• Aucun résultat trouvé

Cellular structures on Hecke algebras of type B

N/A
N/A
Protected

Academic year: 2021

Partager "Cellular structures on Hecke algebras of type B"

Copied!
141
0
0

Texte intégral

(1)

Cellular structures on Hecke algebras of type B

C´edric Bonnaf´e

CNRS (UMR 6623) - Universit´e de Franche-Comt´e (Besan¸con)

Sydney, June 2007

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 1 / 25

(2)

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(3)

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 2 / 25

(4)

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(5)

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 2 / 25

(6)

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(7)

Joint work with Nicolas Jacon (Besan¸con, France)

Cellular structure

s

Canonical basis of Fock space: Ariki’s Theorem

Kazhdan-Lusztig theory and cellular structures: Geck’s Theorem

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 3 / 25

(8)

Joint work with Nicolas Jacon (Besan¸con, France) Cellular structure

s

Canonical basis of Fock space: Ariki’s Theorem

Kazhdan-Lusztig theory and cellular structures: Geck’s Theorem

(9)

Joint work with Nicolas Jacon (Besan¸con, France) Cellular structure

s

Canonical basis of Fock space: Ariki’s Theorem

Kazhdan-Lusztig theory and cellular structures: Geck’s Theorem

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 3 / 25

(10)

Joint work with Nicolas Jacon (Besan¸con, France) Cellular structure

s

Canonical basis of Fock space: Ariki’s Theorem

Kazhdan-Lusztig theory and cellular structures: Geck’s Theorem

(11)

The set-up

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 4 / 25

(12)

The set-up Weyl group, Hecke algebra

(Wn,Sn) Weyl group of type Bn Sn ={t,s1,s2, . . . ,sn−1}

i i i · · · i

t s1 s2 sn−1

`:Wn→N={0,1,2, . . .}length function R =Z[Q,Q−1,q,q−1], Q, q indeterminates

Hn=HR(Wn,Sn,Q,q): Hecke algebra of type Bn with parametersQ and q.

(13)

The set-up Weyl group, Hecke algebra

(Wn,Sn) Weyl group of type Bn Sn ={t,s1,s2, . . . ,sn−1}

i i i · · · i

t s1 s2 sn−1

`:Wn→N={0,1,2, . . .}length function R =Z[Q,Q−1,q,q−1], Q, q indeterminates

Hn=HR(Wn,Sn,Q,q): Hecke algebra of type Bn with parametersQ and q.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 5 / 25

(14)

The set-up Weyl group, Hecke algebra

(Wn,Sn) Weyl group of type Bn Sn ={t,s1,s2, . . . ,sn−1}

i i i · · · i

t s1 s2 sn−1

`:Wn→N={0,1,2, . . .}length function

R =Z[Q,Q−1,q,q−1], Q, q indeterminates

Hn=HR(Wn,Sn,Q,q): Hecke algebra of type Bn with parametersQ and q.

(15)

The set-up Weyl group, Hecke algebra

(Wn,Sn) Weyl group of type Bn Sn ={t,s1,s2, . . . ,sn−1}

i i i · · · i

t s1 s2 sn−1

`:Wn→N={0,1,2, . . .}length function R =Z[Q,Q−1,q,q−1], Q, q indeterminates

Hn=HR(Wn,Sn,Q,q): Hecke algebra of type Bn with parametersQ and q.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 5 / 25

(16)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple

IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn

decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

(17)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn

decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 6 / 25

(18)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn

decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

(19)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn

decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 6 / 25

(20)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

(21)

The set-up Simple modules, decomposition map

K =Frac(R),KHn=K ⊗R Hn split semisimple IrrKHn={Vλ |λ∈Bip(n)}, whereBip(n) ={bipartitions of n}.

Q0,q0 ∈C×, specialization −→CHn =C⊗R Hn

R0(CHn) := Grothendieck group of CHn 'ZIrrCHn decomposition mapdn:R0(KHn)−→R0(CHn)

Hypothesis and notation Q02 = −q02d, d ∈Z e =order of q02, e >2.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 6 / 25

(22)

Ariki’s Theorem

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(23)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 8 / 25

(24)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate

Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

(25)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 8 / 25

(26)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri Fr is endowed with an action of Uv( ^sle)

depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

(27)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r

Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 8 / 25

(28)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v]

Write G(µ,r) = X

λ∈Bip

dλµr (v) |λ,ri (note thatdλλr (v) =1). (|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

(29)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v)|λ,ri (note thatdλλr (v) =1).

(|λ,ri)λ∈Bip is called thestandard basis

(G(λ,r))λ∈Bip is called theKashiwara-Lusztig canonical basis

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 8 / 25

(30)

Ariki’s Theorem Fock space

Fock space:

Bip= a

n>0

Bip(n), r >0, v indeterminate Fock space: Fr := ⊕

λ∈BipC(v) |λ,ri

Fr is endowed with an action of Uv( ^sle) depending on r Uglovhas constructed an involution¯:Fr →Fr and there exists a unique G(λ,r)∈Fr such that

G(λ,r) =G(λ,r)

G(λ,r)≡|λ,ri mod vC[v] Write G(µ,r) = X

λ∈Bip

dλµr (v)|λ,ri (note thatdλλr (v) =1).

(|λ,ri)λ∈Bip is called the standard basis

(G(λ,r))λ∈Bip is called the Kashiwara-Lusztig canonical basis

(31)

Ariki’s Theorem Ariki’s Theorem

Ariki’s Theorem (Ariki, Uglov, Geck-Jacon). Assume that r ≡d mod e. There exists a subset Bipe,r(n) of Bip(n) and a bijection

Bipe,r(n) −→ IrrCHn

λ 7−→ Dλe,r

such that

Uv( ^sle) |∅,ri= ⊕

λ∈Bipe,rC(v) G(λ,r), where Bipe,r = a

n>0

Bipe,r(n)

If λ∈Bip(n), then dn[Vλ] = X

µ∈Bipe,r(n)

dλµr (1) [Dµe,r]

Remark - dλµr (v) is “computable”

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 9 / 25

(32)

Ariki’s Theorem Ariki’s Theorem

Ariki’s Theorem (Ariki, Uglov, Geck-Jacon). Assume that r ≡d mod e. There exists a subset Bipe,r(n) of Bip(n) and a bijection

Bipe,r(n) −→ IrrCHn

λ 7−→ Dλe,r

such that

Uv( ^sle) |∅,ri= ⊕

λ∈Bipe,rC(v) G(λ,r), where Bipe,r = a

n>0

Bipe,r(n)

If λ∈Bip(n), then dn[Vλ] = X

µ∈Bipe,r(n)

dλµr (1) [Dµe,r]

Remark - dλµr (v) is “computable”

(33)

Ariki’s Theorem Ariki’s Theorem

Ariki’s Theorem (Ariki, Uglov, Geck-Jacon). Assume that r ≡d mod e. There exists a subset Bipe,r(n) of Bip(n) and a bijection

Bipe,r(n) −→ IrrCHn

λ 7−→ Dλe,r

such that

Uv( ^sle) |∅,ri= ⊕

λ∈Bipe,rC(v) G(λ,r), where Bipe,r = a

n>0

Bipe,r(n)

If λ∈Bip(n), then dn[Vλ] = X

µ∈Bipe,r(n)

dλµr (1) [Dµe,r]

Remark - dλµr (v) is “computable”

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 9 / 25

(34)

Ariki’s Theorem Ariki’s Theorem

Ariki’s Theorem (Ariki, Uglov, Geck-Jacon). Assume that r ≡d mod e. There exists a subset Bipe,r(n) of Bip(n) and a bijection

Bipe,r(n) −→ IrrCHn

λ 7−→ Dλe,r

such that

Uv( ^sle) |∅,ri= ⊕

λ∈Bipe,rC(v) G(λ,r), where Bipe,r = a

n>0

Bipe,r(n)

If λ∈Bip(n), then dn[Vλ] = X

µ∈Bipe,r(n)

dλµr (1) [Dµe,r]

Remark - dλµr (v) is “computable”

(35)

Ariki’s Theorem Ariki’s Theorem

Comments:

|Bipe,r(n)|=|Bipe,r+ke(n)| if k ∈Z (for a bijection, see Jacon, Jacon-Lecouvey)

If r >n−1,Bipe,r(n) ={Kleshchev bipartitions} (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).

Bipd0,e(n) ={FLOTW bipartitions} (Jacon). Here, d0 ≡d mod e and d0 ∈{0,1,2, . . . ,e−1}.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 10 / 25

(36)

Ariki’s Theorem Ariki’s Theorem

Comments:

|Bipe,r(n)|=|Bipe,r+ke(n)| if k ∈Z (for a bijection, see Jacon, Jacon-Lecouvey)

If r >n−1,Bipe,r(n) ={Kleshchev bipartitions} (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).

Bipd0,e(n) ={FLOTW bipartitions} (Jacon). Here, d0 ≡d mod e and d0 ∈{0,1,2, . . . ,e−1}.

(37)

Ariki’s Theorem Ariki’s Theorem

Comments:

|Bipe,r(n)|=|Bipe,r+ke(n)| if k ∈Z (for a bijection, see Jacon, Jacon-Lecouvey)

If r >n−1,Bipe,r(n) ={Kleshchev bipartitions} (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).

Bipd0,e(n) ={FLOTW bipartitions} (Jacon). Here, d0 ≡d mod e and d0 ∈{0,1,2, . . . ,e−1}.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 10 / 25

(38)

Kazhdan-Lusztig’s theory, Geck’s Theorem

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(39)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2]

= ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn →Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e. eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 12 / 25

(40)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn →Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e. eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

(41)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn →Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e. eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 12 / 25

(42)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n 6m0θ+n0

(roughly speaking, “Q =qθ”...)

Let¯:Hn →Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e. eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

(43)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n 6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn →Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e. eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 12 / 25

(44)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n 6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn→Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e.

eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

(45)

Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

R =Z[Z2] = ⊕

γ∈Z2

Zeγ. Q =e(1,0), q =e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total orderon Z2 (compatible with addition).

Fix θ∈R+,irrational (!): let 6θ be the total order on Z2 defined by

(m,n)6θ (m0,n0)⇐⇒mθ+n 6m0θ+n0 (roughly speaking, “Q =qθ”...)

Let¯:Hn→Hn, Tw 7→Tw−1−1, Q 7→Q−1, q7→q−1 (i.e.

eγ7→e−γ) antilinear involution.

R<θ0 = ⊕

γ∈Z20

Zeγ.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 12 / 25

(46)

Kazhdan-Lusztig’s theory, Geck’s Theorem Cellular structures

Theorem (Kazhdan-Lusztig, 1979). For each w ∈Wn, there exists a uniqueCwθ ∈ Hn such that

Cθw =Cwθ

Cwθ ≡Tw mod R<θ0

Theorem (Geck, 2007). If Lusztig’s conjectures (P1), (P2),. . . , (P14), (P15) hold, then (±Cwθ)w∈Wn

is a cellular basis of Hn.

(47)

Kazhdan-Lusztig’s theory, Geck’s Theorem Cellular structures

Theorem (Kazhdan-Lusztig, 1979). For each w ∈Wn, there exists a uniqueCwθ ∈ Hn such that

Cθw =Cwθ

Cwθ ≡Tw mod R<θ0

Theorem (Geck, 2007). If Lusztig’s conjectures (P1), (P2),. . . , (P14), (P15) hold, then (±Cwθ)w∈Wn

is a cellular basis of Hn.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 13 / 25

(48)

Kazhdan-Lusztig’s theory, Geck’s Theorem Cellular structures

Case n=2 (write s =s1)

C1θ = 1 Ctθ = Tt+Q−1 Csθ = Ts+q−1

Cstθ = Tst+Q−1Ts+q−1Tt+1 Ctsθ = Tts+Q−1Ts+q−1Tt+1 Cstsθ = Tsts+q−1(Tst+Tts) +

Q−1q−1(1+q2)Ts+q−2Tt+Q−1q−2 ifθ >1 Q−1q−1Ts+Q−1q−1(1Q2)Tt+Q−2q−1(1Q2) if 0< θ <1 Ctstθ = Ttst+Q−1(Tst+Tts) +

Q−1q−1Ts+Q−1q−1(1q2)Tt+Q−2q−1(1q2) ifθ >1 Q−1q−1(1+q2)Ts+Q−1q−1Tt+Q−2q−1 if 0< θ <1 Cwθ

0 = Tw0+Q−1Tsts+q−1Ttst+Q−1q−1(Tst+Tts) +Q−2q−1Ts+Q−1q−2Tt+Q−2q−2

Q−1q−1(1−q2) =e(−1,−1)−e(−1,1) ∈R<θ0 if θ > 1

(49)

Kazhdan-Lusztig’s theory, Geck’s Theorem Cellular structures

Case n=2 (write s =s1)

C1θ = 1 Ctθ = Tt+Q−1 Csθ = Ts+q−1

Cstθ = Tst+Q−1Ts+q−1Tt+1 Ctsθ = Tts+Q−1Ts+q−1Tt+1 Cstsθ = Tsts+q−1(Tst+Tts) +

Q−1q−1(1+q2)Ts+q−2Tt+Q−1q−2 ifθ >1 Q−1q−1Ts+Q−1q−1(1Q2)Tt+Q−2q−1(1Q2) if 0< θ <1 Ctstθ = Ttst+Q−1(Tst+Tts) +

Q−1q−1Ts+Q−1q−1(1q2)Tt+Q−2q−1(1q2) ifθ >1 Q−1q−1(1+q2)Ts+Q−1q−1Tt+Q−2q−1 if 0< θ <1 Cwθ

0 = Tw0+Q−1Tsts+q−1Ttst+Q−1q−1(Tst+Tts) +Q−2q−1Ts+Q−1q−2Tt+Q−2q−2

Q−1q−1(1−q2) =e(−1,−1)−e(−1,1)∈R<θ0 if θ > 1

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 14 / 25

(50)

Conjectures

Contents

1 The set-up

Weyl group, Hecke algebra

Simple modules, decomposition map

2 Ariki’s Theorem Fock space Ariki’s Theorem

3 Kazhdan-Lusztig’s theory, Geck’s Theorem Kazhdan-Lusztig basis

Cellular structures

4 Conjectures

2-quotient, 2-core, domino tableaux Domino insertion algorithm

Conjectures, evidences

5 Comments

(51)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(52)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(53)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(54)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(55)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(56)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(57)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(58)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(59)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(60)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(61)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(62)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(63)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(64)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(65)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(66)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(67)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(68)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(69)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(70)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(71)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(72)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

(73)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

2-core of α= δ3 = (3,2,1)

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 16 / 25

(74)

Conjectures 2-quotient, 2-core, domino tableaux

α= (5,4,4,4,4,2,1)

2-core of α= δ3 = (3,2,1) 2-weight of α = 9

(75)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 17 / 25

(76)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n}

If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

(77)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 17 / 25

(78)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient)

inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

(79)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 17 / 25

(80)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

(81)

Conjectures 2-quotient, 2-core, domino tableaux

δr = (r,r −1, . . . ,2,1)

Pr(n) ={partitions with 2-core δr and 2-weight n} If α∈ Pr(n), then|α|= 1

2r(r+1) +2n

There is a map{partitions}−→{bipartitions} (called 2-quotient) inducing a bijection

πr :Pr(n)−→Bip(n)

Define the orderEr on Bip(n) by

λEr µ⇐⇒def π−1r (λ)Eπ−1r (µ)

If r >n−1, thenEr is the usual dominance order on bipartitions.

edric Bonnaf´e (CNRS, Besan¸con, France) Cellular structures Sydney, June 2007 17 / 25

Références

Documents relatifs

In particular, the crystal basis for Fock spaces in affine type A leads to a classification of the simple modules of the Hecke algebra of type G(l, 1, n) (also known as

We attempt to explain the connections between Geck’s cellular structures (coming from Kazhdan-Lusztig theory with unequal parameters) and Ariki’s Theorem on the canonical basis of

In Section 3, we prove the above theorem by introducing a new basis of the Hecke algebra: this was inspired by the work of Geck on the induction of Kazhdan-Lusztig cells [7].. Section

The main point of this paper is to prove a similar decomposition theorem for some generalisations of quiver Hecke algebras and hence obtain an analogue of the Dipper–Mathas

A few years later, generalizing his previous work, Macdonald introduced another class of orthogonal polynomials, which are Laurent polynomials in several variables, and generalize

The combination of this algorithm with Theorems 2 and 3 gives an inductive description of the minimal set of inequalities of Horn R (n).. Note that our algorithm uses

Lusztig’s description of the canonical basis of f in type A (1) in [L1] implies that this basis can be naturally identified with the set of isomorphism classes of simple objects of

More precisely it is conjectured there that θ V(λ) admits a canonical basis which is naturally identified with the set of isomorphism classes of simple objects of a category of