• Aucun résultat trouvé

Stability of power systems - transmission

N/A
N/A
Protected

Academic year: 2022

Partager "Stability of power systems - transmission"

Copied!
35
0
0

Texte intégral

(1)

LAS-ANS SYMPOSIUM 2018

Stability of Power Systems Transmission

Francisco José Arteiro de Oliveira

Planning Director

(2)

Brazilian Energy Matrix

2017-2022

Wind Power Installed Capacity

2011-2022

The New Energy Matrix

ONS technical challenges

The New Transmission

System

ONS technical challenges

Q&A Angra 2 Nuclear PP

House Load Operation

(3)

Brazilian Energy Matrix

(2017-2022)

(4)

45.783 69,94%

12.983 19,83%

1.797 2,75%

4.826 7,37%

74 0,11%

Hidráulica Térmica Nuclear Eólica Solar

Current Power Generation (MWmed)

A green energy matrix

2017-2022 BRAZILIAN ENERGY MATRIX

Hydro Thermal Nuclear Wind Solar

(5)

Contracted Power Generation (Lowest Price Auctions)

Tipo 2017 2022 2017-2022 Growth

MW % MW % MW %

Hydro 105.406 67,8% 114.395 65,6% 8.989 8,5%

Nuclear 1.990 1,3% 1.990 1,1% 0 0,0%

Gas / LNG 12.597 8,1% 15.641 9,0% 3.044 24,2%

Coal 3.138 2,0% 3.420 2,0% 282 9,0%

Oil / Diesel 4.732 3,0% 5.018 2,9% 286 6,0%

Biomass 13.623 8,8% 13.829 7,9% 206 1,5%

Others (1) 779 0,5% 950 0,5% 171 22,0%

Wind 12.309 7,9% 15.373 8,8% 3.064 24,9%

Solar 952 0,6% 3.638 2,1% 2.686 282,1%

Total 155.526 100,0% 174.254 100,0% 18.728 12,0%

(1) Biomass Power Plants (with Unit Variable Cost)

2017-2022 BRAZILIAN ENERGY MATRIX

(6)

TYPE December 2017

December 2022

Growth 2017-2022

MW % MW % MW %

Hydro PP 105.406 67,8% 114.395 65,6% 8.989 8,5%

8.719 MW (96%) – Run-of-river HPP 401 MW (4%) – HPP with reservoirs

Run-of-River With Reservoir

Belo Monte HPP 6.722 MW Sinop HPP 401 MW São Manoel HPP 700 MW

Colíder HPP 300 MW

Small HPP 670 MW

Others 327 MW

2017-2022 INCOMING POWER SUPPLY

(7)

Wind Power Capacity

(2011-2022)

(8)

2022 2016

2014 2011

15 GW 10 GW

5 GW 1 GW

2011-2022 WIND POWER INSTALLED CAPACITY GROWTH

Wind Power Capacity (2018) Region Installed Cap. (MW)

South 1.664

Southeast 28

Northeast North

10.883 221

Total 12.768

85%

13%

Brazilian Power System Wind Power Capacity

(9)

2011-2022 BRAZILIAN WIND POWER INSTALLED CAPACITY

2018 Wind Power Installed Capacity (MW)

Northeast region

South region

(10)

Northeast Region Energy Balance

2009-2018 NORTHEAST REGION ENERGY BALANCE

Hydro Solar Wind Thermal Import/Export Load

(11)

The New Energy Matrix

ONS technical challenges

(12)

Reduction of the equivalent inertia

System inertia

▪ Essential feature for frequency stability

▪ Inherently provided through the kinetic energy of rotating masses of synchronous machines

The new energy matrix

Madeira River Hydro Power Plants: bulb turbines with reduced inertia (~ 1.6 s)

▪ Increasing displacement of synchronous power by generation units connected through power electronics converters (e.g. Wind and PV power plants) reduces system inertia

▪ Resulting in higher frequency sensitivity

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(13)

Reduction of the equivalent inertia

Rate of Change of Frequency (RoCoF) limitation: operational horizon

More units committed in the power plants for the same dispatch

▪ Wind Power Plants: activate synthetic inertia controls

▪ HVDC asynchronous links: frequency controls to reduce the energy unbalance

Rate of Change of Frequency (RoCoF) limitation: expansion planning horizon

▪ More synchronous compensators in the alternatives

▪ Solutions that emulate inertial response (electronic converters and batteries, based on Virtual Synchronous Machine concepts)

▪ Energy auctions: requirement for minimum inertia of generators

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(14)

Wind Power stability concerns: system requirements examples

Power Plants must stay connected…

▪ Off-nominal frequency operation

▪ Low and high voltage ride-through capabilities

And must provide…

▪ Automatic voltage and reactive control

▪ Transient emulation of inertia: synthetic inertia

▪ Reactive current injection during short-circuits

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(15)

Minimum requirements: Off-nominal frequency operation

- Allowed disconnection above 63 Hz

- Must stay connected between 62.5 and 63 Hz, for at least 10 seconds - Must stay connected between 58,5 Hz and 62,5 Hz

- Must stay connected between 56 and 58.5, for at least 20 seconds - Instantaneous disconnection allowed under 56 Hz

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(16)

▪ The ability of a wind park to stay connected throughout a voltage sag or swell.

▪ Prevents cascade disconnections and major blackouts.

Minimum requirements: Low and High Voltage ride-through

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(17)

0,000 0,250 0,500 0,750 1,000 1,250

-0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80

P/Pn

Q/Pn +0,329 -0,329

P = 0,2 Pn P = Pn

PCC - POINT OF COMMON COUPLING: the wind park must provide enough reactive power compensation for the power system (see figure below).

AUTOMATIC CONTROL: the wind park must provide closed-loop automatic voltage and reactive control.

Wind-free converter:

provides reactive power even during no-wind conditions.

(under consideration)

Minimum requirements: Automatic voltage and reactive control

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(18)

WIND POWER MODULATION: transient power contribution to reduce energy unbalances on power system after disturbances, like generation losses or outage of interconnections.

Minimum requirements: Synthetic Inertia

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

(19)

57.5 58.

58.5 59.

59.5 60.

0. 6. 12. 18. 24. 30.

FREQUENCIA DO SISTEMA AEROGERADORES SEM INERCIA SINTETICA FREQUENCIA DO SISTEMA AEROGERADORES COM INERCIA SINTETICA

Frequency (Hz)

Time (s)

Higher Minimal Frequency 58.0 Hz vs. 57.6 Hz

Lower Rate of Change of Frequency (RoCoF)

Synthetic inertia power contribution could avoid (or reduce) load shedding by

Minimum requirements: Synthetic Inertia

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

TRANSIENT STABILITY ANALYSIS: Brazilian Power System simulation, considering a large generation loss, with and without Synthetic Inertia.

Without Synthetic Inertia With Synthetic Inertia

(20)

Power System Frequency in a Real Large Disturbance

Northeast Region islanding in March 21th, 2018

58.5 Hz for 10 seconds Hydro Generator

shutdown

Thermal Generators shutdown Hydro Generator

shutdown

Load shedding (UFLS) Xingu – Estreito

HVDC trip

5th stage of UFLS (freq. = 57.4 Hz)

THE NEW ENERGY MATRIX – TECHNICAL CHALLENGES

Frequency (Hz)

(21)

The New Transmission System

ONS technical challenges

(22)

HVAC and HVDC long power corridors (2.500 km)

High level of asynchronous power injected on Southeast (13 GW, from Madeira and Itaipu 50 Hz)

Displacement of synchronous power, with inertia reduction => complexity

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

(23)

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Belo Monte

Termoparaíba Termonordeste

Alegria II Alegria I

Maracanaú I Porto de Pecém I

Chapadão Biopav II

Anta Jirau

Mauá São Domingos

do Atlântico Santo Antônio

Foz do Chapecó Dardanelos

Estreito

Simplício Batalha

São José Passo São João

Rondon II

Igaporã II

Extremoz II

Foz do Chapecó

Anchieta Xinguara 2

Encruzo Novo

Arapiraca III Teresina III

Várzea Grande 2

Cerquilho III Corumbá 2

Porto Alegre 12 Restinga

Nova Petrópolis 2

Vargem Grande

Palhoça Pinheira Toyota

Jorge Teixeira

Viana 2 Itabirito 2

Linhares 2 Trindade

Joinville GM Jandira Castanhal

Edéia Quirinópolis 2 Jataí

Ivinhema 2 Rio Brilhante

Sidrolândia 2 Coletora Porto Velho

Macapá

Lechuga

Silves Oriximiná Laranjal

Xingu

Parecis

Teixeira de Freitas II Camaçari IV

Suape III Suape II

Balsas

Sadia Lucas do Rio Verde

Forquilhinha

Zebu

Natal III

Narandiba

PARANÁ PARANÁPARANÁPARANÁPARANÁ

TOCANTINS TOCANTINSTOCANTINSTOCANTINSTOCANTINS RORAIMA

RORAIMARORAIMARORAIMARORAIMA

RONDÔNIA RONDÔNIARONDÔNIARONDÔNIARONDÔNIA

PARÁ PARÁPARÁPARÁPARÁ AMAZONAS

AMAZONASAMAZONASAMAZONASAMAZONAS

ACRE ACREACREACREACRE

SE/CO

S N

Madeira

Itaipu

50 Hz

Belo Monte

60 Hz 60 Hz

60 Hz

NE

HVAC and HVDC long power corridors and Increasing Wind Power

Specific Stability issues

Synchronous

subsystem: transient stability issues

Asynchronous subsystem

(concentrated): inertia and multi-infeed control issues

Asynchronous subsystem

(distributed): inertia and control issues

60 Hz

Teles Pires

(24)

Madeira River AC and DC T system: multiple owners and manufactures

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

S. Antônio

Jirau

Coletora P. Velho Araraquara

Filtro AC

Filtro AC

4x954MCM -TC -105km

2375km

2375km +600kV CC

-600kV CC Pólo 1 1575MW

Pólo 2 1575MW 1575 MVA

44x75MW

3x1250MVA 44x71,6MW

SE

Vilhena

P. Velho Ariq.J. ParanáP.Bueno Coxipo

Ribeirãozinho

Itumbiara Rio Verde

2x954MCM 12 km Back-to-back

MT

Samuel

Trindade

Araraquara

Araraquara (Furnas)

(CTEEP) 1575 MVA

Filtro AC

Filtro AC

2375km

2375km +600kV CC

-600kV CC Pólo 1 1575MW

Pólo 2 1575MW 1575 MVA

1575 MVA

-50/100 Mvar

Rio BrancoAbuna Univers. CE 400 MVA 400 MVA

Cuiabá

Jauru 364 km

242km 1x750MVA

Atibaia Pólo 1

1475MW

Pólo 2 1475MW

Pólo 1 1475MW

Pólo 2 1475MW

3x(-70/100) Mvar SI

150km 118km 160km 354

41km 165km

305km 160km 30km

1x136 Mvar 1x750MVA

S. Antônio

Jirau

Coletora P. Velho Araraquara

Filtro AC

Filtro AC

4x954MCM -TC -105km

2375km

2375km +600kV CC

-600kV CC Pólo 1 1575MW

Pólo 2 1575MW 1575 MVA

44x75MW

3x1250MVA 44x71,6MW

SE

Vilhena

P. Velho Ariq.J. ParanáP.Bueno Coxipo

Ribeirãozinho

Itumbiara Rio Verde

2x954MCM 12 km Back-to-back

MT MT

Samuel

Trindade

Araraquara

Araraquara (Furnas)

(CTEEP) 1575 MVA

Filtro AC

Filtro AC

2375km

2375km +600kV CC

-600kV CC Pólo 1 1575MW

Pólo 2 1575MW 1575 MVA

1575 MVA

-50/100 Mvar

Rio BrancoAbuna Univers. CE 400 MVA 400 MVA

Cuiabá

Jauru 364 km

242km 1x750MVA

Atibaia Pólo 1

1475MW

Pólo 2 1475MW

Pólo 1 1475MW

Pólo 2 1475MW

3x(-70/100) Mvar SI

150km 118km 160km 354

41km 165km

305km 160km 30km

1x136 Mvar 1x750MVA

Lot A (ESUL => ELN) Lot E

(SGB)

Lot F

Lot C Lot C (ELN)

Lot F (IE Madeira)

Lot D (IE Madeira)

Lot G (NBTE)

(25)

Madeira River Project: Hydro power plants in special conditions

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

▪ Bulb turbine driven generating units of reduced nominal power (~ 80 MVA)

▪ High number (100) of generating units

▪ Units with low inertia constant (1.4 to 1.7 MW.s / MVA)

▪ Large variation of water flows and heads throughout the year, with a significant effect on the dynamics of the turbines

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G

SE C OLET ORA

CASA D E FO RÇA CASA DE FOR ÇA CASA D E F ORÇA

LT +/- 15KM

Santo Antônio HPP

(26)

Madeira River Project: Hydro power plants in special conditions

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Santo Antônio HPP

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000 65.000

Vazão Real Vazão Média Histórica

Measured Flow (m3/s)

(27)

Madeira River Project: Hydro power plants in special conditions

THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Santo Antônio HPP

(28)

Belo Monte Project: new 800 kV HVDC without 500 kV AC reinforcements THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Planned Power System (2018) Actual Power System (2018)

Belo Monte HPP

Belo Monte HPP

Xingu-Estreito HVDC link

(29)

Belo Monte Project: new 800 kV HVDC without 500 kV AC reinforcements THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Severe contingency:

4.000 MW HVDC link trip

(30)

Belo Monte Project: new 800 kV HVDC without 500 kV AC reinforcements THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Severe contingency:

4.000 MW HVDC link trip With Generation Drop (6 GU) Without Generation Drop

Voltage profile (500 kV substations)

(31)

Belo Monte Project: new 800 kV HVDC without 500 kV AC reinforcements THE NEW TRANSMISSION SYSTEM – TECHNICAL CHALLENGES

Special Protection Scheme: multiple power plants and substations

Station Control– Xingu [BMTE] => Master Control [XRTE]

Serra da Mesa HPP [FURNAS]

Belo Monte HPP [NESA]

Tucuruí HPP[ELETRONORTE][TAESAELN] [LXTE]

(32)

Angra 2 Nuclear PP

House Load Operation

(33)

House Load Operation (HLO):

ANGRA 2 NUCLEAR POWER PLANT – HOUSE LOAD OPERATION

▪ Islanding Angra 2 power plant with internal loads

▪ HLO has been designed to act before the individual protections

Benefits: (i) speeding up loads restoration in the Rio de Janeiro area and (ii) improve power plant output;

▪ Trip to house load operation in case of a voltage or frequency variation

❖ Frequency settings: 57 Hz, 500ms

❖ Voltage settings: 0,7pu, 200ms

(34)

House Load Operation (HLO):

ANGRA 2 NUCLEAR POWER PLANT – HOUSE LOAD OPERATION

GU circuit breakers

(35)

Thanks

Références

Documents relatifs

Then, the capacity of the range of a random walk is cast into a problem of intersection of paths, and dimension four is critical in view of classical results of Dvoretsky, Erd¨os

A trip of the central grid, trip of the PV system, and a three-phase short circuit isolating a generation and a load are simulated for stability studies of the hybrid power system

introduit au niveau des éléments finis et concerne les paramètres de design de la structure et du traitement viscoélastique. Pour réduire les coûts induits par la taille du

Keywords : finite-set model predictive control (FSMPC), Permanent Magnet Synchronous Generator (PMSG), Wind Energy Conversion System (WECS), Maximum Power Point Tracking

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this paper, the Direct Power Control (DPC) is considered, so, the converter switching states are selected by a switching table based on the instantaneous errors between the

Finally, an SVC allocation method based on simplified sensi tivity analysis is also presented, which validates the effect from SVCs on the power system

These turbines would have rotor blades, a generator for converting the rotational energy into electricity, and a means for transporting the electrical