• Aucun résultat trouvé

The syntactic graph of a sofic shift

N/A
N/A
Protected

Academic year: 2022

Partager "The syntactic graph of a sofic shift"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-00619853

https://hal-upec-upem.archives-ouvertes.fr/hal-00619853

Submitted on 6 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The syntactic graph of a sofic shift

Marie-Pierre Béal, Francesca Fiorenzi, Dominique Perrin

To cite this version:

Marie-Pierre Béal, Francesca Fiorenzi, Dominique Perrin. The syntactic graph of a sofic shift. 21st

International Symposium on Theoretical Aspects of Computer Science (STACS 2004), Mar 2004,

Montpellier, France. pp.282-293. �hal-00619853�

(2)

Marie-PierreBeal,FranesaFiorenzi,andDominiquePerrin

InstitutGaspard-Monge,UniversitedeMarne-la-Vallee

77454 Marne-la-ValleeCedex2,Frane

fbeal,perringuniv-mlv.fr, fiorenzimat.uniroma1.it

Abstrat. Wedene a new invariant for the onjugay of irreduible

so shifts. This invariant, that we all the syntati graph of a so

shift, is the direted ayli graph of harateristi groups of the non

nullregularD-lassesofthesyntatisemigroupoftheshift.

Keywords:Automataandformallanguages,symbolidynamis.

1 Introdution

Soshifts[17℄aresetsofbi-innitelabelsinalabeledgraph.Ifthegraphanbe

hosenstronglyonneted, thesoshiftis saidtobeirreduible.A partiular

sublassofsoshiftsisthelassofshiftsofnitetype,denedbyanitesetof

forbiddenbloks.Twoso shiftsX andY are onjugateifthereis abijetive

blokmap from X onto Y. It is an open questionto deidewhether two so

shiftsareonjugate,eveninthepartiularaseofirreduibleshiftsofnitetype.

Therearemanyinvariantsforonjugayofsubshifts,algebraiorombinato-

rial,see[13,Chapter7℄,[6℄,[12℄,[3℄.Forinstanetheentropyisaombinatorial

invariantwhihgivestheomplexityofallowedbloksin ashift.Thezetafun-

tionisanotherinvariantwhihountsthenumberofperiodiorbitsin ashift.

Inthispaper,wedeneanewinvariantforirreduiblesoshifts.Thisinvari-

antisbasedonthestrutureofthesyntatisemigroupofthelanguageofnite

bloksoftheshift.Irreduiblesoshiftshaveaunique(up toisomorphismsof

automata)minimal deterministipresentation,alled therightFisheroverof

theshift.ThesyntatisemigroupSofanirreduiblesoshiftisthetransition

semigroupofitsrightFisherover.

Ingeneral,thestrutureof anite semigroupisdeterminedby theGreen's

relations(denotedR,L,H ;D;J)[16℄.Ourinvariantistheaylidiretedgraph

whosenodesaretheharateristigroupsofthenonnullregularD-lassesofS.

Theedgesorrespondtothepartialorder

J

betweentheseD-lasses.Weall

itthesyntatigraphofthesoshift. Theresultanbeextended tothease

ofreduiblesoshifts.

TheproofoftheinvariantisbasedonNasu'sClassiationTheoremforso

shifts[15℄thatextendsWilliam'soneforshiftsofnitetype.Thistheoremsays

that twoirreduible so shiftsX;Y are onjugateifand onlyif there isase-

queneoftransitionmatriesofrightFisheroversA = A

0

; A

1

;:::;A

l 1

;A

l

=

B,suhthatA ;A areelementarystrongshiftequivalentfor1il,where

(3)

spetively.This meansthatthere aretransitionmatriesU

i

;V

i

suh that,after

reodingthealphabetsofA

i 1 andA

i

,wehaveA

i 1

=U

i V

i andA

i

=V

i U

i .A

bipartiteshiftisassoiatedinanaturalwaytoapairofelementarystrongshift

equivalentandirreduiblesoshifts[15℄.

The key point in our invariant is the fat that an elementary strong shift

equivalene relation between transition matries implies someonjugay rela-

tionsbetweentheidempotentsinthesyntatisemigroupofthebipartiteshift.

Weshowthatpartiularlassesofirreduiblesoshiftsanbeharaterized

withthissyntatiinvariant:thelassofirreduibleshiftsofnitetypeandthe

lassofirreduibleaperiodisoshifts.

Basidenitions relatedto symbolidynamis aregiven in Setion2.1. We

refer to [13℄ or [9℄ for more details. See also [10℄, [11℄, [4℄ about so shifts.

Basidenitionsandpropertiesrelatedtonite semigroupsandtheirstruture

are given Setion 2.2. We refer to [16, Chapter 3℄ for a more omprehensive

expository. Nasu'sClassiation Theorem is realledin Setion 2.3. We dene

andproveourinvariantinSetion3.Aomparisonofthissyntatiinvariantto

somewell knownotherones isgivenin Setion4.ProofsofPropositions1and

2areomitted.Theextensiontotheaseofreduibleso shiftsisdisussed at

theendofSetion3.

2 Denitions and bakground

2.1 So shifts and their presentations

LetAbeanitealphabet,i.e.anitesetofsymbols.Theshiftmap:A Z

!A Z

isdenedby((a

i )

i2Z )=(a

i+1 )

i2Z ,for(a

i )

i2Z 2A

Z

.IfA Z

isendowedwiththe

produttopologyofthedisretetopologyonA,asubshiftisalosed-invariant

subsetofA Z

.

IfX isasubshiftof A Z

andnapositiveinteger,thenthhigherpower ofX

isthesubshiftof(A n

) Z

denedbyX n

=f(a

in

;:::;a

in+n 1 )

i2Z j(a

i )

i2Z 2Xg.

A nite automaton is a nite multigraph labeledon A. It is denoted A =

(Q;E), where Qis anite set of states,and E anite set of edgeslabeledon

A.Itisequivalentto asymboliadjaeny (QQ)-matrix A,whereA

pq isthe

nite formal sumofthe labelsof alltheedges from pto q. A so shift isthe

setofthelabelsofallthebi-innitepathsonaniteautomaton.IfAisanite

automaton,wedenotebyX

A

thesoshiftdenedbytheautomatonA.Several

automata andenethe sameso shift. Theyarealsoalled presentations or

overs of theso shift.Wewillassumethat allpresentationsareessential:all

states haveat least one outgoingedge and one inoming edge. An automaton

is deterministi if for any given state and any given symbol, there is at most

oneoutgoingedgelabeledwiththisgivensymbol.Asoshiftisirreduible ifit

hasapresentationwithastronglyonnetedgraph.Irreduiblesoshiftshave

aunique(up toisomorphismsof automata)minimaldeterministipresentation

(4)

phabet A. Eah nite word w of A

denes a partial funtion from Q to Q.

This funtion sends thestate pto thestate q, ifw is thelabel of apathform

pto q. Thesemigroup generated byall these funtions is alled the transition

semigroup of theautomaton. WhenX

A

is notthefull shift, thesemigrouphas

anullelement,denoted 0,whih orrespondsto wordswhih arenotfatorsof

anybi-innitewordofX

A

. Thesyntati semigroup of anirreduible soshift

isdened asthetransitionsemigroupofitsrightFisherover.

Example 1. ThesoshiftpresentedbytheautomatonofFigure1isalledthe

evenshift.Itssyntatisemigroupisdenedbythetableintherightpartofthe

gure.

1 2

b

b a

1 2

a 1

b 2 1

ab 2

ba 1

bb 1 2

bab 2

aba :

Fig.1.TherightFisheroveroftheevenshiftanditssyntatisemigroup.Sineaa

andadene thesamepartialfuntionfromQtoQ,wewriteaa=ainthesyntati

semigroup. Wealsohaveaba=0,or ab 2k +1

a=0for anynonnegativeintegerk.The

wordbbistheidentityinthissemigroup.

2.2 Struture ofnite semigroups

Wereferto [16℄formoredetails aboutthenotionsdened inthis setion.

GivenasemigroupS,wedenotebyS 1

thefollowingmonoid:ifSisamonoid,

S 1

=S.IfS is notamonoid, S 1

=S[f1gtogetherwith thelawdened by

xy=xyifx;y2S and1x=x1=x foreahx2S 1

.

WerealltheGreen'srelationswhiharefundamentalsequivalenerelations

denedinasemigroupS.ThefourequivalenerelationsR,L,H ,J aredened

asfollows.Letx;y2S,

xRy,xS 1

=yS 1

;

xLy,S 1

x=S 1

y;

xJy,S 1

xS 1

=S 1

yS 1

;

(5)

xDy,9z2S xRz andzLy:

InanitesemigroupJ =D.Wereallthedenition ofthequasi-order

J :

x

J y,S

1

xS 1

S 1

yS 1

:

AnR-lassisanequivalenelassforarelationR(similarnotationsholdforthe

otherGreen'srelations).Anidempotent isanelemente2S suhthatee=e.A

regularlassisalassontaininganidempotent.InaregularD-lass,anyH -lass

ontaining an idempotentis a maximal subgroup of thesemigroup. Moreover,

tworegularH -lassesontainedinasameD-lassareisomorphi(asgroups),see

for instane [16, Proposition 1.8℄.This groupis alled the harateristi group

oftheregularD-lass.Thequasi-order

J

induesapartialorderbetweenthe

D-lasses(stilldenoted

J

).ThestrutureofthetransitionsemigroupSisoften

desribedbythesoalled\egg-box"pituresoftheD-lasses.

Wesaythattwoelementsx;y2S areonjugateifthereareelementsu;v2

S 1

suh that x = uv and y =vu. Twoidempotents belong to a sameregular

D-lassifandonlyiftheyareonjugate,seeforinstane [16,Proposition1.12℄.

LetSbeatransitionsemigroupofanautomatonA=(Q;E)andx2S.The

rank of x is the ardinalof theimage of x asa partial funtion from Q to Q.

Thekernel ofx isthepartition induedbytheequivalenerelationoverthe

domainof xwherepqifandonlyp;qhavethesameimage byx.Thekernel

of x is thus apartition of the domain of x. We desribe the egg-boxpitures

withExample1ontinuedinFigure2.

12

1=2 b

b 2

1 2

1

a ab

2ba

bab

0

Fig.2.Thesyntatisemigroupofthe evenshift ofExample1is omposed ofthree

D-lassesD1,D2,D3,ofrank2,1and0,respetively,representedbytheabovetables

fromlefttoright.EahsquareinatablerepresentsanH-lass.Eahrowrepresentsan

R-lassandeaholumnanL-lass.Theommonkerneloftheelementsineahrowis

writtenontheleftofeahrow.Theommonimageoftheelementsineaholumnis

writtenaboveeaholumn.Idempotentsaremarkedwiththesymbol.EahD-lass

of this semigroupis regular. Theharateristi groups of D1,D2,D3 are Z=2Z,the

trivialgroupZ=ZandZ=Z,respetively.

LetX beanirreduiblesoshiftandS itssyntatisemigroup.Itisknown

that S has a uniqueD-lass of rank1 whih is regular (see [4℄ or[5℄, see also

[8℄).

Wedeneanitediretedayligraph(DAG)assoiatedwithXasfollows.

(6)

rankoftheD-lassanditsharateristigroup.Thereisanedgefromthevertex

assoiatedwithaD-lassDtothevertexassoiatedwithaD-lassD 0

ifandonly

if D 0

J

D. We all this ayligraphthesyntati graph of X (see Figure3

for an example). Note that the regular D-lass of nullrank, if there is one, is

nottakenintoaountinasyntatigraph.Thisislinkedtothefatthatafull

shift(i.e. theset of allbi-innite wordsonanite alphabet)anbeonjugate

to anonfullshift.

rank2,Z=2Z

rank1,Z=Z

Fig.3.ThesyntatigraphoftheevenshiftofExample1.WehaveD2J D1 sine,

forinstane,S 1

abS 1

S 1

bS 1

.

2.3 Nasu's ClassiationTheorem for soshifts

Inthis setion,wereallNasu's ClassiationTheorem forsoshifts[15℄ (see

also [13, p. 232℄),whih extends William's ClassiationTheorem for shiftsof

nitetype(see[13,p. 229℄).

LetX A Z

;Y B Z

betwosubshifts andm;abenonnegativeintegers.A

map:X !Y isa(m;a)-blokmap (or(m;a)-fatormap)ifthereisamapÆ:

A m+a+1

!Bsuhthat((a

i )

i2Z )=(b

i )

i2Z

whereÆ(a

i m :::a

i 1 a

i a

i+1 :::a

i+a )

=b

i

.Ablokmap isa(m;a)-blokmap forsomenonnegativeintegersm;a.The

wellknowntheoremofCurtis,Hedlundand Lyndon[7℄assertsthatontinuous

andshift-ommutingmapsareexatlyblokmaps.Aonjugay isaone-to-one

andontoblokmap(then,beingashiftompat,itsinverseisalsoablokmap).

Let A be a symboli adjaeny (QQ)-matrix of an automaton A with

entriesinanitealphabetA.LetBbeanitealphabetandf aone-to-onemap

from AtoB.Themap f isextendedto amorphismfrom niteformalsumsof

elementsofAto niteformalsumsof elementsofB.Wesaythatf transforms

Ainto anadjaeny(QQ)-matrixB ifB

pq

=f(A

pq ).

Wenowdene thenotionof strongshift equivalenebetweentwosymboli

adjaenymatries.

LetAandB betwonitealphabets. Wedenote byAB theset ofwordsab

witha2Aandb2B.

TwosymboliadjaenymatriesA,withentriesinA,andB,withentriesin

(7)

thereisaone-to-onemapfromAtoUVwhihtransformsAintoUV,andthere

isaone-to-onemapfromBto VU whih transformsB into VU.

TwosymboliadjaenymatriesAandB arestrongshiftequivalentwithin

rightFisheroversifthereisasequeneofsymboliadjaenymatriesofright

Fisherovers

A=A

0

;A

1

;:::;A

l 1

;A

l

=B

suh that for1i lthe matriesA

i 1

tand A

i

areelementary strongshift

equivalent.

Theorem1 (Nasu). Let X and Y be irreduible so shifts and let A and

B be the symboli adjaeny matries of the right Fisher oversof X and Y,

respetively.ThenX andY areonjugateifandonlyifAandB arestrongshift

equivalent withinright Fisherovers.

Example 2. Letusonsiderthetwo(onjugate)irreduiblesoshiftsX andY

dened bytherightFisheroversA=(Q;E)and B=(Q 0

;E 0

)inFigure4.

1 2

b

b a

2 0

3 0 1

0 a

0

b 0

b 0

d 0

0

Fig.4.TwoonjugateshiftsX andY.

Thesymboliadjaenymatriesoftheseautomataarerespetively

A=

ab

b 0

; B= 2

4 a

0

0d 0

0

0 b 0

0 b 0

0 3

5

:

ThenAandB are elementarystrongshiftequivalentwith

U =

u

1 0 u

2

0 u

2 0

; V = 2

4 v

1 0

v

2 0

0 v 3

5

:

(8)

UV =

u

1 v

1 u

2 v

2

u

2 v

2 0

; VU = 2

4 v

1 u

1 0 v

1 u

2

v

2 u

1 0 v

2 u

2

0 v

2 u

2 0

3

5

:

Theone-to-onemaps fromA=fa;bgto UV andfrom B=fa 0

;b 0

; 0

;d 0

gto VU

aredesribedin thetables below.

au

1 v

1

b u

2 v

2

; a

0

v

1 u

1

b 0

v

2 u

2

0

v

2 u

1

d 0

v

1 u

2 :

Anelementarystrongshiftequivaleneenablestheonstrutionofanirreduible

soshiftZ onthealphabetU[Vasfollows.ThesoshiftZisdenedbythe

automatonC=(Q[Q 0

;F),wherethesymboli adjaenymatrixC ofCis

QQ 0

Q

Q 0

0 U

V 0

:

TheshiftZ isalled thebipartite shift denedbyU;V (seeFigure 5).An edge

ofClabeledonU goesfromastateinQtoastateinQ 0

.An edgeofClabeled

on V goesfrom astate in Q 0

to astate in Q. Remark that the seond higher

powerofZ isthedisjointunionofX andY.Notealsothat CisarightFisher

over(i.e.isminimal).

1

1 0

2 3

0

2 0

u2 v2

u2 v2

u1 v1

Fig.5.ThebipartiteshiftZ.

3 A syntati invariant

In thissetion, wedene asyntatiinvariant forthe onjugayof irreduible

soshifts.

Theorem2. LetX andY betwo irreduible so shifts. If X andY areon-

(9)

LetX (respetivelyY)beanirreduiblesoshiftwhosesymboliadjaeny

matrix of its right Fisher overis a(QQ)-matrix (respetively (Q 0

Q 0

)-

matrix)denotedbyA(respetivelybyB).WeassumethatAandBareelemen-

tarystrongshiftequivalentthroughapairofmatries(U;V).Theorresponding

alphabetsare denoted A, B, U, and V asbefore. Wedenote byf aone-to-one

map from A to UV whih transforms A into UV and by g a one-to-one map

from B toVU whihtransformsB intoVU. LetZ bethebipartiteirreduible

so shiftassoiatedtoU;V.WedenotebyS (respetivelyT,R )thesyntati

semigroupofX (respetivelyY,Z).

Letw 2 R . If w is non null,the bipartite nature of Z implies that w is a

funtionfromQ[Q 0

toQ[Q 0

whosedomainisinludedeitherinQorinQ 0

,and

whose imageisinluded eitherin Qorin Q 0

.Ifw6=0with adomaininluded

in P andanimage inludedin P 0

, wesaythat whasthetype(P;P 0

). Remark

that w hastype(Q;Q)if andonly ifw6=0andw2(f(A))

, and whastype

(Q 0

;Q 0

)ifandonlyifw6=0andw2(g(B))

.

Lemma1. Elements ofR inasame nonnullH -lasshave the sametype.

Proof We show the property for the (Q;Q)-type. Let w 2 H and w of type

(Q;Q). If w = w 0

v with w 0

;v 2 R , then w 0

has type (Q;). If w = zw 0

with

z;w 0

2R ,thenw 0

hastype(;Q).Thus,wH w 0

impliesthatw 0

hastype(Q;Q).

TheH -lassesofRontainingelementsoftype(Q;Q)(respetively(Q 0

;Q 0

))

arealled(Q;Q)-H -lasses(respetively(Q 0

;Q 0

)-H -lasses).

Letw =a

1 :::a

n

bean element ofS,wedene theelementf(w) asf(a

1 )

::: f(a

n

).Notethat this denitionis onsistentsineifa

1 :::a

n

=a 0

1 :::a

0

m in

S, then f(a

1

):::f(a

n

)=f(a 0

1

):::f(a 0

m

) in R .Similarly we dene an element

g(w)foranyelementwofT.

Conversely, letw bean elementof R belonging to f(A)

((UV)

). Then

w = f(a

1

):::f(a

n

), with a

i

2 A. We dene f 1

(w) asa

1 :::a

n

. Similarly we

deneg 1

(w).Againthesedenitionsandnotationsareonsistent.Thusf isa

semigroupisomorphismfromStothesubsemigroupofRoftransitionfuntions

dened by thewordsin (f(A))

. Notie that f(0) =0 if 02 S. Analogously,

g is a semigroup isomorphism from T to the subsemigroup of R of transition

funtions denedbythewordsin (g(B))

.

Lemma2. Let w;w 0

2 R of type (Q;Q). Then wH w 0

in R if and only if

f 1

(w)H f 1

(w 0

)inS.

Proof Let w =f(a

1

):::f(a

n

) and w 0

=f(a 0

1

):::f(a 0

m

),with a

i

;a 0

j

2A. We

have w = w 0

v with v 2 R if and only if v = f( a

1

):::f( a

r

) with a

i

2 A and

f(a

1

):::f(a

n )=f(a

0

1

):::f(a 0

m )f( a

1

):::f( a

r

).Thisisequivalenttoa

1 :::a

n

=

a 0

1 :::a

0

m a

1 :::a

r

, that is f 1

(w)R 1

f 1

(w 0

)R 1

. Analogously, wehave w 0

=

0 0 1 0 1 1 1 0

(10)

in R if and onlyiff (w)Rf (w)in S. In thesameway, oneanprovethe

samestatementfortherelationL andhenefortherelationH .

Asimilarstatementholdsfor(Q 0

;Q 0

)-H -lasses.

Lemma3. Let w;w 0

2 R of type (Q;Q). Then w

J w

0

in R if and only if

f 1

(w)

J f

1

(w 0

) in S.This implies that wJw 0

in R if and only if f 1

(w)

J f 1

(w 0

) inS.

Proof Therststatementanbeproovedasinthepreviouslemma.

Similar resultshold betweenT and R . As aonsequene we get the following

lemma.

Lemma4. Thebijetionf betweenSandtheelementsofRbelongingto(f(A))

,

induesabijetionbetweenthenonnullH -lassesofS andthe(Q;Q)-H -lasses

of R .Moreoverthis bijetion keepsthe relationsJ,

J

andthe rankof the H -

lasses.

Asimilarstatementholdsforthebijetiong.

We now ome to the main lemma, whih shows the link between the ele-

mentary strong shift equivalene of the symboli adjaeny matries and the

onjugay ofsomeidempotents in thesemigroup. Thislink is the keypoint of

theinvariant.

Lemma5. Let H be a regular (Q;Q)-H -lass of R . Then there is a regular

(Q 0

;Q 0

)-H -lassinthe sameD-lassasH.

Proof Lete2Rbeanidempotentelementoftype(Q;Q).Letu

1 v

1 :::u

n v

n in

(UV)

suhthate=u

1 v

1 :::u

n v

n

.Wedenee=v

1 :::u

n v

n u

1

.Thuseu

1

=u

1 e

inR .Remarkthatedependsonthehoieofthewordu

1 v

1 :::u

n v

n

representing

einR .

Ifw denotes v

1 :::u

n v

n

and v denotes u

1

, wehave e=vw ande=wv. It

followsthat eandeareonjugate,thuse 2

=eande 2

areonjugate.Moreover

e 3

=wvwvwv =weev=wev=wvwv=e 2

:

Thus e 2

is an idempotent onjugate to the idempotent e. As aonsequene e

and e 2

belong to asame D-lass of R (see Setion 2), and e 2

6= 0.The result

followssinee 2

isof type(Q 0

;Q 0

).

Note that the number of regular (Q;Q)-H -lasses and the number of regular

(Q 0

;Q 0

)-H -lassesinasameD-lassofR ,maybedierentin general.

WenowproveTheorem 2.

Proof[ofTheorem 2℄ByNasu's Theorem [15℄ weanassume, withoutloss of

generality, that the symboliadjaeny matries of theright Fisheroversof

(11)

respetively.

Let D be a non null regular D-lass of S. Let H be a regular H -lass of

S ontained in D. Let H 00

= f(H). By Lemma 4, the groups H and H 00

are

isomorphi. Let D 00

theD-lass of R ontainingH 00

. By Lemma 5, there is at

least one regular (Q 0

;Q 0

)-H -lass K 00

in D 00

, whih is isomorphi to H 00

. Let

H 0

=g 1

(K 00

)andletD 0

betheD-lassof T ontainingH 0

.ByLemma4,the

groupsH 0

andK 00

areisomorphi.HenethegroupsH andH 0

areisomorphi.

ByLemmas4and5,wehavethattheaboveonstrutionofD 0

fromDisa

bijetivefuntion 'from thenon nullregularD-lassesofS onto thenonnull

regularD-lassesofT.Moreovertheharateristigroupof D isisomorphito

theharateristigroupof'(D)and,byLemma4,therankofDisequaltothe

rankof'(D).

WenowonsidertwononnullregularD-lassesD

1 andD

2

ofS.ByLemma4

and Lemma 5, D

1

J D

2

if andonly if '(D

1 )

J '(D

2

). It follows that the

syntatigraphsofS andT areisomorphithroughthebijetion'.

Nasu'sClassiation Theorem holds for reduible so shifts bythe use of

right Krieger overs instead of right Fisher overs [15℄. This enables the ex-

tension ofour resultto the aseof reduible so shifts. This extensionis not

desribedin thisshortversionofthepaper.

4 How dynami is this invariant?

We briey omparethe syntati onjugayinvariant withother lassial on-

jugay invariants. We refer to [13℄ for the denitions and properties of these

lassialinvariants.

First, on an remark that the syntatiinvariant does not apture all the

dynami. Two so shifts an have the same syntati graph and a dierent

entropy,seetheexamplegiveninFigure 6.

1 2

b

b a

1 2

a

b

b

Fig.6.ThetwoabovesoshiftsX;Y havethesamesyntatigraphandadierent

entropy.Indeed, we have b= inthe syntatisemigroupof Y.Henethe shiftsX

(12)

zetafuntionofashiftX is(X)=exp P

n1 p

n z

n

n

,wherep

n

isthenumberof

bi-innite words x 2X suhthat n

(x)=x. Wegive in Figure 7anexample

of two irreduible so shifts whih havethe same zetafuntion and dierent

syntatigraphs.

Irreduible shiftsof nite type anbeharaterizedwith this syntatiin-

variant.Other equivalentharaterizationsofnite typeshiftsanbefoundin

[14℄andin [8℄.

Proposition1. An irreduible so shifts isof nite type if andonly its syn-

tatigraphisreduedtoonenode ofrank1representingthe trivialgroup.

Anotherinterestinglassofirreduiblesoshiftsanbeharaterizedwith

thesyntatiinvariant.Itisthelassofaperiodisoshifts[1℄.

Let x 2 X, we denote by period(x) the least positive integer n suh that

n

(x)=x ifsuhanintegerexists.Itisequalto1otherwise.

LetX;Y betwosubshifts andlet :X !Y bea blok map. Themap is

said aperiodi if period(x) = period((x)) for any x 2 X. Roughly speaking,

suhafatormapdoesnotmakeperiodsderease.

A so shiftX ifaperiodi if it is theimage of ashift of nite typeby an

aperiodi blok map. A haraterization of irreduible aperiodi so shifts is

thefollowing.

Proposition2. Anirreduiblesoshiftisaperiodiifandonlyifitssyntati

graphontainsonlytrivial groups.

Shutzenberger's haraterization of aperiodi languages(see for instane [16,

Theorem2.1℄)assertsthatthesetofbloksofanaperiodisoshiftisaregular

starfreelanguage.

1 2

a

a

b b

x

y

1 2

a

d b

x

y

Fig.7. Two so shifts X;Y whih have the same zeta funtion 1

1 4z+z 2

(see for

instane [13, Theorem 6.4.8℄, or [2℄ for the omputation of the zeta funtion of a

so shift), and dierent syntati invariants. Indeed the syntati graph of X is

(rank2 ;Z=2Z) ! (rank1 ;Z=Z) while the syntati graph of Y has only one node

(rank1 ;Z=Z).Thustheyarenotonjugate.NotiethatY isashiftofnitetype.

(13)

1. M.-P.

B

eal,CodageSymbolique,Masson,1993.

2. M.-P.B

eal,Puissane exterieured'unautomatedeterministe,appliationaual-

ul de la fontion z^eta d'un systeme soque, RAIRO Inform. Theor. Appl., 29

(1995),pp.85{103.

3. M.-P.

B

eal,F.Fiorenzi,andF.Mignosi,Minimalforbiddenpatternsofmulti-

dimensionalshifts. ToappearinInternat.J.AlgebraComput.,2003.

4. D. Beauquier, Minimal automaton for a fatorial transitive rational language,

Theoret.Comput.Si.,67(1989),pp.65{73.

5. J.BerstelandD.Perrin,Theory ofCodes,AademiPress, NewYork,1985.

6. M.Boyle,Algebraiaspetsofsymbolidynamis,inTopisinsymbolidynamis

andappliations(Temuo97),vol.279ofLondonMath.So.LetureNotesSer.,

CambridgeUniversityPress,Cambridge,2000,pp.57{88.

7. G.A. Hedlund,Endomorphisms andautomorphisms oftheshiftdynamialsys-

tem,Math.SystemsTheory,3(1969),pp.320{337.

8. N. Jonoska, A onjugay invariant for reduible so shifts and its semigroup

haraterizations,IsraelJ.Math.,106(1998),pp.221{249.

9. B. P. Kithens, Symboli Dynamis: one-sided, two-sided and ountable state

Markovshifts,Springer-Verlag,1997.

10. W.Krieger,On sosystems.I,IsraelJ.Math.,48(1984),pp.305{330.

11. ,Onsosystems.II,IsraelJ.Math.,60(1987),pp.167{176.

12. ,Onasyntatiallydened invariantof symbolidynamis,ErgodiTheory

Dynam.Systems,20(2000),pp.501{516.

13. D. A. Lind and B. H. Marus, An Introdution to Symboli Dynamis and

Coding,Cambridge, 1995.

14. A. D. Luaand A. Restivo, A haraterization of stritly loallytestable lan-

guagesanditsappliationstosubsemigroupsofafreesemigroup,Inform.andCon-

trol,44(80),pp.300{319.

15. M. Nasu, Topologial onjugay for so systems, ErgodiTheory Dynam. Sys-

tems,6(1986),pp.265{280.

16. J.-E. Pin, Varieties of formal languages, Foundations of Computer Siene,

PlenumPublishingCorp., NewYork,1986.

17. B.Weiss,Subshiftsofnitetypeandsosystems,Monats.furMath.,77(1973),

pp.462{474.

Références

Documents relatifs

This graph, issued from the dependence relation on a lattice [1], is a nice structure encoding together the minimal generators and the canonical direct basis of a

Given Corollary 4, Theorem 2 follows from the next transcription in terms of the modular decomposition tree... We must prove that H is

If AE is to describe the X-ray chemical shift, AE,, V,(r) and Vj(r) will be the atomic single electron Coulomb potentials for an L shell and for the K shell of Au.. Since

Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation.. Existence and classification of characteristic points

We analyze the passes using sim- ple metrics including the PageRank [4] algorithm on the spanned player graph to measure team interaction.. Our empirical results show that a

Their proof is based on the following result: a barreled metrizable space is not the union of an increasing sequence of closed absolutely convex.. nowhere dense

it is possible to find two planar graphs which can be combined into a graph G, which then in turn can be decomposed into n edge-disjoint nonplanar graphs.. On the

The two types of r-neighborhood graphs with Gaussian weights have the same limit as the unweighted r- neighborhood graph and the complete weighted graph with Gaussian weights.. In