• Aucun résultat trouvé

Dynamically stable control of articulated crowds

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamically stable control of articulated crowds"

Copied!
8
0
0

Texte intégral

(1)

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

Mukovskiy, Albert, Jean-Jacques E. Slotine, and Martin A. Giese.

“Dynamically Stable Control of Articulated Crowds.” Journal of

Computational Science 4, no. 4 (July 2013): 304–310.

As Published

http://dx.doi.org/10.1016/j.jocs.2012.08.019

Publisher

Elsevier

Version

Author's final manuscript

Citable link

http://hdl.handle.net/1721.1/103869

Terms of Use

Creative Commons Attribution-NonCommercial-NoDerivs License

(2)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Computational

Science

jo u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j o c s

Dynamically

stable

control

of

articulated

crowds

Albert

Mukovskiy

a,∗

, Jean-Jacques

E.

Slotine

b

,

Martin

A.

Giese

a

aSectionforComputationalSensomotorics,DepartmentofCognitiveNeurology,HertieInstituteforClinicalBrainResearch&CenterforIntegrativeNeuroscience,UniversityClinic

Tübingen,Germany

bNonlinearSystemsLaboratory,DepartmentofMechanicalEngineering,MIT,Cambridge,MA,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1August2011

Receivedinrevisedform12July2012 Accepted27August2012 Availableonlinexxx Keywords: Computeranimation Crowdanimation Multi-agentcoordination Distributedcontrol Dynamicstability Self-organization

a

b

s

t

r

a

c

t

Thesynthesisofrealisticcomplexbodymovementsinreal-timeisadifficultproblemincomputer graph-icsandinrobotics.Highrealismrequirestheaccuratemodelingofthedetailsofthetrajectoriesfora largenumberofdegreesoffreedom.Atthesametime,real-timeanimationnecessitatesflexible sys-temsthatcanadaptandreactinanonlinefashiontochangingexternalconstraints.Suchbehaviors canbemodeledwithnonlineardynamicalsystemsincombinationwithappropriatelearningmethods. Theresultingmathematicalmodelshavemanageablemathematicalcomplexity,allowingtostudyand designthedynamicsofmulti-agentsystems.WeintroduceContractionTheoryasatooltotreatthe sta-bilitypropertiesofsuchhighlynonlinearsystems.Foranumberofscenarioswederiveconditionsthat guaranteetheglobalstabilityandminimalconvergenceratesfortheformationofcoordinated behav-iorsofcrowds.Inthiswaywesuggestanewapproachfortheanalysisanddesignofstablecollective behaviorsincrowdsimulation.

©2012ElsevierB.V.Allrightsreserved.

1. Introduction

The generationof realistic interactivehumanmovements is a difficult taskwith highrelevance for computergraphics and robotics.Applicationssuchascomputergamesrequireonline syn-thesisofsuchmovements,atthesametimeprovidinghighdegrees ofrealismevenforcomplexbodymovements.Whilefortheoff-line synthesisofhumanmovements,themovementscanberecorded off-lineandretargetedtotherelevantkinematicmodel,this pro-cedure is not possible for online synthesis. Approaches based onphysicalor dynamicalmodels (e.g.[1])havefocused onthe simulationofsceneswithmanyinteractingagentsthatnavigate autonomouslyandshowinterestingcollectivebehaviors.Dueto thecomplexityoftheunderlyingmathematicalmodels,such sys-temsaretypicallydesignedinaheuristicmanner.Opposedtoother applicationsinengineering,thesystemdynamicsofsuchcomputer animationsystemsisusuallynotanalyzed,sothatrobustnessor stabilityguaranteesforthesystemdynamicscannotbegiven.

Inthis paperwe presentfirststepstowardthedevelopment of more systematic method for the design of the dynamics of

∗ Correspondingauthor.

E-mailaddresses:albert.mukovskiy@medizin.uni-tuebingen.de(A.Mukovskiy),

jjs@mit.edu(J.-J.E.Slotine),martin.giese@uni-tuebingen.de(M.A.Giese).

URLs:http://www.compsens.uni-tuebingen.de(A.Mukovskiy),

http://web.mit.edu/nsl/ (J.-J.E. Slotine), http://www.compsens.uni-tuebingen.de

(M.A.Giese).

interactive crowds. For this purpose, we approximate human movementsbyrelativelysimplemathematicalmodels,combining dynamicalmodelswithappropriatelearningmethods.Inaddition, weintroduceContractionTheory[2]asanewtoolforthestability designofcomplexnonlineardynamicalsystems.Wedemonstrate howthisapproachcanbeappliedforthestabilityanalysisofgroups ofautonomouslynavigatingcharacterswithfullbodyarticulation. Thecurrentresearchextendsourpreviouswork[3]bythe devel-opmentofstabilityanalysisformorecomplexscenarios,including thecontrolofheadingdirectionandoftheconsensusbehaviorof crowds.

Thepaperisstructuredasfollows:Thelearning-based dynam-icalmodelforcomplexhumanmovementsisbrieflysketchedin Section3.Section4describestherelevantcontroldynamicsthatis requiredtorealizecomplexinteractionsbetweendifferent char-acters in a crowd. In Section5 we review basicconcepts from ContractionTheory.Themajorresultsofourstabilityanalysisand somedemonstrationsoftheirapplicationtocrowdanimationare presentedinSection6,followedbysomeconclusions.

2. Relatedwork

Dynamicalsystemshavebeenfrequentlyappliedincrowd ani-mationforthesimulationofautonomouscollectivebehaviors(e.g. [4,5]).Someofthisworkwasinspiredbyobservationsinbiology showingthatcoordinatedbehavioroflargegroupsofagents,such asflocksofbirds,canbemodeledasemergentbehaviorsarising

1877-7503/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.

(3)

2 A.Mukovskiyetal./JournalofComputationalSciencexxx(2012)xxx–xxx

byself-organizationfromdynamicalcouplingsbetweeninteracting agents[6–8].

Simplerulesforsuchdynamicinteractionshavebeenderived fromtheobservationofthemotionofflocksofbirds[9],suchas: collisionavoidancebynearestneighbordistancecontrol,velocity matchingandflockcentering.Theobtainedmodelsforthe self-organization of behavior have beenanalyzed by application of methodsfromnonlineardynamics[10].Theyareinterestingfor computeranimationbecausetheypermittoreducethe compu-tationalcostsoftraditionalcomputeranimationtechniques,such asscripting orpathplanning[5].Inaddition, thegenerationof collectivebehavior by self-organization hasthe advantage that thesystemcanadaptautonomouslytoexternalperturbationsor changesinthesystemarchitecture,suchasthevariationofthe numberofcharacters[7].However,themathematicalanalysisof theunderlyingdynamicalsystemsistypicallyquitecomplicated. Thedynamicsdescribingindividualagentsistypicallyhighly non-linear[11],makingasystematictreatmentofstabilityproperties ofteninfeasible,evenforindividualcharacters.Inaddition,crowd animationrequiresthedynamicinteractionofmanysuchagents. Thecontrolofcollectivebehaviorsofgroupsofagentshasbeen treatedinmathematicalcontroltheory[12,13],howevertypically assuminghighlysimplifiedoftenevenlinearmodelsfortheagents. Groupcoordinationandcooperativecontrolhavealsobeen stud-iedinrobotics,e.g.inthecontextofthenavigationofgroupsof vehicles[14,15],orwiththegoaltogeneratecollectivebehaviorby self-organization.Examplesarethespontaneousadaptationto per-turbationsofinter-agentcommunicationorchangesinthenumber ofagents[16,17].Manyapproacheshaveonlyanalyzedasymptotic stabilityforconsensusscenarios,whileexponentialstabilitywhat alsoallowstoderiveboundsfortherateofconvergencehasrarely beentreated[15].Thesameresultcanbederivedbyapplicationof ContractionTheory[18],amethodforthederivationofconditions fortheuniformexponentialconvergenceofcomplexnonlinear sys-tems.Opposedtoclassicalstabilityanalysisfornonlinearsystems, ContractionTheorypermitstore-usestabilityresultsforsystem componentsinordertoderiveconditionsthatguaranteethe sta-bilityoftheoverallsystem.Itprovidesausefultoolspecificallyfor modularity-basedstability analysisanddesign.Contraction The-oryhasbeenalreadysuccessfullyimplementedforsynchronization ofDMPs(dynamicmovementprimitives)controllingUnmanned AerialVehicles[19].Butthe stability propertiesfor crowd ani-mationsystemsrealizinghumanbehaviorswithrealisticlevelsof complexityhavebasicallyneverbeentreatedbefore.

3. Systemarchitecture

The proposed new method for the design of the collective dynamics of interacting crowds is based on a learning-based approachforthemodelingofhumanmovementsusingdynamic movement primitives [20] (cf. Fig.1). For a relevant class of movements,likegaitswithdifferentstylesorstraightvs.curved locomotion,alow-dimensionalrepresentationintermsofasmall numberofbasiccomponentsislearnedusinganalgorithmfor ane-choicdemixing[21].Weshowedelsewherethatthismethodallows toapproximatetrajectoriesbyverysmallnumberofsourcesignals, outperformingotherdimensionreductionalgorithms,suchasICA orPCA[22,21].

Inordertogeneratethelearnedsourcesignalsonline,thestable solutionsofanonlineardynamicalsystem(dynamicprimitive)are mappedontotheformofthesourcefunctions.Forthesynthesis ofgaitpatternaprimitiveisnaturallymodeledbyoscillator[23]. Themappingfromthephasespaceofthedynamics,definedbythe statevariablesy=[y, ˙y]T,ontothevaluesofthesourcefunctions sjwaslearnedfromtrainingdatausingSupportVectorRegression

withgaussiankernel(seeRef.[20]fordetails).Fortheexamples presentedinthispapereachcharacterwasmodeledbyasingle Andronov–Hopfoscillator.Thegeneratedsourcesignalswerethen linearlycombinedwiththelinearweightswijandphasedelaysij inordertogeneratethejointangletrajectoriesi(t)accordingto thelearnedanechoicmixturemodelthatwasgivenbytheequation: i(t)=



j wijsj



t−ij



(1)

Thecompletereconstructionofthetrajectoriesrequiresthe addi-tionoftheaveragejointanglesmi,whichalsowerelearnedfrom thetrainingdata.

Forthespecialcasewherethedynamicprimitivesaregivenby Hopfoscillators,whoselimitcycleforappropriate choiceofthe coordinatesystemisacirculartrajectoryinphasespace,thephase delayscanbeabsorbedinaninstantaneousorthogonalmapping (rotation)Mij inthephase planeoftheoscillator(Fig.1b).This allowsto derivedynamicsfor online synthesiswithout explicit delays,whichwouldgreatlycomplicatethesystemdynamics.(See Ref.[20]forfurtherdetails.)

Byblending of themixingweights wij and thephase delays ij,intermediategaitstylescanbegenerated.Thistechniquewas appliedtogeneratewalkingalongpathswithdifferentcurvatures, changesinsteplength,andemotionalgaitstyles.Interactive behav-iorofmultiplecharacterscanbemodeledbymakingthestatesof theoscillatorsandthemixingweightsdependentonthe behav-ioroftheothercharacters.Suchcouplings,whicharediscussedin moredetailinthenextsection,resultinahighlynonlinearoverall systemdynamics.Weshowedelsewherethatthesame architec-turecanbeappliedalsoforthegenerationofothertypesofbody motionthan locomotion[20],while suchexamplesarenot dis-cussedinthispaper.Thewalkingdirectionofthecharactersisalso changedbyinterpolationbetweenstraightwalkingandwalking alongcurvedpathstotheleftortotheright.Theparametersused forblending are describedin ourpreviouspublications [20,24]. Suchblendingisusedtosimulateacontroloftheheading direc-tionsinconsensusscenariosandforobstacleavoidanceduringthe autonomousreorderingofcrowds.Fortheimplementationof reac-tivelocalobstacleavoidanceweusedadynamicnavigationmodel thatoriginallywasdevelopedinrobotics[25].SeeRefs.[24,20]for detailsconcerningtheimplementation.

4. Controldynamics

Flexiblecontrolofthelocomotionofarticulatingagentsrequires thecontrolof multiplevariables, specifyinga controldynamics withmultiplecoupledlevels.Fortheexamplesdiscussedinthis paperoursystemincludedthecontrolofthefollowingvariables: (1)phasewithinthestepcycle,(2)steplength,(3)gaitfrequency, and(4)headingdirection.Thecontrolofstepphasewas accom-plishedby couplingof theAndronov–Hopf oscillators [26] that correspondto differentagents, resultingin phase synchroniza-tion.Theseoscillatorshaveastablelimitcyclethatcorrespondsto anoscillationwithconstantamplitudeandthe(time-dependent) phase(t).Inabsenceofexternal couplingsthephaseincreases linearly,i.e.(t)=ωt+(0),whereωisthestableeigenfrequencyof theoscillator.Controlofstepfrequencywasaccomplishedby vary-ingthisparameterinatime-dependentmannerindependenceof thebehaviorofthecharactersinthescene.Step-lengthand direc-tionwerecontrolledbymorphingbetweengaitswithdifferentstep lengthsorpathcurvatures,blendingtheparametersoftheanechoic mixingmodel(seeabove).Inthiscasethecontrolledvariablesare theblendingcoefficientofthesemixtures.(SeeRef.[20]fordetails.) The formulation of the systemdynamics in terms of speed control is simplified by theintroduction of thepositions zi for

(4)

Fig.1.(a)Architectureofthesystemforreal-timesynthesisofcomplexhumanmovements.Solutionsofdynamicalsystems(primitives)aremappedontosourcesignals, thathavebeenderivedbyanechoicdemixingfromtrainingdata.ThesolutionsofthedynamicalsystemsaremappedbySupportVectorRegressions(SVR)ontothesource signals.Thesesourcesignalsarethencombinedusingthelearnedanechoicmixingmodeltogeneratejointangletrajectoriesonline,whichspecifythekinematicsofthe animatedcharacters.(b)Whenthedynamicprimitivesaremodeledbynonlinearoscillatorsthetimeshiftsoftheanechoicmixingmodelcanbeabsorbedinaninstantaneous orthogonaltransformationMij,avoidingadynamicswithexplicitdelays.

eachindividualcharacteralong itspropagationpath(seeFig.2). Thisvariablefulfillsthedifferentialequation ˙zi(t)= ˙ig(i),where thepositivefunctiongdeterminestheinstantaneouspropagation speed ofthe characterdependingonthephase withinthe gait cycle.Thisnonlinearfunctionwasdeterminedempiricallyfroma kinematicmodelofacharacter.Byintegrationofthispropagation dynamicsoneobtainszi(t)=G(i(t)+0i)+ci,withaninitialphase shift0

i and someconstant ci dependingontheinitialposition andphaseofavatari,andthemonotonouslyincreasingfunction G(i)=



i

0 g()d,whereweassumeG(0)=0.

Inthefollowing wewillanalyzefourdifferentcontrolrules, whosecombinationallowstogeneratequiteflexiblelocomotion behaviorofacrowdofcharacters:

(I)Controlofstepfrequency:asimpleformofspeedcontrol resultsifthefrequencyoftheoscillators ˙iismadedependenton thebehavioroftheothercharacters.Assumingthatω0bethe equi-libriumfrequencyoftheoscillatorswithoutinteraction,thiscanbe accomplishedbythecontroldynamics:

˙ i(t)=ω0−md N



j=1 Kij[zi(t)−zj(t)−dij] (2)

Theconstantsdijspecifythestablepairwiserelativedistancesinthe finalformedorderforeachpair(i,j)ofcharacters.Theelementsof thecouplinggraph’sadjacencymatrixKdeterminewhether char-actersiandjareinteractingandthusdynamicallycoupled.These parametersweresettoKij=1,ifthecharacterswerecoupled,and

Fig.2. Variablesexploitedforspeedandpositioncontrol.Everycharacteriis char-acterizedbyitspositionzi(t),thephasei(t)andtheinstantaneouseigenfrequency

ωi(t)= ˙i(t)ofthecorrespondingAndronov–Hopfoscillator,andastep-sizescaling

parameteri(t).

theyarezerootherwise(withKii=0).Forexample,wechooseKij=1,

i /= jforall-to-allcoupling,andKij=1,

mod(|i−j|,N)=1forring coupling.Theconstantmd>0determinesthecouplingstrength.

With theLaplacian matrix Ld of thecoupling graph (thatis assumedtobestronglyconnected[14,27,28]),definedbyLd

ij=−Kij fori /= jandLd

ii=

N

j=1Kij,andtheconstantsci=−

N

j=1Kijdij,the lastequationsystemcanbere-writteninvectorform:

˙ =ω01−md(LdG(+0)+c) (3)

(II)Controlofsteplength:steplengthwasvariedbymorphing betweengaitswithshortandlongsteps.Adetailedanalysisshowed thattheinfluenceofsteplengthonpropagationspeedcouldbe wellapproximatedbysimplelinearrescaling.Ifthepropagation velocityofcharacteriis

v

i(t)= ˙zi(t)= ˙i(t)g(i(t))=ωi(t)g(i(t)) forthenormalstepsize,thenthevelocityformodifiedstepsize couldbeapproximatedby

v

i(t)= ˙zi(t)=(1+i)ωi(t)g(i(t))with themorphingparameteri.Theempiricallymeasuredpropagation velocityasfunctionofgaitphaseisshowninFig.3(a)fordifferent valuesofthesteplengthparameteri.

In order torealize speed controlby steplengththe morph-ingparameteriwasmadedependentonthedifferencebetween

Fig.3.(a)Propagationvelocityfordifferentvaluesofthestep-lengthmorphing parameter(=[0...0.25])asfunctionofthegaitcyclephase.Empirical esti-matesarewellapproximatedbyalinearrescalingofthepropagationspeedfunction definedabove ˙z≈(1+)g(),forconstantω=1.(b)Theheadingdirectioncontrol dependsonthedifferencebetweentheactualheadingdirection headingandthe

goaldirection goal.Movementalongparallellineswasmodeledbydefining‘sliding

(5)

4 A.Mukovskiyetal./JournalofComputationalSciencexxx(2012)xxx–xxx

actual and desired position differences dij between the agents i=−mz

N

j=1Kijz[zi(t)−zj(t)−dij],resultinginthecontrolrule: ˙zi(t)=ωi(t)g(i(t))(1−mz

N



j=1

Kijz[zi(t)−zj(t)−dij])

withtheconstant couplingstrength mz>0. Here theadjacency matrixKzofthecouplinggraphcorrespondstotheLaplacianmatrix Lz(accordingtotheequivalentrelationshipsasspecifiedabove).In vectornotationthedynamicsforthecontrolofspeedbysteplength canbewritten:

˙z=ωg(+0)(1−mz(Lzz+c)) (4)

(III)Controlofstepphase:bydefiningseparatecontrolsforstep lengthandstepfrequencythepositionandstepphaseofthe charac-terscanbevariedindependently.Thismakesitpossibletosimulate arbitraryspatialpatternsofcharacters,atthesametime synchro-nizingtheirstepphases.Theadditionalcontrolofstepphasecan beaccomplishedbysimpleadditionofalinearcouplingterminEq. (3):

˙=ω01−md(LdG(+0)+c)kL (5) withk>0andtheLaplacianL.(Allsumsordifferencesofangular variableswerecomputedbymodulo2.)

(IV)Controlofheadingdirection:thecontroloftheheading directions iofthecharacterswasbasedondifferentialequations thatspecifyattractorsforgoaldirections igoal,whichwere com-putedfrom‘slidinggoals’thatwereplacedalongstraightlinesat fixeddistancesin front ofthecharacters (Fig.3b).Theheading dynamicswasgivenbyanonlineardifferentialequation, indepen-dentlyforeverycharacter[20]:

˙i=ωi(t)(−m sin( i goal

i )+g (i(t)+ 0

i)) (6)

where goali =arctan(goali /zgoali ), withgoali specifyingthe distancetothegoallineorthogonaltothepropagationdirection and zigoal being a constant (Fig.3b).The first termdescribes asimple directioncontrollerwhose gainis definedbythe con-stantm >0.Thesecondtermapproximatesoscillationsofheading direction,whereg isagainanempiricallydeterminedperiodic function.Controlisrealizedbymakingthemorphingcoefficients thatdeterminethecontributionsofleftvs.right-curvedwalking dependentonthechangerate ˙ioftheheadingdirection.

Themathematicalresultsderivedinthefollowingsectionsapply tosubsystemsderivedfromthecompletesystemdynamicsdefined byEqs.(4),(5)and(6).Inaddition,simulationswillbepresented thatillustratetherangeofbehaviorsthatcanbemodeledbythe fullsystemdynamics.

5. ElementsfromContractionTheory

Thedynamicalsystemsforthemodelingofthebehaviorofthe autonomouscharactersderivedinthelastsectionareessentially nonlinear.In contrasttolineardynamicalsystems,amajor dif-ficultyoftheanalysisofsuchnonlinearsystemsisthatstability propertiesofsystemspartsusuallydonottransfertocomposite systems.Contractiontheory(CT)[2]providesageneralmethodfor theanalysisofessentiallynonlinearsystemsthatpermitssucha transfer.Thismakesitsuitablefortheanalysisofcomplexsystems thatarecomposedfromcomponents.CTcharacterizesthesystem stabilitybythebehaviorofthedifferencesbetweensolutionswith differentinitialconditions.Ifthesedifferencesvanishexponentially overtimeindependentfromthechoseninitialstatesthesystemis calledcontracting.Inthiscasethesystemisgloballyasymptotically

stable,thatisallitssolutionsconvergetoasingletrajectory inde-pendentfromtheinitialstate.Forageneraldynamicalsystemof theform

˙x=f(x,t) (7)

weassumethatx(t)isonesolutionofthesystemand ˜x(t)=x(t)+ ıx(t)aneighboringonewithdifferentinitialcondition.The func-tionıx(t)isalsocalledvirtualdisplacement.WiththeJacobianof thesystemJ(x,t)=

f(x,t)/

xitcanbeshown[2]thatanyvirtual displacementdecaysexponentiallytozeroovertimeifthe symmet-ricpartoftheJacobianJs=(J+JT)/2isuniformlynegativedefinite, denotedasJs<0,i.e.hasnegativeeigenvaluesforallrelevantstate vectorsx.Inthiscase,itcanbeshownthatthenormofthevirtual displacementdecaysatleastexponentiallytozerofort→∞.Ifthe virtualdisplacementissmallenough,then

d dtıx(t)=J(x,t)ıx(t) implies through dtd||ıx(t)||2=2ıxT(t)J s(x,t)ıx the inequality: ||ıx(t)||||ıx(0)||e



t

0max(Js(x,s))ds.Thedecayofthevirtual displace-ment occurs thus with a convergence rate (inverse timescale) that is bounded from below by the contraction rate c= −sup

x,t

max(Js(x,t)),wheremax(.)signifiesthelargesteigenvalue. Thishastheconsequencethatalltrajectoriesconvergetoasingle solutionexponentiallyintime[2].

Contractionanalysiscanbeappliedtohierarchicallycoupled sys-temsthataregivenbythedynamics

d dt



x1 x2



=



f1(x1) f2(x1,x2)



(8) where the first subsystem is not influenced by the state of thesecond.ThecorrespondingJacobianF=

F11 0 F21 F22

implies for the dynamics of the virtual displacements: d

dt

ıx1 ıx2

=

F11 0 F21 F22

ıx1 ıx2

.IfF21isbounded,thentheexponential con-vergenceofthefirstsubsystem,(followingfrom(F11)s<0),implies thusconvergenceofthewholesystem,ifinaddition(F22)s<0.This followsfromthefactthetermF21ıx1isjustanexponentially decay-ingdisturbanceforthesecondsubsystem.(SeeRef.[2]fordetails ofproof.)

Inpracticalapplicationsmanysystemsarenotcontractingwith respecttoalldimensionsofthestatespace,butrathershow con-vergenceonlywithrespecttoasubsetofdimensions.Thisbehavior canbemathematicallycharacterizedbypartialcontraction[18,28]. Theunderlyingideaistheconstructionofanauxiliarysystemthatis contractingwithrespecttoasubsetofdimensions(orsubmanifold) instatespace.Themajorresultisthefollowing[18]:

Theorem1. (Partialcontraction)Consideranonlinearsystemofthe form ˙x=f(x,x,t)andtheauxiliarysystem ˙y=f(y,x,t).Ifthe auxil-iarysystemiscontractingwithrespecttoyuniformlyforallrelevant xthentheoriginalsystemiscalledpartiallycontracting.Thisimplies thatifaparticularsolutionoftheauxiliarysystemverifiesaspecific smoothpropertythenalltrajectoriesoftheoriginalsystemalsoverify thispropertywithexponentialconvergence.

A ‘smoothproperty’ is a property ofthe solutionthat depends smoothlyonspaceandtime (assumingtherelevantderivatives orpartialderivativesexistand arecontinuous),suchas conver-genceagainstaparticularsolutionoraproperlydefineddistance tosubmanifoldinphasespace([18]).

(6)

Itthusissufficienttoshowthattheauxiliarysystemis contract-ingtoproveconvergencetoasubspace.Iftheoriginalsystemhas aflow-invariantlinearsubspaceM,whichisdefinedbythe prop-ertythattrajectoriesstartinginthisspacealwaysremaininit(

t: f(M,t)⊂M),andassumingthatthematrixVisanorthonormal projectionontoM,thenasufficientconditionforglobal expo-nentialconvergencetoMisgivenby[27,28]:

V

f

x

s VT<0, (9)

whereA<0againindicatesthatthematrixAisnegativedefinite. Finally,weintroduceherea theoremthat providessufficient conditions for synchronization of a network that is composed fromNidenticaldynamicalsystemsthatcommunicatethrougha commonmediumorchannelwithstatevariable .Therelevant dynamicsisgivenby

˙x=f(x, ,t),

˙ =g( , (x),t) , (10)

xcontainingthestatevariablesoftheindividualsystemsandall componentsoffhavingthesameformf.ExploitingthelastPartial contractiontheoremthefollowingresultcanbederived[29]: Theorem2. (Quorumsensing)Ifthereducedordervirtualsystem

˙y=f(y, ,t)iscontractingforallrelevant thenallsolutionsofthe originalsystemconvergeexponentiallyagainstasingletrajectory,i.e. |xi(t)−xj(t)|→0ast→+∞.

6. Results:stabilityconditionsforcrowdcontrol

In the following we derive stability conditions for the for-mationofcoordinatedbehaviorofcrowds,providingcontraction boundsforfourscenarioscorrespondingtocontrolproblemswith increasinglevelsofcomplexity.Correspondingcrowdbehaviorsare illustratedbydemomoviesthatareprovidedassupplementsfor themanuscript.

(1)Controlofstepphasewithoutpositioncontrol:thissimple controlrulepermitstosimulatestepsynchronization,asinthecase ofagroupofsoldiers[28],[Demo1].Thedynamicsforthiscaseis

givenbyEq.(5)withmd=0(omittingthepositioncontrolterm).For Nidenticaldynamicalsystemswithsymmetricidenticalcoupling gainsKij=Kji=kthedynamicscanbewritten

˙xi=f(xi)+k



j∈Ni



xj−xi



,

i=1,...,N (11)

whereNidefinestheindexsetspecifyingtheneighborhoodinthe couplinggraph,i.e.theothercharactersthataredirectly interac-tingwithcharacteri.Thesystemcanberewrittencompactly: ˙x= f(x,t)kLxwiththeconcatenatedphasevariablex=[xT

1,...,xTN] T. ThematrixL=LG

IpisderivedfromtheLaplacianmatrixofthe couplinggraphLG,wherepisthedimensionalityoftheindividual sub-systems(Ipistheidentitymatrixofdimensionp,and

signi-fiestheKroneckerproduct).TheJacobianofthissystemisgivenby J(x,t)=D(x,t)-kL,wheretheblock-diagonalmatrixD(x,t)contains theJacobiansoftheuncoupledcomponentsxf(xi,t).

Thedynamicshasaflow-invariantlinearsubspaceMthat con-tainstheparticularsolutionx1=···=xn.Forthissolutionallstate variablesxiareidenticalandthusinsynchrony.Inthiscase,the couplingterminEq.(11)vanishes,sothattheformofthe solu-tionisidenticaltotheoneofanuncoupledsystem ˙xi=f(xi).IfV isa projectionmatrix ontotheinvariantsubspaceM,thenby Eq.(9)thesufficientconditionforconvergencetowardMisgiven

1http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video0.avi

byV(D(x,t)− kL)sVT<0[28].Thisimpliesmin



V(kL)sVT



=k+L > sup x,t

max(Ds),with+L beingthesmallestnon-zeroeigenvalueof

symmetricalpartoftheLaplacianLs.(Forstronglyconnected cou-plinggraphsallthenonzeroeigenvaluesof Ls arerealpositive, due to theGershgorin’s disctheorem [30].)The sufficient con-dition forglobal stability ofthe overallsystemis given byk> sup x,t max



fx(x,t)



/+L. This implies the minimum convergence rate: c=−sup

x,t

max(V(D(x,t)−L)sVT).Differenttopologiesofthe couplinggraphsresultin differentLaplacians andthus stability conditions.Forexample+L =2(1−cos(2/N))forsymmetric cou-plingoftheringtopology,and+L =Nforall-to-allcoupling,where Nisthenumberofavatars.(SeeRefs.[18]and[28]formoredetails.) IntheparticularcaseofEq.(11)withmd=0,forthephasecoupling ofHopfoscillatorswithxi=i,wehavef(xi)=ω0=constandthe contractionconditionbecomesk+L >0withtheuniform contrac-tionrate c=k+L fork>0.

(2)Speedcontrolbyvariationofstepfrequency:

thedynamicsofthisscenarioisgivenbyEqs.(3)and(4)for mz=0.Assumingarbitraryinitialdistancesandphaseoffsetsof dif-ferentpropagatingcharacters,implyingbyG(0

i)=cithatci /=cj, fori /=j,weredefinedijasdij−(ci−cj)inEq.(2),andaccordingly cinEq.(3).Furthermore,weassumeforthisanalysisascenario wherethecharactersfollowoneleadingcharacterwhosedynamics doesnotreceiveinputfromtheothers.Inthiscaseallphase trajec-toriesconvergetoasingleuniquetrajectoryonlyifci=cjforalli, j,asconsequenceofthestrictcorrespondencebetweengaitphase andpositionthatisgivenbyEq.(3).Inallothercasesthe trajec-toriesofthefollowersconvergetoone-dimensional,butdistinct attractorsthatareuniquelydefinedbyci.Theseattractors corre-spondtoabehaviorwherethefollowers’positionsoscillatearound thepositionoftheleader.Thepartialcontractionofthedynamics withc=0guaranteesthattheresultingattractorareaisboundedin phasespace(cf.Ch.3.7.viiinRef.[2]).

Fortheanalysisofcontractionpropertiesweregardan auxil-iarysystemobtainedfromEq.(3)bykeepingonlythetermsthat dependon: ˙=−mdLdG(+0).AccordingtoTheorem 1the symmetrizedJacobianofthissystemprojectedontotheorthogonal complementoftheflow-invariantlinearsubspace∗1+0

1=...= N∗+0Ndetermineswhetherthissystemispartiallycontracting. Byvirtueofalinearchangeofvariables,thestudyofthe contrac-tionpropertiesofthissystemisequivalenttostudythecontraction propertiesofthedynamicalsystem ˙=−mdLdG()ontrajectories convergingtowardtheflow-invariantmanifold∗1=...=∗N.

The sufficient conditions for (exponential) partial con-traction toward flow-invariant subspace are, (see Eq. (9)): VJs()VT=−mdVB()VT<0,introducingB()=LdDg+Dg(Ld)TandV signifyingtheprojectionmatrixontotheorthogonalcomplement oftheflow-invariantlinearsubspace.Fordiffusivecouplingwith symmetricLaplacianthelinearflow-invariantmanifold∗1=...= N∗ isalsothenull-spaceoftheLaplacian.Inthiscase,the eigen-vectorsoftheLaplacianthatcorrespondtononzeroeigenvalues canbeusedtoconstructtheprojectionmatrixV.Forexample,in thecaseofNcharacterswithsymmetricalall-to-allcouplingwith Ld=NI11T0 we obtain 1

2V(L dD

g+Dg(Ld)T)VT=NVDgVT>0 for Dg>0. In this case the contraction rate is given by min= mdmin

 (g()) +

Ld,with+Ld=N.

Forgeneralsymmetriccouplingswithpositivelinkswithequal coupling strength md>0 a sufficient contraction condition is: +min(Ld)/+max(Ld)>max

 (|g()−mean(g())|)/mean(g()), with mean(g())=1/T



0Tg()d. This condition was derived from the fact that for symmetric (positive) matrices M1 and M2 for (M1−M2)>0 it is sufficient tosatisfy min(M1)>max(M2). This

(7)

6 A.Mukovskiyetal./JournalofComputationalSciencexxx(2012)xxx–xxx

Fig.4.Self-organizedreorderingofacrowdwith16characters.Controldynamicsaffectssimultaneouslydirection,distanceandgaitphase.See[Demo7].

sufficientconditionpermitstoconstraintheadmissiblecoupling topologiesdependentontheg().Alternatively,itispossibleto introducelow-passfilteringinthecontroldynamicstoincrease thesmoothnessofthefunctiong(),seeRef.[3].

Thesestabilityboundsareillustratedby[Demo2]thatshows

convergentbehaviorofthecharacterswhenthecontraction con-ditionmd>0,(Ld)s≥0issatisfiedforall-to-allcoupling.[Demo3] showsthedivergentbehaviorofagroupwhenthisconditionis violatedwhenmd<0.Intheseandthenextdemonstrationsthe actualvaluesofinteractionparametersmd,mz,m >0(incases, when theyadditionallysatisfy thesufficient contraction condi-tions)wereobtainedbymatchingthecorrespondingconvergence ratestothoseoftherealhumanbehaviorincrowds[31].

(3)Stepsizecontrolcombinedwithcontrolofstepphase: thedynamicsisgivenbyEqs.(4)and(5)withmd=0.This dynam-icsdefinesahierarchicallycouplednonlinearsystem(intypeof Eq. 8). While the dynamics would be difficult to analyzewith classicalmethods,thedynamicsforz(t)thatis givenbyEq. (4) ispartiallycontracting in thecaseof all-to-allcouplingforany boundedexternalinput(t)ifmz>0,Lz≥0,andω(t)>0.These suf-ficientcontractionconditionscanbederivedfromtherequirement ofthepositive-definitenessof thesymmetrizedJacobian apply-ingsimilartechniquesasabove.TheJacobianofthissubsystemis J(,ω)=−mzDzg(,ω)Lz,withthediagonalmatrix(Dzg(,ω))ii= ωig(i+0i)thatispositivedefinitesinceg()>0andω>0.This subsystemis(exponentially)contractinganditsrelaxationrateis determinedby z=mzmin

 (g()) +

Lz (inthecaseofall-to-all

cou-pling)foranyinputfromthedynamicsof(t),cf.Eq.(5).Thelast dynamicsiscontractingwhen(L)

s≥0anditsrelaxationrateis =k+L,where+L isthesmallestnon-zeroeigenvalueof(L

) s. Theeffectiverelaxationtimeoftheoveralldynamicsisthus deter-minedbytheminimumofthecontractionrates and z(Fig.4). Demonstrationsofthiscontroldynamicssatisfyingthe contrac-tionconditions are shown in [Demo4], withoutcontrol of step

phase,andin[Demo5],withcontrolofstepphase.

(4) Advanced scenarios:a simulation of a systemwith sta-bledynamicsincludingbothtypesofspeedcontrol(viastepsize andstepfrequency)andstepphasecontrolisshownin[Demo6],

and a largercrowd with16 avatars simulated using the open-sourceanimationengineHorde3d[32],isshownin[Demo7]. In

thissimulationanadditionaldynamicsforobstacleavoidanceand thecontrolofheadingdirectionwasactivatedduringthe unsort-ingoftheformationofavatars.Thenthisnavigationdynamicswas deactivated,andspeedandpositioncontrolaccordingtothe dis-cussedprinciplesresultinthefinalcoordinatedbehaviorofthe crowd.(See[Demo8].)Finally,[Demo9]showsthedivergenceof

2 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video1.avi 3 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video2.avi 4 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video3.avi 5 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video4.avi 6 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video5.avi 7 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video6.avi 8 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video7.avi 9 http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video8.avi

thedynamicsformd<0,violatingthecontractionconditionforthe stepphasedynamics.Thetwosimulationsshownin[Demo10]and

[Demo11]illustratetheconvergenceforacrowdwith49avatarsfor

twodifferentvaluesofthestrengthofthedistance-to-stepsize cou-pling,theparametersofstepphasecouplingremainingconstant. Thedevelopmentofstabilityboundsandestimatesofrelaxation timesformorecomplicatedscenariosisthegoalofongoingwork. (5)Control ofheadingdirection:forthecontrolofheading directionsinpresenceofcouplingsthataffectthestepphases,the contractionconditionscanbederivedexploringtheresulton hier-archicallycoupledsystemsdiscussedinSection5.Fortheanalysis ofthestabilityofthedynamicsdefinedbyEq.(6)itisthus suffi-cienttoanalyzethecontractionpropertiesofthedynamicsforthe headingdirection ,treatingtheadditionaltermω(t)g ((t))asan externalinputtothe subsystem.

Assuming a constant goal direction, it was shown in Ref. [2] (Ch. 3.9) that the uncoupled dynamics for one character, givenby ˙ =−ω(t)m sin( goal)iscontractinginthe inter-vals] goal+2n, goal++2n[,nZforconstantm >0.(If (t)isasmoothstrictlyincreasingfunctionoftwiththe substitu-tion ((t))= ()(andω(t)=d/dt)thelastdifferentialequation canberewrittenthen:d /d=− m sin( ()− goal)).

Anotherpossibilityistorealizedirectioncontrolistofeedback thecircularmeanaveragedirectionofallcharactersasjointcontrol parameter =angle(1/N



iexp[ i−1]).Inthiscasethe dynam-icsisgivenby

˙i=ωi(t)(sin( i)+g ((t))),

i[1...N], (12) whichis suitablefortheapplicationofTheorem2.Thisimplies that the overall dynamics is contracting if the dynamics ˙i= ωi(t)sin( (t)− i)iscontractingforany (t).ThesameTheorem guarantees contraction,when the consensusvariable is esti-matedbyalow-passfilter(withtime-constant˛>0):˛˙ =− + angle(1/N



iexp[ i

−1]). The simulation shown in [Demo12]

illustratestheconsensusscenariodefinedbyEq.(12),(withouta synchronizationofgaitcycles).

Conclusions

Theanalysisanddesignofthedynamicpropertiesofthe for-mationoforderedpatternsincrowdssofarhasbeenonlyrarely treatedincomputeranimation,andtreatmentsincontroltheory typicallyassumehighlysimplifiedagentmodels.Toourknowledge, thispaperpresentsthefirstsystematictreatmentofthedynamics oforderformationincrowdsusingmorecomplexagentmodels thatincludearticulationofthecharactersduringlocomotion. Com-biningasetofspecificapproximationsofthesystemdynamicswith ContractionTheoryasmathematicalframework forthe system-atictreatmentstabilitypropertiesofcomplexnonlinearsystems, wepresentedanumberofexamplesforthederivationofstability

10http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video9.avi

11http://www.uni-tuebingen.de/uni/knv/arl/avi/ct2012/video10.avi

(8)

boundsfornontrivialscenariosofcoordinatedcrowdbehavior dur-inglocomotion.Wethinkthattheshownexamplesdemonstrate thefeasibilityoftheappliedapproachandmakeitplausiblethat itcanbeextendedforevenmorecomplexscenarios.Necessarily, thisfirstexploratorystudyishighlyincompleteandthespectrumof analyzedbehaviorsofcrowdsisstillverylimited.Futureworkwill havetoaddotherdynamicalprimitivestothemodelarchitecture, includingonessuitablefortherealizationofotherbehaviorsthan locomotion.Theintegrationof suchadditionalcomponentswill necessitatethedevelopmentofnewapproximationsand applica-tionsofadditionalmethodsfromnonlinearcontroltheoryinorder toderivetherelevantcontractionbounds.Thisdefinestheresearch agendaforourfuturework.

Acknowledgement

SupportedbyDFGForschergruppe‘PerceptualGraphics’(GZ:GI 305/2-2),theECFP7projectsFP7-ICT-248311‘AMARSi’and FP7-ICT-249858‘TANGO’andtheHermannundLilly-Schilling-Stiftung. References

[1]W.Shao,D.Terzopoulos,Artificialintelligenceforanimation:autonomous pedestrians,in:Proc.ACMSIGGRAPH’0569,vol.5–6,2005,pp.19–28. [2]W.Lohmiller,J.J.E.Slotine,Oncontractionanalysisfornonlinearsystems,

Auto-matica34(6)(1998)683–696.

[3]A.Mukovskiy,J.Slotine,M.Giese,Designofthedynamicstabilityproperties ofthecollectivebehaviorofarticulatedbipeds,in:Proc.of10thIEEE-RASInt. Conf.onHumanoidRobots,Humanoids,2010.December6–8,2010,Nashville, TN,USA,2010,pp.66–73.

[4]S.R.Musse,D.Thalmann,Abehavioralmodelforrealtimesimulationofvirtual humancrowds,IEEETransactionsonVisualizationandComputerGraphics7 (2)(2001)152–164.

[5] A.Treuille, S.Cooper,Z.Popovi ´c,Continuumcrowds,in:Proc. ACM SIG-GRAPH’0625,vol.3,2006,pp.1160–1168.

[6]I.D.Couzin,Collectivecognitioninanimalgroups,TrendsinCognitiveSciences 13(1)(2009)1–44.

[7] S.Camazine,J.L.Deneubourg,N.R.Franks,J.Sneyd,G.Theraulaz,E.Bonabeau, Self-OrganizationinBiologicalSystems,PrincetonUniversityPress,NewJersey, 2001.

[8]J.R.G.Dyer,A.Johansson,D.Helbing,I.D.Couzin,J.Krause,Leadership, con-sensusdecisionmakingandcollectivebehaviourinhumans,Philosophical TransactionsoftheRoyalSocietyB:BiologicalSciences364(2009)781–789. [9]C.W.Reynolds,Flocks,herds,andschools:adistributedbehavioralmodel.,

ComputerGraphics21(4)(1987)25–34.

[10] A.Pikovsky,M.Rosenblum,J.Kurths,Synchronization,aUniversalConceptin NonlinearSciences,CambridgeUniversityPress,Cambridge,2003.

[11]D.C.Brogan,J.K.Hodgins,Groupbehaviorsforsystemswithsignificant dynam-ics,AutonomousRobots(1997)137–153.

[12]L.Scardovi,R.Sepulchre,Collectiveoptimizationoveraveragequantities,in: Proceedingsofthe45thIEEEConferenceonDecisionandControl,SanDiego, California,2006,pp.3369–3374.

[13]D.A.Paley,N.E.Leonard,R.Sepulchre,D.Grunbaum,J.K.Parrish,Oscillator mod-elsandcollectivemotion:spatialpatternsinthedynamicsofengineeredand biologicalnetworks,IEEEControlSystemsMagazine27(2007)89–105. [14]W.Ren,R.W.Beard,E.M.Atkins,Informationconsensusinmultivehicle

coop-erativecontrol,IEEEControlSystemsMagazineApril2007(2007)71–82. [15]A.Jadbabaie,J.Lin,A.S.Morse,Coordinationofgroupsofmobileautonomous

agentsusingnearestneighbourrules,IEEETransactionsOnAutomaticControl 48(6)(2003)988–1001.

[16]L.Moreau,Stabilityofcontinuous-timedistributedconsensusalgorithms,in: Proc.43rdIEEEConf.onDecisionandControl,vol.4,2004,pp.3998–4003. [17]P.Ögren,M.Egerstedt,X.Hu,Acontrollyapunovfunctionapproachto

multi-agentcoordination,IEEETransactionsonRoboticsandAutomatation18(5) (2002)847–851.

[18]W.Wang,J.J.E.Slotine,Onpartialcontractionanalysisforcouplednonlinear oscillators,BiologicalCybernetics92(1)(2005)38–53.

[19]B.E. Perk,J.J.E.Slotine, Motionprimitives forroboticflight control,CoRR abs/cs/0609140(2006).

[20]M.A.Giese,A.Mukovskiy,A.Park,L.Omlor,J.J.E.Slotine,Real-timesynthesis ofbodymovementsbasedonlearnedprimitives,in:D.Cremers,etal.(Eds.), Stat.andGeom.Appr.toVis.Mot.Anal.,LNCS5604,Springer-Verlag,Berlin Heidelberg,2009,pp.107–127.

[21]L.Omlor,M.A.Giese,Anechoicblindsourceseparationusingwignermarginals, JournalofMachineLearningResearch12(2011)1111–1148.

[22]L.Omlor,M.A.Giese,Blindsourceseparationforover-determineddelayed mixtures,AdvancesinNIPS19(2006)1049–1056.

[23]A.J.Ijspeert,Centralpatterngeneratorsforlocomotioncontrolinanimalsand robots:areview,NeuralNetworks21(4)(2008)642–653.

[24]A.Park,A.Mukovskiy,L.Omlor,M.A.Giese,Synthesisofcharacterbehaviourby dynamicinteractionofsynergieslearnedfrommotioncapturedata,in:The 16-thInt.ConfinCentralEuropeonComp.Graphics,VisualizationandComputer Vision2008,WSCG’08,2008,pp.9–16.

[25]G.Schöner,M.Dose,C.Engels,Dynamicsofbehaviour:theoryand applica-tionsforautonomousrobotarchitectures,RoboticsandAutonomousSystems 16(2–4)(1995)213–245.

[26] A.A.Andronov,A.A.Vitt,S.E.Khaikin,TheoryofOscillators,DoverPubl.Inc., NewYork,1987.

[27] Q.C.Pham,J.J.E.Slotine,Stableconcurrentsynchronizationindynamicsystem networks,NeuralNetworks20(3)(2007)62–77.

[28] A.Park,A.Mukovskiy,J.J.E.Slotine,M.A.Giese,Designofdynamicalstability propertiesincharacteranimation,in:Proc.ofVRIPHYS09,2009,pp.85–94. [29]G.Russo,J.J.E.Slotine,Globalconvergenceofquorumsensingnetworks,

Phys-icalReviewE82(4)(2010)0419191–17.

[30] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,1985.

[31] W.H.Warren,Thedynamicsofperceptionandaction,PsychologicalReviews 113(2)(2006)213–245.

[32] N.Schulz,http://www.horde3d.org/,2006–2009.

AlbertMukovskiyisascientificresearcherinthe Sec-tionforComputationalSensomotorics,HertieInstitutfor ClinicalBrainResearch,whichispartoftheMedical Fac-ultyoftheUniversityofTübingen.HeobtainedhisM.Sc. inBiophysicsinMoscowStateUniversityin1992.His mainresearch interestsare intheareas ofbiological motioncontrol,robotics,multi-agentsystems, computa-tionalneuroscience.

Jean-JacquesSlotineisProfessorofMechanical Engineer-ing and InformationSciences, Professor of Brain and CognitiveSciences,andDirectoroftheNonlinearSystems Laboratory.HereceivedhisPh.D.fromtheMassachusetts InstituteofTechnologyin1983,atage23.After work-ingatBellLabsinthecomputerresearchdepartment,he joinedthefacultyatMITin1984.ProfessorSlotineteaches andconductsresearchintheareasofdynamicsystems, robotics,controltheory,computationalneuroscience,and systemsbiology.ResearchinProfessorSlotine’slaboratory focusesondevelopingrigorousbutpracticaltoolsfor non-linearsystemsanalysisandcontrol.ProfessorSlotineis theco-authoroftwopopulargraduatetextbooks,“Robot AnalysisandControl”(AsadaandSlotine,Wiley,1986),and“AppliedNonlinear Con-trol”(SlotineandLi,Prentice-Hall,1991)andisoneofthemostcitedresearcherin bothsystemsscienceandrobotics.HewasamemberoftheFrenchNationalScience Councilfrom1997to2002,andamemberofSingapore’sA*STARSigNAdvisory Boardfrom2007to2010.HeiscurrentlyamemberoftheScientificAdvisoryBoard oftheItalianInstituteofTechnology.HehasheldInvitedProfessorpositionsat Col-legedeFrance,EcolePolytechnique,EcoleNormaleSuperieure,UniversitadiRoma LaSapienza,andETHZurich.

MartinA.GiesehasreceivedB.Sc.degreesinPsychology andElectricalEngineeringandaM.Sc.andPh.D.degreein ElectricalEngineering.From1998to2001hewas postdoc-toralfellowattheCenterforBiologicalandComputational LearningatMIT,Cambridge,USA,andalsoheadofthe HondaResearchLaboratoryinBoston,USAfrom2000to 2001.From2001to2007heheadedtheLaboratoryfor ActionRepresentationandLearning(ARL)attheHertie InstituteforClinicalBrainResearch,Tübingen,Germany. From2007to2008hewasSeniorLecturerattheSchoolof PsychologyattheUniversityofBangor,UK.Since2008he isProfessorforComputationalSensomotoricsatthe Uni-versityofTübingenthatisjointlyembeddedintheHertie InstituteforClinicalBrainResearchandtheWernerReichardtCenterforIntegrative Neuroscience.Hisgroupworksonneuralmodelingofhigh-levelvision, computa-tionalmotorcontrol,andlearningtechniquesforthemodelingandanalysisofmotor behaviorandclinicalapplications.

Figure

Fig. 1. (a) Architecture of the system for real-time synthesis of complex human movements
Fig. 4. Self-organized reordering of a crowd with 16 characters. Control dynamics affects simultaneously direction, distance and gait phase

Références

Documents relatifs

We prove that for large numbers of nodes, the pro- posed model converges to a mean field behavior, yielding a simple, closed form expression that translates the measur- able merge

were maintained in open sheds, was 70-80 days. As previously suggested in experiment 2, melatonin given after an E treatment was necessary for the onset

We estimated the relative risk (RR) for urgent hospital admissions for a range of temperatures compared to a baseline temperature of 21 °C. This temperature was the average

sponding animation superimposed on the estimated motion eld... ii) an integration part to obtain the trajetories of individualities in the rowd. We applied the presented method on

Ne deriva una tensione (la teoria è detta, appunto, «della tensione») fra il “dover essere” culturalmente accettato e declamato dalle istituzioni e “l’essere” della realtà. La

For each worker node, a DIM service provides a list of the currently started processes which is subscribed into PVSS (per node); this allows the monitoring at any time of the

We believe that a (in- dividual) conviviality benefits from the wisdom of crowds, meaning that a continuously and dynamic understanding of the user’s behaviour can heavily influence

Deconstructing its efficacy through visual critique may be exemplary of how we can denaturalize social and political power relationships defining contemporary charismatic and