng the lmpression that the formulation acted more by contact than

by

ingestion. Both young and mature larvae detached wlthin 3 to 4 minutes

of exposure

and

most

had

detached

into the collecting nets by the end of the

10

min

exposure

period. Again, it

was observed

that

many

of the larvae were still alive in the nets 4 to 5 hours during the holdlng

period.

3-3. Carbosulfan 12? W'W micro-emulslon (Batch 15-l78Bl

It ls a very thick

formulatlon

but unlike

Batch 15-188,

thls product

settled

on the surface of the water and there

was

a clear-cut

separation between water

and formulatlon. There

was

no

spontaneous

mixing. After shaking, a very

clear

light-yellowish solution, with slight

foaming

on the surface,

was

obtalned.

The

solution

remained

clear

and stable more

than 3

days

after

preparation.

The

average

Lc50 for the 3 tests

was 0'0o18 mg/uxtO

min and the

Lc95 was 0.0069

mglLxlO min (Table 1 and fig. 3) It also

appeared

to be acting

more

by contact from observing the

reaction

of larvae.

There was intense

agitation

of larvae

of all

stages,

resulting in

detachment

of

20%

of

larvae

3 to 4

mlnutes from

(4)

llorl<t lteelth orgtnlzrtlon

-

onchocorclrsis control Progreaoo

-

In.octlcldo R.lcrrt r unlt OCP/Iru/eg.0'l Prgo 5

the start of

exposure.

At the hlgher

concentratlons,

all larvae had

detached at

the

end

of the

10 mln exposure.

34.

Carbosulfan

25I

EC

Thls is the

operational formulation used

by

OCP.

It

mixed spontaneously in water,

forming a whltish

emulsion which was stable

for

more

than 3

days.

The

LCSO

of

0.0023

mg/LxlO min and

LC95

of

O.OO84 mg,/Lx1o

mln

were

superior to

those

of the

30S micro-capsule

formulation, but were about the

same

as

for the

25X

and

12S micro-emulsions (Table 1

and Fig.

4).

The exposure to the operatlonal formulation did not result in

immediate

detachment

of larvae ln troughs.

A

few

larvae

started

detaching

only after I

mln

of

exposure, suggesting

that

lngestlon has

a

more important

role than

contact.

3.5. Aoed solutlons

of 25I

mlcro-emulslon

and

3()f, mlcrocapsules.

Mother solutlons of the 25% mlcro-emulslon and 3Ox

mlcro-capsule formulations

were kept tor 24 h and

used

for later tests (Flgs. 5 and 6).

The

LCSo

and

LC95

values

(Table

1)

show

that

while

the

255 mlcro-emulslon was three

times less efflcient

(O.OO55

and

0.O153

mglLxl0 min), the 30X

mlcro-capsule formutatlon

retained the

same

level of efficacy

(0.0137

and

0.0335

mg/LxlO

mln).

These

results indicate that the

micro-capsule

formulatlon provldes a

more stable carbosulfan solution.

c

4.

DISCUSSION

The trough tests performed in Soubr6 showed that the

micro-emulslon

formulatlons have the same level of efficacy as the current

operational formutatlon,

whlle the

micro-capsule

formulatlon is 5 to 12 (lmes less

efflcient.

Slnce

many larvae drifted and

remained

alive for several hours, and since

the

drlfted

larvae

are counted as

dead

ln the standard

protocol,

lt

may

be

concluded

that the

new formulatlons

are ln fact less toxlc to S.

damnosum

larvae than

the operatlonal formulation.

In

comparison,

wlth

most

other larvicides

detached larvae

die wlthln 2 h of

exposure,

suggesting a toxlc effect due mostly to

lngestion

of

the lnsectlcide (Kurtak et hl.

1987).

But the strong irritant effect of the

new

formulations is an lmportant characteristlc; there ls an hypothesls that

most

tarvae that drift in the river eventually die, partly

because

they follow

the

insectlclde-treated mass of water. If the lrritant effect is selective for

S.

damnosum

larvae, the new

formulatlons

are an

improvement

over prevlous

ones;

thls can

be

tested by gutter tests wlth non-target

fauna.

The stability of the

micro-capsule

formulatlon might be a factor for

a

longer carry in river conditions, provlded that the particulate nature of

this formulatlon does

not

increase

the

loss

of

lnsecticide

through physlcal trapping

or sedimentation

of the particles. The low density and stability of the

12% micro-

emulsion

might also

improve

the carry of carbosulfan, with the restrlction that

a

density close to that of water is necessary for good mixing at the point

of

application. The

carry

performance

of the

new formulations has

to

be evaluated in small-scale

river tests, in parallel with

operational

carbosulfan, in order to fully

assess

their potential

advantages.

(5)

torld Hcrlth Orgnnlzrtlon - Onchoc.rclrilt Control Programe - Ins.ctlcld. Rerarch Unlt

5.

CONCLUSION AND RE@MMENDATTONS

The new formulatlons

of

carbosulfan proposed

by

FMC

are clearly different

from

the current

operationa! one because

of their irrltant effect on S.

damnosum larvae.

The level of efficacy of the

micro-emulsions

is about the

same as

for

the

operatlon

al

25% EC,

but the

micro-capsule

formulation ls less efflcient. As

tested

by

IRU,

only the 12I

micro-emulsion

presents

acceptable

physlcal

characterlstlcs

for rlver

use.

It is therefore

recommended

that further trough tests, gutter tests on

non-

target fauna, and

small-scale

river tests be performed by

IRU/OCP

to further

evaluate

the

potentlal

of

new carbosulfan formulations.

6.

LITERATURE CITED

Kurtak, D.

1986. Operatlonal

trlal of

Carbosulfan (OMS 3022, MarshalR, 25O

g/L Industrial lot

OO19). IRU Report 2/86,

5

pp.

Kurtak, 0., H.

Jamnback,

R.

Meyer, M.

Ocran and P.

Renaud. 1987. Evaluation

of larvlcldes for the control of

Simulium damnosum

s./,

(Diptera: Slmullidae) ln West

Africa J.

Am. Mosq. Control Assoc.

3:

201 -210.

Renaud,

P., and D. Kurtak. 1987. Evaluation of larvicides against larvae of

Slmullum damnosum

s.l. ln

West

Afrlca:

Carbosulfan (ptarshalR).

IRU

Report 6/97,

7

PP.

ocp/IRU/89.0a * Prgo G.

3

(6)

-l

-llorl<t I Horlth orgsnlzrtlon - onchoc.rclr.is control ProEramlc - Ins.cticidc R.Eeerch unlt ANNEX

ocP/rRU/69. Or Pego 7

OCP PROTOCOL FOR CLOSED-CIRCUIT TROUGH TESTS

BRIEF DESCRIPTION.

Thls rcthod, nhich Hes dcvcloped for oCP by 0r. H. Jaonbeck, iE ba6ed on a 3yst.o thet he end ]lr. R.

Gauglcr uaed cxten3iv.ly in Neu York State. It has be€n further modifi€d by the OCP InBecticid€ Re-

acarch Tcam in Loe, Togo. Larvae coll€cted in the field ar€ alloHed to ettach on a rsmovablc plate lyinE ln thc bottqn of a trough yhcrc rater i3 rccircqlat€d by a puop. The plat. lB trrnafemcd to e

iocond trough xh.re the inBecticide has alr€acty been mixed into th€ recirculatlng ietcr. Aftcr tO rlnutca thc plrto la tmnrfemcd to . third trough xith clern rrator. l{ortrlity ls countcd rfter 2a

llour3.

TECHNICAL OETAILS.

The trot€h3 u!.d rr. cqt3tructcd of rlu.iniui rnd printad uhita. Thc trought rro 80 cn long, 15 cr rl<tr rnd I cr d.op. Thcy ro cloeed et the upper end. At thc loilcr ond, a conatrlctlon or llP,

15 cr long, 8.8 c. rida rnd 2 cr <tccp 13 rttsched. A rc.ovablc rctrl plrto r.at3 ln thc bottc of thlt llp. ilatcr ls pLltpcd lnto thc clorcd cnd of the trough end floirs ov.r thc plrt ln thc llP into r ratarvolr, to bo rspirrt.d by thc punp rgain. Soall clectric centrlfugal pllpi rlth e dlachffgc of rbout 22 L/[in ar. uiod, rnd thc vclocity of n8ter ovcr thc rttactmnt plat. ls .bo{Jt 70 c./4. For

thc rttrclrrcnt .rld obceryrtion ty.t.ra, the rea.rvolr is r Plrstlc rrst -btrck.t holdlng 60 L of iatar. For tho expo3urc ayatom, e tO L cnatrelFare pot i6 u8cd la a ro3crvolr to rcducc tho uount of ln8€ctlcide no.d.d. Riv.r xeter ia ured et .ll Bt.9e8 for routinc testB. Its ch.rlct.riatica (teop.r.turc, Dll, turbidity .nd conductlvity) .r. leasur.d .nd trctcd.

Lrvrc rr. coll.ct.d by rcnoving their n tur.l .upport. frd the rivcr. Thcy ar. tmnBportcd ln plratlc brg. plrced ln rn lccbox. Car. l. t.kcn to .eprat. the l.rvre fror thc lc. by a leyer of frcsh lcrvcs or grrtE. Although th. cquipm.nt can be uB.d at th. rivcrsidc uBing r port.blc Enrlcm-

tor, thl! typ. of tcBt lB uBually done ln a laboratory rhtch oay be 8t aoote dittrncc frqr thc col- l.ctlng Polnt.

Th. vca.trtlon nlth the .ttachcd larvec la pl.ccd ln thc rttectmcnt trough. Th. larvr. natu-

r6lly lceve th. vagctttlon to .c€k . stroriEcr curr.nt and thua lttrch to thc plat. of thc lip, ihich

he3 thc hlgtr3t voloclty ln the troqgh. The l.rvae 8rc left lo? 21 h to antur. firi attrchrcnt. Lrr- vr. rhlch puptt. durinE thi3 pcriod arc elimineted just b.?or. cxpoaurc. Thc pl.tc usuelly conteint rbout IOO natura larvra end tovertl hundrcd young lervae.

Thc lrrvlclde for.ulrtlon3 rre .pproprietely dtlutcd t ith diatlll.d r[t.r ifin.dtrtely prior to tho t.3t. Tlr. quentlty ncccaaffy for thc loneEt cotEcntretlon 13 .dded by pipctt. to th€ rcs.rvolr of thc oxpo3ur. trough rlth tlr prrp running. Thc in..cticldc i3 .llotrcd to run for 5 rin to obtrln r unlforn dleperlrl. Adclltionel ln8€ctlcide iB added to the !ryno systcr to obtsln tho hlghcr conccntrl- tlona in e toctr .arlca.

The plrt frdt thc rttrchoent trough is nor carcfully liftcd out end placcd in the .xposurc trough for r d.fln d pcrlod, u3ullly lO n{n-

Lrrvlc d.trchlng durlng thc expoaure perlod .rc cought ln a net attlched to thc lip of tllc trough.

A?tor tho axposura pcrlod the pletc end the nct .rc tnnBfcrred to e holding trough. At tho and of r 2{ h obaarvrtion pcriod, thc dgtsch€d larvae ln thc nat, a3 r,cll a8 any d,eed onca atill et- tech.d to th. pl.t. erc prcaervect ln alcohol for counting. A ftrst collcction ir gencrelly rad€ 2 h aftcr oxpoaura rlncc rcrat lervre d€tech in this period and thc ltrvec [tay d.cdlposc if le?t deed too long. Ths livlng lrvae rro killod r,ith hot xrtcr and alco prc€.rvcd in rlcoho'llhfotrcountlng. The numbar of gxp9Fcd, llvlng, rnd d€ad larvae is eat.blishad saprrataly for 0ntur. (65'r-7sr' in3tare) and young (irat-bch) lervee. Larvac cxporad to ineecticide and Pupating during thc teBta ar€ not count€d Cxccpt for tlrO Control rrhere thcy lre includ€d in the nuobcr Eurvlving.

The uiutl conforartlon of r te8ta iB a rangc of 5 concantrationa and an untreated control

tith 2 rcpllcrtca at aech conccntrttion. Percent mortality is crlculated et a8ch concontration and

the corrcentmtlo,n/oortellty rcletion ie catebli6hcd by probit rnrlysis.

(7)

Rcport IRU 8S.04

' 24h-old.olution

Tablo 1. @mparatlve reeulb of bloaasrye utth carbculfan tormulaflone.

Temperaturc: 25 - 2€.5'C 9H:7.2-7.3

FORMUIATION TEST CODE

Turbl- dlty (Jru}

Conduc- ttvlty

06)

% MORTATITY FOR MATURE TARVAE (N)

mg/Lxl0'cporur

0.0156 0IIB123 0.qE6 0.015 o.c6

cL50 (m/L) ($ofrc.l.)

Ctr05 (mdL) (050fr c.l.)

Nbr of Tcete

CARBOSULFAN

30016 W/W micro-caPaule WW(Lot 16-030)

T89-r7 T89-20

25-

35

94.3- 1@

2.43 (7@)

32.9 (7e4)

77.4 (@0)

0.0163 (o.at39

-

o.om)

0.0389 (0.02co

-

0.6$)

2

CARBOSULFAN 25%WrW micro-emulaion Wrw(tot l5-t88)

T89-r8 rgsr-21

'u,

25-

35

94.3- t08

e?

a3.P,

8n.o

(18)

(115)

(tlt5l

9!i.8

00.8 (328)

99.8 (305.)

0.0011 (0.0010

-

o.Nt3)

0.0057 (0.@s2

-

0.w)

2

CARBOSULFAN 12%WrW mlcro-cmulclon

n

^V(tot

t5-17881

T89-10 T@-2, T8e-25

%-

3ti

04.3- 108

39.0 81.6 (687t

02.5 (17"3)

ca.2

(n50, r@.0 (170) (@0)

0.@t8 (0.0oto

-

0.00?3)

0.0069

(0.N5-

0.0@9) 3

CARBOSULFAN 25%EC

(lnd.l

T88-17 T88-3lt T87-34

8-

%

88-

lr3

2e.7 (@81

89.,1 (1127)

91. t (233t

99.0 (15fi1

0.0023 (0.0017

-

0.$30)

0.0084 (0.@03

-

o.0135) 3

CARBOSULFAN' 3006 wrw mfio-capeulc Wrw(tot 1H36)

T89-23 25-

35

94.3- 108

2.6

(32)

47.4 (95€'l

83.3 (527)

0.0137 0.0335 I

CARBOSULFAN' 25% w/W mlcro-emublon

ww(tot 1s-rryL

T80-2't 25-

35

94.3- r08

59.1 (550)

(eq

90.3 @27)99.4 10.005t 0.0055

-

0.00591

0.0t53 (o.ot12

-

0.0t67)

1

(8)

Flg. l

t 1i

OEGF =

CHI-2 =

Probabi 1 ity :

r'{ETER - T-VALUE:

GFAC = TITLE:

9UBTITLE:

0oB€ unlts:

Control :

-1.538 < < -1.158 0.029 ( < 0.070 -1.857 < < -1.698 0.ota < < o.020 S.E.b = 0.163

LOC OOSE ( tn ttCzL ,

RESULTS OF PROEIT ANALYSIg

5 iterationB ctII-2 CRITERI9N HETEROGEIIOUS = OATA0.1

loc -- LO99 r-6gg = -1.25356 -1.419 < ( -0.922

= 0.0557?5 0.038 ( < 0.120 loo - LO95 LD95 : : 0.038953-1.t1O945

:o

r.785?1. ol 6379

a:b= I 2. 4.372806

LO50 o9 L050

t nt€rcept sloPo

t16. 1t0I

o. 000

r r aa<

2. 780 0. 124 CAREOSULFAN KOPERAGUI R.

t,lo/L

0.o

r

(FHC) 30r W/W MICROCAPSULE BATCH 16-036 sAssANoRA O9lr0.08.89

i OATA TRANSFORMS

I

! r Loc

coRR. coan. PREo. cttr-gQ.

i oBs.

DosE oEAo pRoBrr PRoBrr cotlrRr8.

-1 .602 -r .602 -t .903 -t.903 -2.201 -2.20a

OOSE TESTED DEAD

CORR.

PERC.

OATAI I

2 3 1 5 6

0 at.

o.o 0.

0. ozs o. 025

r. Ol 25 .01 25 00625 00625

322 26G

308 220 333 138.

461 122.

147 t8.

302 0.

266. 9

220.1

r38.I r22.9 t8. 7

o.5

5. 950 5.570 a.791 1.377 3. 2sO 2. 063

5.803 5. EO3 a. '187

1.187 3. t71 3. 1?t

3. 08 9. 96 20.17 3. 04 0.349.51

6I

7 7 E 2 82.

71 .

at.26.

0.3.

aI

9 9

? 5

e2.?t.

26 3 o

9 6 7 7 8 2

:Fpg6ulrfi (Frc) 3€r: (l/u mcRocRFEULt BQTCH 16-036 k@EeAOJI R. SASsArOee 09/te.@.89

=o I

\

nc

, I

I

I

?

6

J

1

3

o

a 10

,

?

-6 -4 I

it

1

(9)

Flg.2

{+.

.t r. ':

't

o

RESULTS OF PROBIT ANALYSIS

a it€ratlona CHI-2 CRITERION =

'log Lo99 = -

L099 = o log LD95 = -

LD95 = o

a-b=

loo .-- LDSO : -2.9rt298 -3.008 ( < -2.889 LOsO = O.O01140 0.001 ( < 0.001

1.95t5a -2.011 < < -1.879

.o11180 0.010<<0.o13 2.21198 -2.280 ( < -2.199

.o05728 0.OO5<<O.006

1 l .906

2.346 S.E.b = 0.131

LOG OOSE

CORR.

DEAO

o.1

GORR.

PROEIT PREO.

PROBIT cHr-30.

COOITRIB

CORR.

PERC.

i nt€rcept aloPe

OEGF =

CHI-2 = Probabi I ity :

H:TE E

t-VAL(JE:

GFAC :

o.025 o. ol 25 r. O0625 . 00625 003 I 25 .001 56

OATA TRAIISFORI.IS 1

2.471 0. 649

i.c,l_

1 .96i c.012 TITLE: CAREOSULFAII SUBTITLE:K@ERAGUI R.

OoBe units:MG/L Control : O.O t

(F].rC) 'sAssAr{oRA 25: H,',u l.lICRC-EtIULSION BATCH 15-188 9/ 10. 08. 89

OOSE TESTEO OEAO

:

OATA oBs a

a

-6

I

2 3 a 5 G

00 0.o

305 304.

326 325.

e28 890.

a87 46a.

4il5 3?3.

a29 271.

7. g'tO 7.gGr 0. 7,t8 6. 683 5.990 5.340

8 7 6 66 5 5

5

? 5 3 6

99.8 -1.602 30a.5

99.8 -1.903 325.5

96.O -2.20a 890.7 95.. -2.20. 464.5

83.9 -2.505 373.3

63.3 -2.807 271.6

II

0tl 9 3 99 99 96 95 8363 21 51 0a 28 28l1 oI

0o o o tl,tOta6 73t?34 o27 319

I

?

CAReGJLFAH (FilC) a:Z uill t4tcRo-Erulslol BATCI{ 15-188 KmERmUt p. sASsiloRA 9,'10.(I}.99

I

"r9

i

ie5

I

-9€

i I :

.ize

I I

iC'4

::-F-'

*t

I

It

I I

'rl

6

J

3

2 1

a

-4 0

LCC t('9E i :n tCrL ,

(10)

6

RESULTS OF PROBIT ANALYSIS

a itarationB CHI-2 CRITERION : 0.1 HETEROGE]IOUS DATA

loc - L099 LO99 = -1.91970 -2.060 < < -1.681

= 0.012O30 O.OO9 < < 0.021 Lo9

109

o9 5=-i

5=O

b=

log 1050

1050

2.15906 -2.259 ( < -2.005

.006933 0.006<<0.010

= -2.73679 -2.886 < < -2.639

= 0.oo1833 0.oo1 < ( 0.002 12.792

2.847 3.E.b = 0.098

int€rcept alope

OEGF : CHI-2 =

ProbaE,ility:

HETER = T-VALUE=

GFAC =

TITLE: CARBOSULFAN SUBTITLE:KOPERAGUI R O,o!c units:HG,/L

Control : O.O I

OOSE TESTEO

a79 a78.

885 87

271 921 280522 505 182 630

2t wlw M.E. (Fr{c)

SASSANORA 9/ 10/11 . 08. 89

: oATA TRANSFORUS

i :

LoG coRR. coRR. PRED. cnr-so.

: oBS. OOSE OEAO PROBIT PROBIT @ilTRIB.

.23r.374 .374 .872i

88 000 696 36008r

0 2 2

o

OEAO

CORR.

PERC.

OATAI I

2 3 1 5 6 7 8 9

0. 025 o. 01 25 o.01 25 o. 0062s o. 00625 0.0062s 0.o03125 0.o03125 0.001 56

2?O.

512.81 269.403.

1 52.

212.

9 -r .602 o -1 .903

I -1 .903

1-2.201 2 -2.201

1 -2.201 8 -2. 505

7 -2. 505

5 -2.807

a78. 5 876. O

270. 5

8tl.o

512.5 269. 9

{o3. 1

152.4 242. 4

I

7 7 6I

6 5 5 4 99

99 99 88 98 96 79 83 36 5 6 5

I

I5

1

1 4

51?

517517 660 660800

16 q

o77 320 90ar78 092 798 835 984 707

I7 7 6 6 6 5 5 a

9 oI

I

2 1I

7 5 99 99 99 88 98 96 79 83 38 0. t'f

o. t9

r .50 45. 85 rE.59 3.77

7 .17 8. 1{

3. 38

CARBCSULFAII 12'Z UIU N.E. (FIT) xop€nAcul R. SFSSAHDRA fu 10,/r1.08.€9

I

7

6

j

1

h

3

2

:1

-ac

-6 -.1 3

LCG CfSt . :n ttiri ,

..ri.6rJl;E+*-.

;ftiffi1

(11)

Flg.t f

RE$IILTS OF PROEII AIIAI.YSIS

5 iterrtions loo - 1099 t099

: :

-1.8{3160.01{319

IIERI0II

: I

HETEROGEIIOUS OI

.t

TT

Cl,ll.z CR

-2.01 0.0r0

r .516 028

l((-

( (

0.

oo - 1095 1095

:

-2.07308

:0.008{51 loo - 1050

:

-2.62801 1050

:

0.002351

-2.r8r (

0.002 ( (

0

0

-2.520 .003 i ntercept

slope

l2.l

2.9

90

6{

-2.199 ( ( -t.868 0.000 ( ( 0.0r1

s.E.b 0

t: !:

9r771 r{r63 r0609 {3068

?83r8

3{tr?

r8633

8,122 8.ofi 0.037{ 99 8.09r 0.0{t 0.0r60 99

r.29I 8.0{r 36.{83r 98

7.303

t.ll9

0.?8il 99

6.897 6.250 33.I32{ 9I 6.

r{r

6.256 2.602r 8I

5.980 6.256 il.8121 83

1.671 {.170 8.59t3 3r

1.r05 t.t70 ll.226{ 20

0 -t.002 556

0 -r .602 500

I

-t.002 rst

|

-r .903 23t

1-2.20t 531

I

-2.201 {?3

I

-2.20{ 279

3 -2.807 il8 2 -2.801 65

r08.26 0.00 t5.16 2.36 0. r0

55r

557 r00

50r

50t r00

t62 15t

98

233 23

r

99

553

53r

97

5r

r r73

8r

333 219 83

316 r

18

37

322 65

20

I

9 0

I

0 0 OEGF

CHI.2

Probabilitv

llETER T-YALUE

CFAC

025 025 025 r25 5 5 5 6 6 0062 0062 0062 00r5 00r5

EC r0T

'

00t9

t7. T88.35. I8t.rr

OITT TRAilSFORIIS

I

08s

roc

coRR. coRR. PRE0. Cflt-SQ. CoRR.

OOST OEAO PROEIT PROEIT COIITRIE.PERC.

II TTE

SUSTIITE 0ose units Control

I r023 90r38 OOSE IESTEO OEAO

I

2 -6

CRR0oSULFnil ztz EC LoI r 0019

rmcRmJt: TtB.t?, T88.35, t87.74

{

LOC 00SE ( tn rq71 x lO ttn ) OAIAI

I

2 3

{t 50 c0 70 80 90

a

7

6

,

.l F

ao

aro

l!g

HLJ c(

,

I

3

-2 e :CARE0SUIFA|| 251

:l(0PEflAGUI: I88.

io/t.[

r0 rini

(12)

-6

5 itorrtlona CHI-2 '-r.80?((-2.086CRITERION HETEROGENOT'S OATA= 0.1

0.016 < < 0.008

ERR ERR ERR ERR

S.E.b = 0.195

Ftg.5

OEGF =

CHI-2 = ProbabilitY = HETER =

-t .3r33?

0. o48598

= -l . t37432

= O.033548 -t .86278

o. ot 37r 5 1 2.888 1.231

1

22.O12 o. oo0 22.O12

log L099 = LO99 = LOg5 L095 LO50 LO50

log log

a=b:

nt€rcePt aloPc

T-VALUE= t2. ?10

GFAC = 7. 587

TITLE : CARBOSULFAN T.IICROCAPSULES

SUBTITLE KOPERAGUI R. SASSANDRA 1 1 lose un i ts ilG, [- [,ATA TFAU

Control 1.1 f ;

(FMC) 30: W,/W t{.E. BATC}I t6-036

. 08.89

3 i-r)Rf l--.

DEAD !

ir

O8S. oosELOG OEAOCORR CORR. PREO. CHI.SQ PRoCii PRoBit cournii

5.966 6.lOa '1.68 a.934 4.829 6.63

q.058

3.sss

ro.8r

CORR OATA PERC

t

1

2 3

.39.0

'151 .3 8.4

OOSE TESTEO

o.o25

527

o.o125

953

o.00625

322

3 1 6 83 17 2 602

903 20a

5 -1.

o -1.

7 -2.

4883 3 {40457

12

1e 5

8

?

6

,

CRRBoSJLFATI IIICR0CRPSJLES (FlC) 30r{ Unr !l.8. BATCH 16{16

K(pERnCU! R. SASStr{DRA 11.08.89

o

-4

LOC OGE ( rn ltG/L )

I

{ze

I

,l

3

a

i

II

.l

I I

2

0

I

I

(13)

FlE.6

RESULT3 OF PROEIT ANALYTTIS

3 ltcrrtlons ctII-2 CRITERIOII =

loo - LDB9 LO99 = = O.O23334-1.C3201 roq - LD95 LOgs = = O.O|52C8-1.81G19 loe - LO5O LO5O = = O.OO5186-2.2GO71

o.t

-1.679 ( ( -1.5?a

o.o21 ( < 0.027

-1.8t8 ( < -t.778 o.ot4 ( ( o.ol?

-2.296

( (

-2.23t

o.oo5

( (

0.006

lntarc.pt

rloP. l=b= r3.3653. ?OO S.E.b = O.213

OEOF = G-HI-2 =

ProbebllitY =

TIETER = T.VALUE=

OFAC =

o.322I o.564 1.O00

r.960 o.ot3

:CAnEOgULFAtl }{ICRO-EIIULSI(}I (Fl,lc) 25I t{/tl tllcRo-E}lt LEIO| EATCII t5-

!l(,PERedrI R. SAS8AI{ORA t1.08.E9

:HO^/L ! DATA TRAIISFORTII

: l.t t :

t-

! r

L<xl ooRR. ooRR. pREo.

ctrr-go.

@RR.

TEETEO..OEAD

!

O8!T. OGIE OEAO PROEIT PROEIT OOITRIB. PERC.

c27

C22 99.4 -t.CO2 821.9 7.502

'.a37 0.t?

3g.a

c21 soa

90.a

-t.903

563.3 G.297

G.323 o.tC

00.3

550 325

59.1 -2.204 322.1 5.2t8

5.209 0.02

5E.G

TITLE 8T'BTITLE

Oor rlrlts

Gqrtrol

DATA

,

I

-6

OOSE

0.o25 o.ol25

o. 00625 23

2

I

3

2

cnn06runfi ilcno-ot tstfi (Rc) 25* r/u ]llcfiFgrrLslol Beru 1,.188

kDmcut R. 6e86iloQc tt.s.g!)

{

LoC oGiC ( in lG/L ) 6

,

1

I

I

0

Références

Documents relatifs

Application of Database Management to Geographical Information Systems (GIS); Geospatial Databases; spatial data types [point, line, polygon; OGC data types], spatially-extended SQL

The disjunction φ of general solved formulas extracted from the final working formula is either the formula false or true or a formula having at least one free variable,

We have extended this theory by giving a complete first-order axiomatization T of the evaluated trees [6] which are combination of finite or infinite trees with construction

Although the development of an assessment framework was among the most relevant achievements of the project, the assessments provided for a joint identification and analysis of the

The physical stability of the subunit (a) and (b), split (c) and (d) and virosomal (e) vaccines was characterized using standard analytical methods (90° light scattering,

We shall give in Part 2 three examples to illustrate our approach (in particular, how to work out and simplify the expressions given in Theorem 1), namely Kreweras’ walk, the

5 Type inference using canonical structures 5.1 Canonical Structures The type-theoretic formalization of an algebraic or combinatorial structure comprises representation types

Computer-Driven &amp; Computer-Assisted Music Systems Microprogrammable Microprocessors for Hobbyists Speech Synthesis Using Home Computers Optical Scanning for