• Aucun résultat trouvé

Characterization and upscaling of hydrodynamic transport in heterogeneous dual porosity media

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization and upscaling of hydrodynamic transport in heterogeneous dual porosity media"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-02999509

https://hal.archives-ouvertes.fr/hal-02999509

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Characterization and upscaling of hydrodynamic

transport in heterogeneous dual porosity media

Philippe Gouze, Alexandre Puyguiraud, Delphine Roubinet, Marco Dentz

To cite this version:

Philippe Gouze, Alexandre Puyguiraud, Delphine Roubinet, Marco Dentz. Characterization and

upscaling of hydrodynamic transport in heterogeneous dual porosity media. Advances in Water

Re-sources, Elsevier, 2020, 146, �10.1016/j.advwatres.2020.103781�. �hal-02999509�

(2)

AdvancesinWaterResources146(2020)103781

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Characterization

and

upscaling

of

hydrodynamic

transport

in

heterogeneous

dual

porosity

media

Philippe

Gouze

a,∗

,

Alexandre

Puyguiraud

b

,

Delphine

Roubinet

a

,

Marco

Dentz

b a Géosciences, Université de Montpellier, CNRS, Montpellier, France

b Spanish National Research Council (IDAEA-CSIC), 08034 Barcelona, Spain

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Non-Fickian dispersion Heterogeneous porous media Upscaling

Time domain random walk Continuous time random walk Dual multirate mass transfer model

a

b

s

t

r

a

c

t

Westudytheupscalingofpore-scaletransportofpassivesoluteinacarbonaterocksample.Itischaracterizedby microporousregionsdisplayingheterogeneousporositydistributionthatareaccessibleduetodiffusiononly,and astronglyheterogeneousmobileporespace,characterizedbyabroaddistributionofflowvelocities.Weobserve breakthroughcurvesthatarecharacterizedbystrongtailing,whichcanbeattributedtovelocityvariabilityin theflowingmediumportion,andsoluteretentioninthemicroporousspace.Usingaccuratenumericalflowand transportsimulations,weseparatethesetwomechanismsbyanalyzingthestatisticsofresidencetimesinthe mobilephase,andthetrappingandresidencetimestatisticsinthemmobilephase.Weemployacontinuoustime randomwalkframeworkinordertoupscaletransportusingaparticlebasedimplementationofmobile-immobile masstransfer,andheterogeneousadvection.Thisapproachisbasedonthestatisticsofthecharacteristicmobile andimmobileresidencetimes,andmasstransferratesbetweenthetwocontinua.Whileclassicalmobile-immobile approachesmodelmasstransferasaconstantrateprocess,wefindthatthetrappingrateincreaseswithincreasing mobileresidencetimesuntilitreachesaconstantasymptoticvalue.Basedonthesefindingsandthestatistical characteristicsoftravelandretentiontimes,wederiveanupscaledLagrangiantransportmodelthatseparatesthe processesofheterogeneousadvectionanddiffusionintheimmobilemicroporousspace,andprovidesaccurate descriptionsoftheobservednon-Fickianbreakthroughcurves.Theseresultsshedlightontransportupscalingin highlycomplexdual-porosityrocksforwhichmobile-immobilemasstransferarecontrolledbyadualmultirate processcontrolledbytheheterogeneityofboththeflowfieldintheconnectedporosityandthediffusioninthe no-flowregions.

1. Introduction

Solutetransport in thelaminarflow throughthevoid spaceof a porousmediumisduetomoleculardiffusionandadvection.Despitethe simplicityofthesefundamentalprocesses,observedtransportis char-acterizedbycomplexfeaturessuchasstrongbreakthroughcurve tail-ing, non-Gaussianconcentration distributions,anomalous dispersion, incompletemixing,andintermittentLagrangianflowproperties(Cortis andBerkowitz,2004;Seymouretal.,2004;Bijeljicetal.,2011;DeAnna etal.,2013;Bijeljicetal.,2013;Kangetal.,2014;Holzneretal.,2015; Moralesetal.,2017).Thesebehaviorsareduetotheintricatestructure oftheporespace,andthemulti-scaleheterogeneitydistribution,which causebroaddistributionsofadvectiveanddiffusivemasstransfertime scalesandtransportpathways(Bijeljicetal.,2011;Portaetal.,2015; Puyguiraudetal., 2019a).The understandingofthese heterogeneity mechanisms,andtheirquantificationinupscaledtransportmodelsare keyissuesin manyacademicandengineeringapplicationsconcerned

Correspondingauthor.

E-mailaddress:Philippe.Gouze@UMontpellier.fr(P.Gouze).

withthelargescale(macroscopic)predictionofthefateof conserva-tiveandreactivesolutesingeologicalandengineeredmedia,suchas theassessmentofgroundwatercontaminationandremediation, geolog-icalstorageofnuclearwaste,geothermalenergyproduction,and un-dergroundstorageofcarbondioxide(DomenicoandSchwartz,1997; PoinssotandGeckeis,2012;Niemietal.,2017).

Classical upscaling approaches quantify Darcy scale transport in terms of hydrodynamic dispersion coefficients (Bear, 1972), which incorporatethe large scale dispersive effect of pore-scale ve-locity fluctuations. The key issue is evidently the determination of the macroscopic dispersion coefficient. For instance, de Jos-selindeJong (1958)andSaffman(1959)usedLagrangianstochastic modelsforpore-scaleparticlemotioninordertoderiveexpressionsfor thehydrodynamicdispersioncoefficients.Theirapproachesarebased onthefactthatvelocitiesvaryontypicallengthscales,theporelengths. Thus,particlesspendmoretimeinlowthaninhighflowvelocity re-gions.Thisbehavior,whichliesattheoriginofpore-scaleLagrangian intermittency(Dentzetal.,2016),ismodeledbyadistributionoftravel

https://doi.org/10.1016/j.advwatres.2020.103781

Received22April2020;Receivedinrevisedform10September2020;Accepted5October2020 Availableonline8October2020

(3)

times.Thespatialtransitionsandthetransitiontimesdependonboththe porevelocitiesandmoleculardiffusion.Sincethesepioneeringworks, hydrodynamicdispersionanditsdependenceonthelocalPécletnumber (theratioofthecharacteristicdiffusiontimetotheadvectiontime)was thesubjectofnumerousexperimental,numericalandtheoretical investi-gations(Scheven,2013;Swansonetal.,2015;Pfannkuch,1963;Rashidi etal.,1996;Jouraketal.,2013;BijeljicandBlunt,2006).Systematic upscalingapproacheshavebeenbasedongeneralizedTaylordispersion theory(Brenner,1980;Sallesetal.,1993),volumeaveraging(Quintard andWhitaker,1994;Davitetal.,2012;2013)andcontinuoustime ran-domwalk(CTRW) (BijeljicandBlunt,2006).

CTRWmethodssimilartotheapproachesinvolvedintheworksof

deJosselindeJong (1958)andSaffman(1959)wereusedtomodel non-Fickian pore-scale transport features such as anomalous disper-sion,breakthroughcurvestailingandintermittentLagrangianparticle velocities(Bijeljic etal., 2011; De Annaet al., 2013; Gjetvajet al., 2015;Kangetal.,2014; Puyguiraudetal.,2019b). The implementa-tionofCTRWisoftenhandledbymodelingparticletransportthrough transitionsoverfixedspatialscalescharacterizedbyrandomtransition times(Berkowitzetal.,2006).Thetimedomainrandomwalk(TDRW) methodthatwillbeusedinthisstudy,isalsobasedonparticles mo-tionoverfixeddistance.Transitiontimesaredeterminedkinematically fromtheEulerianflowfieldandthespatiallydistributedproperties,for instancetheporosityanddiffusivity,thatcanbemappedeitherfrom tomographicimagingorfrom(statistical)models.Thus,thesemethods provideameanstorelatepore-scaleflowpropertiestoDarcyscale trans-portbehavior(Bijeljicetal.,2011;Puyguiraudetal.,2019,2020).

Thepresenceofimmobilemediumregionsthatconsistofdeadend pores,regionsoflowflowinthewakeofsolidgrainsandmicroporosity wherediffusiondominatesarecommonfeaturesofporousmediasuch asreservoirrocks.ThelargedifferenceintermsofPécletnumber be-tweenthesezonesoftheporousmediaandtheconnectednetworkof poresthatformstheusualmacroporosity(theflowingporosity)supports theuseofdualcontinuummobile-immobilemasstransferapproaches firstproposedby vanGenuchtenandWierenga(1976).Thisapproach hasbeenwidelyusedtotakeintoaccounttheoften-encountered con-trolofspatiallydistributeddiffusivezonesontheoverallhydrodynamic transportandspecificallyontheoccurrenceofoftenhighlynon-Fickian breakthroughcurvesobservedexperimentallyfromlaboratorytofield scales.Theheterogeneousmediumismodeledbyoverlappingmobile andimmobilecontinua.Ateachpointinspace,thesystemstateis de-finedbyamobileandseriesofimmobileconcentrations.Themobileand immobilecontinuacommunicatethroughlinearmasstransferin two-equationmodels(Ahmadietal.,1998;Cherblancetal.,2007),which canbe formulatedin awaythat allowstheimmobileconcentrations tobewrittenaslinearfunctionalsofthemobileconcentration,which arecharacterizedbyamemorykernel(HaggertyandGorelick,1995; Carreraetal.,1998)thataccountsforthemicroscalemasstransfer pro-cesses.Assuch,itisamethodtoupscalepore-scaletransport.Many im-plementationsofthisapproachconsideraconstantaveragevelocityin themobilemediumportion(LiuandKitanidis,2012;Portaetal.,2013; 2015).However,advectiveheterogeneity,thismeansvelocity variabil-ityin theflowingmedium portion,by itselfgivesrisetoanomalous transport(Bijeljicetal.,2011;DeAnnaetal.,2013;Kangetal.,2014; Puyguiraudetal.,2019).Thisiswhytheimportanceofpore-scale ve-locitystatisticsandtheirrelationtothecomplexmediumand hetero-geneitystructurehavebeenstudiedinaseriesofrecentexperimental andnumericalworks(Sienaetal.,2014;Matykaetal.,2016;Holzner etal.,2015;DeAnnaetal.,2017;Alimetal.,2017;Dentzetal.,2018; Aramidehetal.,2018).

SomeauthorshavecoupledCTRWmodelsofadvective heterogene-itywithtrappinginimmobileregions(Gjetvajetal.,2015;Dentzetal., 2018).Keyitemsforthesemodelingapproachesaretheidentificationof thedominantpore-scaletransportandmasstransferprocesses,their re-lationtothepore-scalemedium andtheflow properties.Theseaims have been pursued by experiments (Swanson et al., 2015),

numeri-cal simulations(deVriesetal., 2017;Ceriotti etal., 2019) and for-malupscaling usingvolume averaging(Davit etal., 2012;Orgogozo et al.,2013; Portaet al.,2015),andLagrangianCTRWbased meth-ods(Gjetvajetal.,2015;Dentzetal.,2018).Volumeaveraging delin-eatesamobileregion,theflowingporosity,andimmobileregionssuch asbiofilms(Orgogozoetal.,2013)basedonavelocitycutoff determined from aPécletcriterion (Portaetal.,2015).Thelargescaletransport modelisthenobtainedbyaveragingthemicroscaletransportequations overaunitcellthatisstatisticallyrepresentativeofthepropertiesof themediumandtheflow,andcontainstwodistinctmediumportions, which,asoutlinedabove,areconnectedthroughmasstransferacross domain boundaries. Lagrangian stochastic models (Margolin et al., 2003;BensonandMeerschaert,2009;Dentzetal.,2012;Comollietal., 2016)formulatemasstransferbetweenmobileandimmobilemedium regionsthroughcompoundstochasticPoissonprocesses(Feller,1968). Thismeansthatmasstransfereventsoccuratconstantrate,quantified bythePoissonprocess,whichrenderstheresidencetimeinimmobile regions asthesumoverindividualtrappingtimes acompound Pois-son process.Asshown byMargolinet al.(2003), Bensonand Meer-schaert(2009)anddiscussedfurtherinthispaper,thisformulationis equivalenttoEulerianmobile-immobilemasstransferformulations.

Thisstudyaimsattestingourcapabilityofcharacterizingand upscal-inghydrodynamictransportinheterogeneousnaturalreservoirswhere both velocitydistributionandimmobile domainheterogeneitycause anomalous transport,startingfrom themodelassuming that mobile-immobilemasstransfersarecontrolledbyaPoissonprocess.Forthat weuseasanexampleofhighlyheterogeneousmedia,acarbonate sam-pleimagedusingX-Raymicrotomographythatdisplaysmarkedbimodal structuralheterogeneitycausedbythepresenceof connected macro-porosityandmicroporousmaterialthatresultsfromgrain sedimenta-tionanddiagenesisevents.Theimageisprocessedinordertomapthe mobileandtheimmobiledomainanddirectnumericalsimulationsof flowandtransportareperformed. Weinvestigate indetailthe statis-ticsofmobileandimmobileparticlemotionintermsoftherespective residencetimes,thetrappingratesandthemobileandimmobiletimes betweentrappingevents.Usingthedetailedstatisticalanalysis,we dis-cussthesalientfeaturesoftransportattheporescale,andquantifythem inanupscaledtransportmodelbasedonaLagrangianformulationthat implementsinasimpleformthespecificprocessthatcharacterizesthe spatialdistributionofthemobile-immobilemasstransfersin heteroge-neousmedia.

Thepaperisorganizedasfollows.Section2detailsthe methodol-ogy.Itdescribesthenumericalsolutionofthedirectflowandtransport problem,thesimulationsetup,theboundaryconditionsandthemodel outputswhichallowinvestigatingindetailthestatisticsofmobileand immobileparticlemotionintermsoftherespectiveresidencetimes,the trappingrates andthemobileandimmobiletimes betweentrapping events.InSection3weconsidertransportinasimplefracturematrix setupinordertopresenttheconceptofthebasicLagrangian methodol-ogyforasimplemobile-immobilesystemforwhichthesingletrapping rateupscalingCTRWformulationisdetailedandthenvalidatedusing thedirectsimulationresults.Then,followingthesameapproacheswe investigate inSection4thetransportbehaviorinthecarbonaterock sampleusingdirectnumericalsimulationsaswellastheupscalingof transportintheimmobiledomainusingastatisticalmulti-trapping ap-proach.Then,inSection5,wederiveanewupscaledLagrangianmodel andvalidateitbycomparisonwiththeresultsofthedirectnumerical simulations.ConclusionsarepresentedinSection6.

2. Materialandmethods

2.1. SampleMC10properties

TheMC10carbonatesampleisaporousandpermeablerockmade ofquasipurecalcite.Thestructurethatresultsfromcomplex sedimen-tationanddiageneticeventsismadeofimperviousgrainsofvariable

(4)

Fig.1.Porositymapofaslicenormaltothemain flowdirectionzpositionedat𝑧=450.Theimage ontheleftdisplaystheporositymapbefore thresh-old.Orangeandcyancolorsdenotethesolidphase (𝜙 =0)andthemobiledomain(𝜙 =1)respectively, whilegrayscalefromblack(lowporosity)towhite (highporosity)denotestheimmobiledomain poros-ity.Theimageontherightshowsinyellowcolor thefractionoftheimmobiledomainremoved(i.e. transformedintosolid)whenapplyingathreshold

𝜁 =0.1(definedinSection2.1).(Forinterpretation ofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

characteristiclengthrangingfromfewtenstoabout150µmand mi-croporousmaterial thatensure thecohesion of the rock. When per-formingX-Raymicrotomographyof suchsinglesolidphasematerial, theX-Rayenergyattenuationintegratedovereachvoxelofthefinal 3-dimensionalimagedenotestheporosity.Forthisstudy,weuseacropped sub-volumemadeof900×900×900cubicvoxelsofsidedimension

𝑑𝑥=1.6867× 10−6m.MC10ischaracterizedbyconnectedmacropores

ofmeansize70×10−6m.Themicroporousmaterial(diageneticcement)

isconsideredimmobileregardingfluidflowandonlyaccessibletosolute bydiffusion.Itdisplaysvariableporositymadebyporesthataresmaller thantheimagingresolution.Accordingly,connectedmacro-porosity de-limitsthemobiledomainwhilethemicroporousmaterialdelimitsthe immobiledomain.Detailsonthesamplecharacteristicsandthe method-ologiesappliedtoprocesstheX-ray tomographicimagearegivenin

AppendixA.

TheeffectivediffusionDeineachlocationoftheimmobiledomain

(i.e.ineachvoxel)istheproductofthemoleculardiffusionD0times

theeffectiveporosity𝜙e,

𝐷𝑒(x)=𝐷0𝜙𝑒(x)=𝐷0𝜙(x)∕𝜅(x), (1)

where𝜅 denotestheimmobiledomaintortuositythatcanbeconsidered

asaconstantorafunctionoftheimmobiledomainporosity𝜙 suchas theformulationderivedfromtheelectrictortuositybyArchie(1942),

𝜅(x)=𝜙(x)1−𝑚.Accordingly,(1)canberewritten

𝐷𝑒(x)=𝐷0𝜙(x)𝑚, (2)

withmrangingfrom1(assumingthatthereisnotortuosityeffect)to about4.5inmicroporouslimestones(Gouzeetal.,2008).Thediffusion coefficientD0isconstantforallsimulationsandsetto10−9m2s−1.Note

thattheporosityoftheimmobiledomainisdefinedastheporosity ac-cessiblebyasolutediffusingfromthemobiledomain,andthuscanbe differentfromthetotalporosityoftheimmobiledomain,forinstance ifporouszonesareembeddedinzonesconsideredasnon-diffusiveas explainedbelow.

Foreachvoxeloftheimmobiledomaintransportbydiffusionis im-possiblebelowagivenporosityvalue.Differentapproachesusing,for instance,percolationtheory,critical-pathanalysisoreffectivemedium approximationtheory canbe usedtoevaluatetheporositythreshold

𝜁 belowwhichthesystemis non-percolatingfordiffusion(seeHunt andSahimi,2017;Hommeletal.,2018andreferencesherein).Forthe sampleconsideredhere,applyingaporositythresholdconsistsin trans-formingthefractionoftheimmobiledomainwhere𝜙 <𝜁 intosolid: 𝐷𝑒(𝐱)=

{

𝐷0𝜙𝑒 for𝜙 ≥𝜁

0 for𝜙 <𝜁 (3)

Theporosityvalueoftheimmobiledomainresultingfromthe im-ageprocessingrangesfrom0.045to0.193withmeanporosity0.108

(Hebertetal.,2015).Fig.1displaysacrosssection(normaltothemain flow)inthesegmentedimageofthe9003-voxelsamplewherethe

frac-tionofimmobiledomaincorrespondingtoporositybelowthreshold val-uesof10%areenlighten.Forinstance,applyingaporositythresholdof

𝜁 =0.1actsasremoving39%oftheimmobiledomain.Themean

poros-ity oftheremaining fractionof theimmobiledomainis then0.175. However,applyingthisthresholddoesnotchangenoticeablythearea ofthemobile-immobileinterfacewhichis1.22 × 105m2perm3of

mobiledomainwhen𝜁 =0.0and1.20 × 105m−1when𝜁 =0.1,i.e.a

decreaseof1.64%.

Inthispaper,differenttortuositymodelsareinvestigated.Assuming aporosity thresholdof 𝜁 =0.1andtortuositydefinedby𝜅(𝜙)=𝜙1−𝑚

withm=2.5isthemostrealisticmodel(Garingetal.,2014),butmodels withm=1.5and4.5aswellaswithaconstanttortuositymodel𝜅 =1.8 and𝜁 =0areinvestigatedinordertoexplorethefeedbackcontrolofthe

immobiledomaindiffusivityontheoverallsolutetransportandonthe upscalingfeasibility.Acomprehensivecharacterizationofthediffusion propertiesaccordingtotheassumptionmadeontortuosityaregivenin

AppendixB.

2.2. Mobiledomainflow

WeconsidertheflowinthesampleatlowReynoldssothatthe pore-scaleflowvelocityv(x)issolutionoftheStokesequation

∇2𝐯(𝐱)= 1

𝜇𝑝(𝐱), (4)

where p(x) is the fluidpressure. The 9003 cubic voxels meshis

di-rectly usedasthemeshed domainforOpenFOAMcalculationsusing apermeameter-likeconfiguration:(i)constantpressureisappliedatthe inlet(z=0)andtheoutlet(𝑧=𝐿𝑧)boundarieswhere20-pixelslayersof

unitaryporosityareaddedinordertoobtainanaccuratedetermination ofthevelocitycomponentsattheinletandoutletofthedomain,(ii)the domainisboundedbysolidatx=0,𝑥=𝐿𝑥,y=0and𝑦=𝐿𝑦,(iii)

no-slipconditionsareappliedatthemobile-solidandtheimmobile-solid domainboundaries.Lx,LyandLzdenotethedomainlengthsinthex,y

andzdirections,respectively.

The flow equations are solved via a finite volume scheme implemented in the SIMPLE algorithm of OpenFOAM (https://cfd.direct/openfoam/user-guide/v7-fvsolution/). This al-gorithm solves the steady state Stokes equation (4) and continuity equation∇⋅𝐯(𝐱)=0followinganiterativeprocedure.Convergenceis reached whenthedifferencein termsof pressure andvelocity com-ponentsbetween thecurrentandthepreviousstepsissmallerthana threshold.Onceconvergencehasbeenreached,weextractthevelocity fieldcomponentsthatarecomputedateachofthevoxelinterface.

Thefluidvelocityinthedirectionalongthez-axis(themainflow direction) displays an asymmetric shape with some negative values

(5)

Fig.2. Left:normalizedfluidEulerianvelocityPDFinthedirectionofthemainflow𝑣𝑧 𝑣𝑧 (circles)andinoneofthedirectionperpendiculartothemainflow𝑣𝑥 𝑣𝑧 (solidline).Right:Eulerianvelocitynorm|V|PDF(plainline)andfluxweightedEulerianvelocitynormPDF(dashedline).

thatemphasizethehighcomplexityoftheflowfieldtriggeredbythe highheterogeneityofthemobiledomain.Thefluidvelocity perpendic-ulartothemainflowdirection isquasi-symmetric(Fig.2).Theflux weightedvelocitynormPDF𝑃

𝐸(|𝑉|)=|𝑉|∕⟨|𝑉|⟩𝑃𝐸(|𝑉|),wherePE(|V|)

denotesthePDFoftheEulerianvelocitynorm,isdisplayedinFig.2.

Puyguiraudetal.,2019showedthatforstationarysystem𝑃

𝐸isequalto

theLagrangianvelocityPDFwhichisthecoreinformationrequiredfor upscalingadvectivetransportinthemobiledomain(Puyguiraudetal., 2019).Upscalingoftheadvectivetransportusing𝑃

𝐸forthishighly

het-erogeneoussampleisbeyondthescopeofthepresentworkthatfocuses onupscalingtheimmobiledomaintransport,andwillbepresentedin afuturededicatedpaper.Nevertheless,wenotethatthePDF𝑃

𝐸

pre-sentedinFig.2isquitesimilartothatofthesandstonesamplepresented inFig.2inPuyguiraudetal.,2019forwhichupscalingmethodswere proposedbytheauthors.

2.3. Transportsimulations

Transportinthemobile-immobiledomainisdescribedbythegeneric advection-diffusionequationwhichisconsideredtoapplyatthescale ofeachvoxel:

𝜕𝑐(𝐱,𝑡)

𝜕𝑡 +𝐯(𝐱)⋅∇𝑐(𝐱,𝑡)−𝐷𝑒

2𝑐(𝐱,𝑡)=0, (5)

whereDeistheeffectivediffusioncoefficientandv(x)istheflow

veloc-ity.Inthemobiledomain,Dereducestothemoleculardiffusion

coeffi-cientD0whereastheflowvelocityiszerointheimmobiledomain.

Equation (5) is solved numerically using a time-domain random walk (TDRW) method (Russianet al., 2016),which is basedon the formulationofEq.(5)asamasterequationusingafinitevolume dis-cretizationofthespatialoperators.AcompletedescriptionoftheTDRW method,a demonstrationof itsequivalencewithEq.(5),andits im-plementationusingvoxelizedimagesofporousmediacanbefoundin

Dentzetal.(2012)andRussianetal.(2016).Themainfeaturesofthe methodaregivenbelow.Thedomaindiscretizationusedfortransportis thesameastheoneusedforcomputingtheflow.TheTDRWapproach modelsthedisplacementofparticlesinspaceandtime,theirensemble averagegivingthesolutionofthetransportequationfortheconsidered media.Foreachparticle,eachmotioneventisdenotedbyasinglejump fromonevoxeltooneofthe6face-neighboringvoxels.Assuch,the jumpdistance𝜉 isconstantandequaltothevoxelsizedx.The direc-tionandthejumpdurationarecontrolledbythelocalpropertiesofthe voxels,i.e.thefluidvelocityandtheeffectivediffusioncoefficient.The

recursiverelationsthatdescribetherandomwalkfrompositionxj to

positionxiofagivenparticleatjump𝑛is

𝐱𝑖(𝑛+1)=𝐱𝑗(𝑛)+𝝃, 𝑡(𝑛+1)=𝑡(𝑛)+𝜏𝑗, (6)

with|𝝃| =𝜉 denotingthetransitionlength.Theprobabilitywijfora

tran-sitionoflength𝜉 frompixeljtopixeli,andthetransitiontime𝜏j

asso-ciatedtopixeljaregivenby

𝑤𝑖𝑗= 𝑏𝑖𝑗 ∑ [𝑗𝑘]𝑏𝑘𝑗, 𝜏𝑗 =∑ 1 [𝑗𝑘]𝑏𝑘𝑗, (7)

wherethenotationΣ[jk]indicatesthesummationoverthenearest neigh-borsofpixelj.Thebijaregivenby

𝑏𝑖𝑗= ̂ 𝐷𝑒𝑖𝑗 𝜉2 + |𝑣𝑖𝑗| 2𝜉 ( 𝑣 𝑖𝑗 |𝑣𝑖𝑗| +1), (8)

where𝐷̂𝑒𝑖𝑗 denotestheharmonicmeanofthediffusioncoefficientsof

pixelsiandj,andvijdenotesthevelocitycomponentofvjinthedirection

ofpixeli,𝑣𝑖𝑗=𝐯𝑗𝝃𝑖𝑗.Asaconvention,voxeliisdownstreamfrompixel jifvij>0.

NotethattheTDRWcanbeseenasacontinuoustimerandomwalk (CTRW)becauseittreatstimeasanexponentiallydistributed contin-uousrandomvariablewhosemeanmayvary betweenvoxels.Inthis paper,weusethetermTDRWforthenumericalrandomwalkmethod usedtosolvethedirectproblem,andthetermCTRWfortheupscaled randomwalkframework.

2.4. TDRWsimulationssetup

Theappliedboundaryconditionatthesampleinlet(𝑧=0)isapulse

ofconstantconcentrationinthemobiledomainonly.Thisisperformed byapplyingafluxweightedinjectionoftheparticlesat𝑡=0.By con-structionthepulseisformallyanexponentialconcentrationfunctionof characteristictime𝜏𝑗|𝑧=𝑑𝑥∕2 (Russianetal.,2016).Themainresultis

givenbythefirstpassagetimeattheoutletofthemobiledomainwhich denotestheinerttracerbreakthroughcurve (BTC).No-fluxboundary conditionissetat𝑥=0,𝑥=𝐿𝑥,𝑦=0,𝑦=𝐿𝑦,aswellas𝑧=0and𝑧=𝐿𝑧

intheimmobiledomain.

Simulations are performed for different values of Pécletnumber whichis definedby𝑃𝑒=⟨|𝑉|⟩𝑙∕𝐷0 wherelisacharacteristiclength

whichistakenhereastheaverageporelength.Eachsimulationinvolves atleast107particles.Thestatisticsconcerningthecharacteristicsofthe

trappingevents,suchasthetrappingtimeintheimmobiledomainand thesurvivaltimeinthemobiledomainbetweentwotrappingevents,are

(6)

obtainedbysamplingmorethan109events(thedefinitionofatrapping

eventisprovidedinSection2.5).

2.5. Modeloutput

Themasstransfersoccurringinthesampleareprobedbyasetof statisticaldistributionswhicharegivenasprobabilitydensityfunctions (PDFs),denoteď𝜓.(.),wheretheoverlyingreversed-hatsymbolindicates

thattheyarederivedfromtheresultsofthedirectTDRWsimulations. ThesePDFsdescribetheadvection-diffusiontransportinthemobile do-main,theexchangebetweenthemobileandtheimmobiledomains,and thediffusivetransportintheimmobiledomain.Intermsofrandomwalk process,wewillnameeachintrusionofaparticleintotheimmobile do-maina”trappingevent”.

TrappingtimePDFdenoted ̌𝜓𝜏𝑖𝑚 isthePDFofthetime𝜏im(p,n(p))

spentbytheparticlesp(𝑝=1,.,𝑃)intheimmobiledomain dur-ingthetrappingeventsn(p)(𝑛(𝑝)=1,… ,𝑁(𝑝)),wherePisthe totalnumberofparticlesexitingatthesample’soutletandN(p) isthetotalnumberoftrappingeventsencounteredbyparticlep.

Immobile time PDF denoted ̌𝜓𝑡𝑖𝑚 is the PDF of the time tim(p)

spentbytheparticlesintheimmobiledomaintocrossthe en-tiredomain(i.e.from𝑧=0to𝑧=𝐿𝑧).Foragivenparticlep, 𝑡𝑖𝑚=∫𝑛(𝑝)𝜏𝑖𝑚𝑑𝑛.

SurvivaltimePDFdenoted ̌𝜓𝜏𝑠 isthePDFofthetimes𝜏s(p,n(p))

spentbytheparticlespinthemobiledomainbetweentrapping events𝑛−1andn.

MobiletimePDFdenoted ̌𝜓𝑡𝑚 isthePDFofthetimetm(p)spentby

theparticlesinthemobiledomaintocrosstheentiredomain.For agivenparticlep,𝑡𝑚=∫𝑛𝜏𝑠𝑑𝑛+𝜖,where𝜖 isthesumofthetime

spenttomovefromtheinlettothelocationofthefirsttrapping eventandof thetimespenttomovefrom theexitlocationof trappingeventN(p)totheoutlet.

TrappingratePDFdenoted ̌𝜓𝛾isthePDFof𝛾(𝑝)=𝑛(𝑝)∕𝑡𝑚(𝑝).

FirstpassagetimePDFdenoted ̌𝜓𝑡𝑡 isthePDFofthefirstpassage

timett(p)spentbytheparticlestocrossthedomainandis

equiv-alenttothebreakthroughcurve(BTC).Bydefinition,foreach particlep

𝑡𝑡(𝑝)=𝑡𝑚(𝑝)+𝑡𝑖𝑚(𝑝)=𝑡𝑚(𝑝)+ 𝑁(𝑝)

𝑖=1𝜏𝑖𝑚

(𝑝,𝑖). (9)

3. Modelingtransportinasinglefracturewithmobile-immobile masstransfer

Inthissection,weinvestigatethecaseofthetransportofapassive tracerin a simplemobile-immobiledomain systemthat canbe ade-quatelyrepresentedasasinglelinearfracture(themobiledomain) cross-ingacontinuousporousmatrix(theimmobiledomain).Thedifferent PDFscharacterizingthetransportprocess(describedinSection2.5)will becomputedusingdirectTDRWsimulationsandwilllaterbecompared tothoseresultingfromTDRWsimulationsperformedfortheMC10 car-bonatesample.Furthermore,wepresenta1DCTRWmodelthatupscales transportinthefracturematrixsystemandintroducesthemainfeatures andconceptsusedfortheupscalingoftransportintheMC10carbonate sample.Thedetailedfracture-matrixtransportmodelcanbeformulated inthemostgeneralformas

𝜙(𝑦)𝜕𝑐(x,𝑡)

𝜕𝑡 +𝑢(𝑦) 𝜕𝑐(x,𝑡)

𝜕𝑥 −∇⋅[𝐷(𝑦)∇𝑐(x,𝑡)]=0, (10)

where𝜙(y)isporosity, whichisequalto𝜙m withinthefractureand 𝜙iminthematrix;u(y)istheDarcyvelocity,whichisequaltouinthe

fractureand0inthematrix;similarly,D(y)isthediffusioncoefficient, whichisequaltoDm𝜙minthefractureandequaltoDim𝜙iminthematrix,

whereDmandDimdenotethediffusioncoefficientinthemobileandthe

immobiledomainrespectively.

Inthefollowing,weconsidertwoequivalentupscaledtransport ap-proaches.

3.1. Upscalingbyverticalaveraging

Upscaledtransportinthisfracture-matrixsystemcanbedescribedby amultiratemasstransfermodel(HaggertyandGorelick,1995;Carrera etal., 1998).Inthefollowing,we brieflyoutline thestepsthatlead tosuchadescriptioninordertohighlighttheunderlyingassumptions. Theupscaledmultiratemasstransferdescriptionforthefracture-matrix system isobtained byverticalaveraging. Tothisend,we definethe averagesconcentrationoverthefractureandmatrixcross-sectionsas

𝑐𝑚(𝑥,𝑡)=𝑑1 𝑚𝑑𝑚 0 𝑑𝑦𝑐(𝐱,𝑡), 𝑐𝑖𝑚(𝑥,𝑡)= 1 𝑑𝑖𝑚𝑑𝑖𝑚 0 𝑑𝑦𝑐(𝐱,𝑡), (11)

wheredmisthewidthofthefractureanddimofthematrix.Averaging

(10)overthefracturecross-sectiongives

𝜙𝑚𝜕𝑐𝑚𝜕𝑡(𝑥,𝑡)+𝑢𝜕𝑐𝑚𝜕𝑥(𝑥,𝑡)−𝐷𝑚𝜙𝑚𝜕 2𝑐 𝑚(𝑥,𝑡) 𝜕𝑥2 =−𝑑1𝑚𝜙𝑚𝐷𝑚𝜕𝑐𝑚𝜕𝑦(𝐱,𝑡)|||| 𝑦=0, (12) whiletheequationforpurelydiffusivetransportinthematrixdomain is 𝜙𝑖𝑚𝜕𝑐𝑖𝑚 (𝐱,𝑡) 𝜕𝑡𝐷𝑖𝑚𝜙𝑖𝑚 𝜕2𝑐𝑖𝑚(𝐱,𝑡) 𝜕𝑦2 =0. (13)

Theboundaryconditionare𝑐𝑖𝑚(𝑥,𝑦=0,𝑡)=𝑐𝑚(𝑥,𝑦=0,𝑡)asan

ex-pressionofconcentrationcontinuity.Weapproximate𝑐𝑚(x,𝑡)≈ 𝑐𝑚(𝑥,𝑡),

which assumes fastequilibration over the fracturecross-section. Us-ingflux continuityacrossthefracturematrixinterface,weobtainin

AppendixC 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑡 +𝑣 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑥𝐷𝑚 𝜕2𝑐𝑚(𝑥,𝑡) 𝜕𝑥2 =−𝛽 𝜕𝑐𝑖𝑚(𝑥,𝑡) 𝜕𝑡 , (14)

wherewedefinedthecapacitycoefficient𝛽 =𝑑𝑖𝑚𝜙𝑖𝑚𝑑𝑚𝜙𝑚andthepore

velocity𝑣=𝑢𝜙𝑚.Theaveragematrixconcentrationcanbeexpressedas

alinearfunctionaloftheaveragefractureconcentration(AppendixC)

𝑐𝑖𝑚(𝑥,𝑡)= 𝑡

0 𝑑𝑡𝜑(𝑡𝑡)𝑐

𝑚(𝑥,𝑡). (15)

Thememoryfunctioniswellknown(Carreraetal.,1998),andcan beexpressedinLaplacespaceas

𝜑∗(𝜆)=tanh( √ 𝜆𝜏𝐷) √ 𝜆𝜏𝐷 , (16)

where we define the characteristic diffusion time 𝜏𝐷=𝑑𝑖𝑚2∕𝐷𝑖𝑚 in

the matrix.Combining (14) and(15), weobtain the integro-partial-differentialequation 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑡 +𝑣 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑥𝐷𝑚 𝜕2𝑐𝑚(𝑥,𝑡) 𝜕𝑥2 =−𝛽 𝜕𝜕𝑡𝑡 0 𝑑𝑡𝜑(𝑡𝑡)𝑐 𝑚(𝑥,𝑡), (17)

whichisequivalenttothemultiratemasstransfermodelofHaggertyand Gorelick(1995);Carreraetal.(1998).Inthefollowing,wedescribethe formulationofthisupscaledmodelinaLagrangianframework.

3.2. Upscaledlagrangianmodel

The upscaled Lagrangian approach models one-dimensional advective-diffusivetransportalongthefracture,whichisinterruptedby trappingeventsthatarePoissondistributed.Thismeansthattransitions from the fracturetothematrixoccur at constantrate𝛾, which can

be quantifiedbythediffusionrateover thefracturecross-section.At eachtrappingevent,aparticleistrappedforarandomtimedistributed accordingto𝜓im(t).Thesearetheprincipalingredientsoftheupscaled

transport model. In the following, we formulate this model in the TDRWframework.

One-dimensionaladvective-diffusionparticlemotionatconstant ve-locityvanddiffusioncoefficientDmisdescribedbyparticletransitions

(7)

overthefixeddistance𝓁byarandomtimetm.Theprobabilitywufor

upstreamparticlemotionis

𝑤𝑢= 𝐷𝓁𝑚2𝜏𝑣. (18)

Theprobabilityfordownstreammotionisaccordingly𝑤𝑑=1−𝑤𝑢.The

time𝜏visdefinedby 𝜏𝑣=1+𝓁∕2∕𝑣𝑃𝑒, 𝑃𝑒= 𝐷𝑣𝓁

𝑚. (19)

Thetransitiontimetmisexponentiallydistributed

𝜓𝑖𝑚(𝑡)=𝜏𝑣exp(−𝑡𝜏𝑣). (20)

These rules represent mobile transport as a TDRW model for advection-diffusionwith constantvelocity vanddiffusioncoefficient

Dm(Russianetal.,2016).Thismotioniscombinedwiththetrapping

rulesoutlinedinthefollowing.During atransitionof durationtm,nt

trappingeventsoccur,suchthatthetotaltransitiontimeisgivenby

𝑡𝑡=𝑡𝑚+ 𝑛𝑡

𝑖=1𝜏𝑖𝑚. (21)

ThenumberntoftrappingeventsisdistributedaccordingtothePoisson

distribution

𝑃(𝑛|𝑡)=(𝛾𝑡)𝑛𝑡 exp(−𝛾𝑡)

𝑛𝑡! , (22)

withmean⟨𝑛𝑡⟩ =𝛾𝑡.Thus,thetotaltransitiontimettdescribesa

com-poundPoissonprocess.ItsPDF𝜓(t)canbeexpressedinLaplacespace

as(Margolinetal.,2003;Dentzetal.,2012)

𝜓∗(𝜆)=1+ 1

𝜆𝜏𝑣+𝛾𝜏𝑣[1−𝜓𝑖𝑚∗(𝜆)]. (23)

Laplacetransformedquantitiesaremarkedbyanasterisk,theLaplace variableisdenotedby𝜆.

InordertoshowtheequivalenceofthisLagrangianformulationwith theMRMTmodel(17),wederiveinAppendixDfortheconcentration

cm(x,t)inthefracture 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑡 +𝑣 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑥𝐷𝑚 𝜕2𝑐𝑚(𝑥,𝑡) 𝜕𝑥2 =− 𝜕𝑐𝑖𝑚(𝑥,𝑡) 𝜕𝑡 . (24)

Theconcentrationcim(x,t)inthematrixisgivenby 𝑐𝑖𝑚(𝑥,𝑡)=𝛾 ∫

𝑡

0 𝑑𝑡𝜗(𝑡𝑡)𝑐

𝑚(𝑥,𝑡′), (25)

wherethememorykernelϑ(t)isdefinedby

𝜗(𝑡)=

𝑡 𝑑𝑡

𝜓

𝑖𝑚(𝑡′). (26)

Itdenotestheprobabilitythatthetrappingtimeislargerthant.Using

(25)in(24),weobtainforcm(x,t)thegoverningequation 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑡 +𝑣 𝜕𝑐𝑚(𝑥,𝑡) 𝜕𝑥𝐷𝑚 𝜕2𝑐𝑚(𝑥,𝑡) 𝜕𝑥2 =−𝛾 𝜕𝜕𝑡𝑡 0 𝑑𝑡𝜗(𝑡𝑡)𝑐 𝑚(𝑥,𝑡′). (27)

Thisequationandequation(17)areequivalentif

𝛾𝜗(𝑡)≡ 𝛽𝜑(𝑡). (28)

Wefirstrecallthat𝜑(t) isnormalizedto1,which canbeseenby

takingthelimit𝜆 → 0in(16),whiletheintegraloverϑ(t)isequalto ⟨𝜏im⟩,themeantrappingtime.Thus,weobtain

𝛾⟨𝜏𝑖𝑚⟩ =𝛽. (29)

Thisequivalenceidentifiesthetrappingrate𝛾 andtrappingtime

dis-tribution𝜓im(t)asthekeyquantitiesintheupscaledmodel.Both

quan-titiescanbeaccessedbyrandomwalkparticletrackingsimulationsas outlinedinSection(2.4).Inthefollowing,weusethisgeneral frame-workfortheupscalingoftransportintheMC10carbonatesample.

Fig.3. PDFsofthesurvivaltimě𝜓𝜏𝑠computedbyTDRW(circles)andthe expo-nentialtrend(Equation(30))correspondingtothesamemeanvalue⟨𝛾⟩ =1∕⟨𝜏𝑠 ⟩ =0.697s−1(dashedline)fordifferentPécletnumbers.Thecoloredlinesdenote

thetrappingratePDFš𝜓𝛾wheretheaverage⟨𝛾⟩ =⟨𝑛𝑡𝑚 ⟩(verticaldashedline) is0.697s−1.

3.3. CTRWupscaledmodelversusTDRWmodelresults

We tested the CTRW model by comparing the results with di-rect TDRW simulationsforthesimplest idealized2-dimensional rep-resentation of a single fracture system. The computational domain is a porousmedium (the immobiledomain) of dimension Lz=20000

× Ly=1001pixelsembeddingafracture(themobiledomain)of

aper-ture1pixel,locatedaty=500,sothattheimmobiledomaindepthon eachsideofthefractureis𝓁im=500pixels.Thepixelsizeisdenoted𝜉

asinSection2.3.

Theflowvelocityvinthefractureisconstant,theinletislocatedat

𝑧=0whereapulseinjectionisapplied(seeSection2.4)andthe out-letislocatedat𝑧=20000wherethePDFofthefirstpassagetime(or breakthroughcurve) ̌𝜓𝑡𝑡 ismonitored.Withafractureaperture𝜉,the

problemissimplycharacterizedbythePécletnumber𝑃𝑒=𝑉𝜉∕𝐷0.We

performedsimulationsforconstantdiffusivityintheimmobiledomain (𝐷𝑒(𝑥,𝑦)=𝐷)andforrandomlognormaldistributionwithDe(x,y)taken

asthespatialgeometricmeanofthepixeldiffusion.Simulationsare per-formedwith𝜉 =10−5m,𝐷

0=10−9m2· s−1,𝐷𝑒=1.774× 10−11m2· s−1

and10−12𝐷

𝑒(𝑥,𝑡)≤10−9m2· s−1forthelognormaldistributed

diffu-sionmodelinthematrix.

A mainattribute of the compound Poisson process described in

Section3.2isthatthedistributionof thesurvivaltimein themobile domain𝜏sisexponentiallydistributed:

𝜓𝜏𝑠 (𝑡)=𝛾 exp(−𝛾𝑡), (30)

where𝛾 =1∕⟨𝜏𝑠⟩.

Fig.3displaysthesurvivaltimedistribution ̌𝜓𝜏𝑠 computedfromthe

TDRWwhichiswellfittedbyanexponentialdistributionofmean⟨𝛾⟩ =n/tm⟩ =1/⟨𝜏s⟩.

Fig. 4 shows the perfect agreement between the breakthrough curves,orfirstpassagetimePDFs ̌𝜓𝑡𝑡 ,resultingfromtheupscaledCTRW

simulationsandthoseobtainedfromtheTDRWsimulations,forPe val-uesrangingfrom1to100.Theresultsaresimilarforthehomogeneous immobiledomainandfortherandomlognormaldistributionwiththe samegeometricmeandiffusion,asexpected(NœtingerandEstebenet, 2000;Russianetal.,2016).

(8)

Fig.4.Green,redandbluecirclesdenotě𝜓𝑡 𝑡,thePDFsofthefirstpassagetime

tt computedbyTDRW,forconstantDe =1.774×10−11m2· s−1inthe immo-biledomainforPe=1,10and100,respectively.Theblackcircles,thatare almostcompletelyoverlappedbytheredcircles(𝑃𝑒=10),denote ̌𝜓𝑡 𝑡for ran-domlognormalporositydistributionwithgeometricmeandiffusionequalto 1.774×10−11m2· s−1.Thegreen,redandbluedashedlinesdenotethe

equiva-lent𝜓𝑡 𝑡computedbytheCTRW.Thecurveplottedasacontinuousblacklineis thememoryfunction𝜑(t)ofslope−1∕2thatcharacterizestheimmobiledomain whiletheverticalblackdashedlineindicatesthediffusioncharacteristictime

𝑡𝑑 =𝓁𝑖𝑚 2∕(2𝐷𝑒 )=7.044×105s.(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

4. TDRWmodelingoftransportinthecarbonatesample

ThissectionconcernsdirectsimulationsperformedwiththeTDRW model,i.e.simulationsofthe3-dimensionaldomain.Simulationsare performedaccordingtothealgorithmandtheboundaryconditions de-scribedinSections2.2and2.3,respectively.Theresultspresentedin thissectionfocuson4distinctmodelsthatcharacterizetheimmobile domaindiffusivity distributionin termsof tortuosity 𝜅 and porosity

threshold𝜁 (seeTableB.1).Thesimplestmodelassumesconstant tor-tuosity𝜅=1.8andnoporositythreshold,whilethethreeotherassume

porosity-dependenttortuosity𝜅 =𝜙𝑚,withm=1.5,2.5or4.5anda

porositythreshold𝜁 =0.1.

4.1. TrappingpropertiesoftheMC10sample

Here,thetrappingcharacteristicsoftheMC10sampleareanalyzed andcomparedtotheCTRWmodeldiscussedinSection3.Werecallthat thismodelischaracterizedbythefollowingfeature:theconditionalPDF

Pn(n|tm)thatmeasuresthenumberoftrappingeventsconditionedtothe

timespentinthemobiledomainisaPoissondistributionwithaconstant trappingrate𝛾.Thismeansthatthetimespentinthemobiledomain

betweentwotrappingevents,orsurvivaltime𝜏s,ischaracterizedbyan

exponentialdistribution.ThePDF ̌𝜓𝜏𝑠 computedfortheMC10sample

andtheonecorrespondingtoEquation(30)withthesameaverage val-ues⟨𝜏s⟩aredisplayedinFig.5,whilethePDFPn(n|tm)computedfor

theMC10sampleandtheonecorrespondingtoEquation(22),where theconstanttrappingrate𝛾 =⟨𝛾⟩,aredisplayedin Fig.6. Thelatter isobtainedbycomputingthePDFof𝑛𝑡𝑚 fromEquation(22)foreach

rangeoftm.ThesurvivaltimePDF ̌𝜓𝜏𝑠 doesnotdependontheaverage

fluidvelocityinthesample,i.e.doesnotdependonthePevalue,andis controlledbythetransportpropertiesatthemobile-immobiledomains interfaceandthusiscontrolledbytheeffectivediffusionofthe immo-biledomaininthevicinityofthemobile-immobileinterface,thatisto saybythelocalporosity.Fig.5showsthatthe ̌𝜓𝜏𝑠 PDFs arevisually

identicalwhenapplyingaporositythreshold𝜁 ≤0.1ornot,

emphasiz-Fig.5. PDFsofthesurvivaltime𝜏s ,̌𝜓𝜏𝑠,fordifferentvaluesof𝜅 oralternatively

mand𝜁.Forcomparison,thecontinuouslinesdenotetheexponentialtrend

(Equation(30))correspondingtothesameaveragevalues⟨𝜏s ⟩.

ingthatthevalueoftheporositythresholddoesnotchangenoticeably thepropertiesoftheimmobiledomainatthemobile-immobileinterface noritstopology,asitisshownalsoinAppendixB.Asexpected, ̌𝜓𝜏𝑠 is

stronglyshiftedtowardlargertimevalueswhentheimmobile diffusiv-ityatthemobile-immobileinterfacedecreases.Theimportantpointis that ̌𝜓𝜏𝑠 curvesare,asageneralrule,notexponentialdistributionsand

displayanover-representationoftheshortsurvivaltimes.Weseealso largermaximumvaluescomparedtowhatispredictedbythe exponen-tialdistribution,butthisfeaturedecreaseswhenmincreases.

TheconditionalPDFPn(n|tm)resultingfromtheMC10simulationsis

comparedtotheonecomputedassumingaPoissondistribution follow-ingEq.22withaconstanttrappingrate⟨𝛾⟩ inFig.6.Theconditional PDFPn(n|tm)resultingfromtheMC10simulationsisnoticeablydifferent

fromtheonecomputedassumingaPoissondistributionwithaconstant trappingrate.Foragivenmobiletime,thetheoreticalPoissonmodel predictslesstrappingeventsthanwhatismeasuredfortheMC10 sam-ple.Thisdiscrepancyincreaseswiththevalueoftm.

Thetrappingratedistributionencompassestheinformationabout thetrappingprocesswhichis controlledbythecomplex interactions betweenthemobileandimmobiletransportprocess.Assuch,onecan expectthatthetrappingratedistributionisamacroscopicobservable thatcharacterizesthemobile-immobilemasstransfer,andinasimilar mannerthatthememoryfunctionisthemacroscopicobservablethat encipherstheentirepropertiesofimmobiledomaindiffusivetransport properties.Fig.7displaysthePDFof𝛾, ̌𝜓𝛾andreportsthepercentage

oftheparticlesthatdonotencountertrappingwhentravelingfromthe inlettotheoutletfordifferentpropertiesoftheimmobiledomain.This percentagedependsevidentlyonthevalueofthePenumberbut also onthepropertiesoftheimmobiledomain.Forinstance,itrangesfrom 1.8%to95.6%forPe=100dependingonthevalueofm.Itfollowsthat theaveragetrappingrate⟨𝛾⟩ cannotbeinferredfrom1/⟨𝜏s⟩becausethe

statisticsof𝜏sconcernonlyparticlesthatencountertrappingwhereasa

certainnumberofparticlesnevervisittheimmobiledomain.Yet, inter-estingly,theresultspresentedinFig.7showthatallthePDFs ̌𝜓𝛾have

almostthesameaveragevalue,⟨𝛾⟩ =1.51 ± 0.18s−1independently

oftheimmobiledomainproperties,whichmeansthatthisvalueisan intrinsicpropertyoftheMC10sample,probablyrelatedtothe geome-tryofthemobiledomainanditsinterfacewiththeimmobiledomain, despitethedistributions ̌𝜓𝛾beingstronglydissimilar.

Altogether,theseresultssuggestthattheassumptionssupportingthe CTRWmodelofSection3.2arenotstrictlymetforthecarbonatesample

(9)

Fig.6. Left:conditionalprobabilitylog10(Pn (n|tm )) ob-tainedfortheMC10sample.Right:conditional prob-abilitylog10(Pn (n|tm ))correspondingtothetheoretical Poissondistributioncomputedusingasinglerate⟨𝛾⟩. Blackcolorindicatesvaluesoflog10(Pn (n|tm ))smaller than–5whilecolorscalefromdarkredtowhitedenotes valuesoflog10(Pn (n|tm ))rangingfrom–5to–0.68.The greendashedlineisavisuallandmark.Resultsaregiven for𝑃𝑒=100,𝜁 =0.1and𝜅(x)=𝜙(x)1−𝑚 withm=2.5. (Forinterpretationofthereferencestocolourinthis fig-urelegend,thereaderisreferredtothewebversionof thisarticle.)

Fig.7. PDFsofthetrappingratě𝜓𝛾,where𝛾(𝑝)=𝑛(𝑝)∕𝑡𝑚 (𝑝)fordifferent proper-tiesoftheimmobiledomainanddifferentvaluesofPe.Thevaluesinparenthesis denotethepercentageofparticlesptravelingtheentiredomaininthemobile domainwithoutbeingtrappedintheimmobiledomain.Theverticalred discon-tinuouslineindicatesthemeantrappingrate⟨𝛾⟩ whichisequalto1.51 ± 0.18 forallthecurves.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

consideredhere.Takingintoaccounttheseresults,theissuethatwill beinvestigatednextistoevaluatetowhichextenttheCTRWmodelis robustenoughtomodeltransportinheterogeneousmediasuchasthe MC10sample,oralternativelywhatadditionalrelationshipbetweenthe trappingratepropertiesandthemobiledomainpropertiesarerequired toderiveareliableupscaledmodelfor complexsystemssuchasthe MC10sample.

4.2. Upscalingtheimpactofdiffusionintheimmobiledomain

Foreachtrappingevent,theparticlesthatentertheimmobile do-main at a given location can exit at another location. In the case of thesinglefracturemodelwithhomogeneousequivalentimmobile domain, therelocation distance along the linearcontinuous mobile-immobileinterfaceisasharpdistribution(welldescribedbyitsmean value0).Conversely,therelocationoftheparticlesintheMC10 sam-pleismuchlesspredictableduetothestrongheterogeneityofthe sys-teminwhich theimmobiledomainis formedof heterogeneous

clus-tersspatiallydistributed.Thisistriggeredprincipallybynon-continuous mobile-immobile interfaces (lacunar interface)and thepossibility of particlestoutilizetheimmobiledomaintotakeashortcutfromagiven flowpathtoanother.Conversely,the1-dimensionalCTRWmodel im-posesbyconstructionthatparticlesenterandexittheimmobiledomain atthesamelocationforeachtrappingevent.

Simulating such a situation while keeping the complete (3-dimensional) computation of thetransport in the mobile domain is viewedaspotentiallyinstructiveforunderstandingconjointlytheeffect oftheparticlesrelocationatthemobile-immobileinterfaceowingtothe strongheterogeneityoftheinterfaceandthestatistical representative-nessofthetrappingtimePDF ̌𝜓𝜏𝑖𝑚 formodelingtheimmobiledomain

transportpropertiesatthescaleofthesample.Tothisend,theTDRW solverismodifiedsuchthattransportinthemobiledomainandthe trap-pingprocessarekeptunchanged,butthetimespentintheimmobile domainisdrawnfromthetrappingtimePDF ̌𝜓𝜏𝑖𝑚 previouslycomputed

duringthecorrespondingTDRWsimulationinvolvingthefulldirect sim-ulationofthetransportinthemobileandtheimmobiledomain.Doing thisimposesbyconstructionthatparticlesenterandexittheimmobile domainatthesamelocationforeachtrappingeventsimilarlytothe CTRWupscaledmodel.Fromnowon,themodelinwhichthetrapping timePDFisusedtomodelthetimespentintheimmobiledomainat eachtrappingeventiscalledtheUPSCALTDRWmodelincontrastto theFULLTDRWmodel.

4.2.1. Controloftheimmobiledomaindiffusionpropertiesover mobile-immobilemasstransfer

Fig.8compilesthemaininformationconcerningtheresultsinterms offirstpassagetimett,mobiletimetm,immobiletimetimandsurvival

time𝜏sfortheFULLTDRWmodelandtheUPSCALTDRWmodel.These

dataareveryvaluableforunderstandingthecontroloftheimmobile domainpropertiesonthewayparticlessamplethesystem.The capac-ityoftheimmobiledomaintotriggershortcutsbetweenzonesofthe mobiledomainwithdifferentflowpropertiesdecreaseswhenmoving fromthe𝜅 =1.8-𝜁 =0modeltothem=2.5-𝜁 =0.1modelandm= 4.5-𝜁 =0.1modelbecause1)applyingaporositythresholddecreases

theprobabilityofhavingimmobiledomainclustersconnectedtomany poresand2)increasingthevalueofmactsasincreasingthetortuosity, i.e.theeffectivediffusiontimeintheimmobiledomain(seeTableB.1). Consequently,comparingtheresultsfortheFULLmodelwiththe UP-SCALmodelforwhichparticlesareforcedtoexittheimmobiledomain wheretheyenteredforeachofthetrappingeventsallowsnotonlyto understandthefeedbackeffectoftheparticlerelocationprocessatthe mobile-immobileinterfaceontheoveralltransportthatisquantifiedby thefirstpassagetimePDF,butalsotodecomposetheoveralltransport processintermsofthetimespentinthemobiledomainandthe immo-biledomain.

(10)

Fig.8. PDFsofthefirstpassagetimestt (̌𝜓𝑡 𝑡,plaincircles),themobiletimestm (̌𝜓𝑡 𝑚,plainlines)andtheimmobiletimestim (̌𝜓𝑡 𝑖𝑚,dashedlines)fortheFULLTDRW model(black)andtheUPSCALTDRWmodel(red).Simulationswereperformedwiththefollowingparameters:Pe=100,𝜅 =1.8and𝜁 =0,and𝜅(x)=𝜙(x)1−𝑚 with

m=2.5or4.5and𝜁 =0.1.Thegray-filledcirclesdenotethePDFsoftt forthecasewherethereisnoimmobiledomain(recallthat ̌𝜓𝑡 𝑡= ̌𝜓𝑡 𝑚inthiscase).(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Forthe𝜅 =1.8-𝜁 =0modelthefirstpassagetimePDF ̌𝜓𝑡𝑡 obtained

fortheFULLandtheUPSCALmodelarenoticeablydissimilar;their re-spectiveshapebeingfullycontrolledbytheimmobiletimedistribution forintermediateandlongtimes.Conversely,themobiletimePDFare thesamebutdifferentfromthemobiletimePDFcomputedassuming noimmobiledomain,i.e.dependingonlyonthemobiledomain proper-ties.Thisindicatesthatthetransportisstronglycontrolledbythebroad spatialredistributionoftheparticlesamongmobilezonesofdistinctly differentflowrates.Asageneralrule,onecanconcludethatthe discrep-ancybetweentheUPSCALandtheFULLmodelintermsoffirstpassage timePDF ̌𝜓𝑡𝑡 (Fig.8) originatesfromthefactthatboththetrapping

rate𝛾 andthetrappingtimeintheimmobiledomain𝜏im aredifferent

asaresultofthedistinctparticlerelocationprocesses when encoun-teringtrappingevents.Fromtheseobservations,onecanspeculatethat forthe𝜅 =1.8-𝜁 =0modeltheupscalingof suchasystemwitha

one-dimensionalmodelwhereparticlessampletheimmobiledomain accordingtotheensembleaveragestatisticsofthemobiledisplacement willfailevenifoneconsidersanon-uniquetrappingratethatwouldbe relatedtothemobiletime.

Thetwoothermodelsofimmobiledomain(m=2.5and4.5)share thesamespatialgeometry,i.e.thesameboundaries,becausetheyshare thesameporositythreshold𝜁 =0.1,butdifferfromtheeffective

dif-fusionspatialdistributionandmean.Increasingthevalueofmactsas decreasing1)themeandistanceofpenetrationoftheparticleintothe

immobiledomainand2)therelocationdistancebetweentheentrance andtheexitoftheparticleintheimmobiledomainduringeachtrapping event.Assuch,themodelcharacterizedbym=4.5isthemostsimilar tothesimplefracturemodelpresentedinSection3.3intermsof geom-etry.Indeed,theresultspresentedinFig.8form=4.5-𝜁 =0.1show

thatthefirstpassagetimePDFs ̌𝜓𝑡𝑡 arealmostsimilarfortheFULLand

theUPSCALmodels,whilethemobiletimePDFsoftm(̌𝜓𝑡𝑚 )overlapthe

PDFsoftmforthecasewherethereisnoimmobiledomain.Thismeans

thattheimmobiledomainheterogeneitydoesnotcontroltheadvective transportinthemobiledomainsimilarlytowhatoccursinthesimple fracturemodel.

Forthemodelwhereonesetsmtothevalueof2.5,whichisthemost realisticparameterization,Fig.8tellsus,followingthesame argumen-tationasforthe𝑚=4.5case,thattheimmobiledomainheterogeneity weaklycontrolsthemobiledomaintransport.

4.2.2. Onthecontrolofthemobiledomaintransportonthetrappingrate Fig.9showsthatthetrappingrate𝛾 isnotconstantbutdependson

themobiletimetm.Thefunction𝛾(t)dependsonthepropertiesofthe

immobiledomaincontrolledby𝜅 and𝜁 butalsoonthePevaluewhich

meansthatthisfunction𝛾(tm)isnotanintrinsicpropertyofthesystem,

butdependsontheflowrate.Yetweobserved,forinstanceforthe im-mobiledomaincharacterizedby𝑚=2.5and𝜉 =0.1thatthetrapping rateisactuallyconstantforvalueoftmlargerthan200s(materialized

(11)

Fig.9. 𝛾(t)versustm ,fordifferenttortuositymodelfortheimmobiledomain (with𝜁 =0.1).Grayfilledsymbolsareresultsfor𝑃𝑒=100whileredandblue

circlesareresults(forthe𝑚=2.5model)forPe=10and1000,respectively. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthisarticle.)

bytheverticaldashedlineinFig.9).Thesystembehavesasaconstant trappingrateforrangeoftmwhichincreasesasmincreases.

Fig.10compares thetheoreticalconditionalPDFPn(n|tm)

assum-ingaPoissondistributionfollowingEq.22wherethetrappingrateisa functionoftmusingthevaluesgiveninFig.9withtheconditionalPDF Pn(n|tm)resultingfromtheMC10simulations.Itcanbeseenthat

us-ingthe𝛾(tm)functionreestablishestheconsistencywiththecompound

Poissonprocessmodel(comparedtoFig.6).Thisgivesusthesound ba-sisforimplementingtheCTRWapproachpresentedinSection3.2,but implementedwiththe𝛾(tm)function,forupscalingthetransportinthe

MC10sample.

5. CTRWupscalingofMC10

Asshownabove,thedependenceofthetrappingrate𝛾 onthetime

spentbyaparticleinthemobiledomaintmisacriticalfeaturetriggered

bytheheterogeneityofthemobile-immobiledomaininterface. Accord-ingly,theproposedmodelisbasedontheimplementationofthe mobile-timedependenceofthetrappingrateintheCTRWupscalingmodelthat wasusedtomodelthetransportinthesinglefractureinSection3.2.One speculatesthatthenumberoftrappingevents𝑛𝑡𝑚 duringamobile

tran-sitionofdurationtmisPoisson-distributedinwhichthetrappingrateis

givenbythe𝛾(tm)function.Totestthisassumptionwebuildasimple

upscaledmodelinwhichthetransportprocessesismodeledbythe un-conditionaldownstreammotionofparticleswithconstantdistanceLz

andarandomtransitiontimetmdistributedaccordingtǒ𝜓𝑡𝑚 (plottedin

Fig.8).Thefirstpassagetimeforeachparticleinjectedatt=0issimilar toEquation(9)

𝑡𝑡=𝑡𝑚+ 𝑛𝑡

𝑖=1𝜏𝑖𝑚. (31)

Herethenumberoftrappingeventsntisarandomvariabledistributed

accordingtothePoissondistribution

𝑃(𝑛|𝑡𝑚)=

(⟨𝑛𝑡⟩)𝑛exp(−⟨𝑛𝑡⟩)

𝑛! , (32)

with⟨𝑛𝑡⟩ =𝑡𝑚𝛾(𝑡𝑚).Thetrappingtime𝜏imisalsoarandomvariable

dis-tributedaccordingtǒ𝜓𝜏𝑖𝑚 .TheresultsoftheupscaledCTRWmodelare

firstcomparedwiththoseobtainedwiththeUPSCALTDRWsimulations intheleftplotofFig.11.TheUPSCALTDRWsimulationsintegratethe

samerelocationprocessasintheupscaledCTRWmodel.Assuch,and becauseboththemodelssharethesamemobiletimedistribution ̌𝜓𝑡𝑚

computedassumingnoimmobiledomain,thecomparisonoftheCTRW withtheTDRWUPSCALmodelisasoundvalidationoftheapproach usedtomodelthetrappingrateandthetrappingtimeintheimmobile domain,independentlyofretro-actionoftheimmobiledomainonthe mobiledomaintimedistribution.TheresultsgiveninFig.11showthat theCTRWisperfectlyreproducingtheBTCcomputedwiththeTDRW

UPSCAL modelfordifferent propertiesof theimmobiledomain.The comparisonoftheBTCscomputedwiththeCTRWmodelusingthe mo-biletimedistribution ̌𝜓𝑡𝑚 resultingfromtheFULLTDRWmodelwith

thosecomputedwiththeTDRWaregiveninFig.11(rightplot)for dif-ferentimmobiledomainparameters,aswellasfordifferentvaluesofPe

inFig.12.Asexpected,theCTRWmodeldoesnotreproducewellthe TDRWdataforthecasewherem=1.5and𝜁 =0forwhichthe

immo-biledomainprovidesthelargestopportunityforparticletoshortcutthe mainflowstreams.Clearlythisspecificprocesscannotbetakeninto ac-countbytheLagrangianCTRWmodel.Conversely,weobserveagoodfit oftheupscaledCTRWmodelresultswiththosecomputedbythedirect TDRWsimulationsforthereferencecasewhere𝜅(x)=𝜙(x)1−𝑚withm=

2.5.Specifically,theupscaledmodelreproducesperfectlythedatafor longtimes(t≥102s)forboth𝜁 =0and0.1whilethefitatintermediate

timesisbetterforthecasewheretheporositythresholdisapplied,i.e.

𝜁 =0.1.TheabilityoftheCTRWmodeltoreproducethedirect

simu-lationsfortimesrangingoversixordersofmagnitudeandfordifferent valuesofthePenumberisshowninFig.12.Thisfigurealsodisplaysthe PDFs𝜓𝑡𝑡 computedbytheCTRWmodelassumingasingletrappingrate

value𝛾 =⟨𝛾(𝑝)⟩thusallowingustofigureoutthenoticeable improve-mentofusingthetemporallyevolving𝛾(tm)forupscalingtheBTCsat

longtimes.

6. Conclusions

Withtheobjectiveofupscalingtransportinheterogeneousmedia,a Lagrangiantransportmodelthatseparatestheprocessesoftransportin mobileandimmobiledomainsispresentedalongwithitsparticle-based CTRWimplementation.Assuminganhomogeneousimmobiledomain andacontinuous mobile-immobileinterface,masstransferoccursas acompoundPoissonprocesswithconstantmobile-immobileexchanges rate.Weshowthatthismodelisequivalenttothemultiratemasstransfer modelofHaggertyandGorelick(1995)withthemeantrappingevent numberoftheLagrangianmodelbeingequaltothecapacityratioof themultiratemasstransfermodel.Inotherwords,thetransportprocess intheLagrangianCTRWmodelischaracterizedbythemeantrapping eventnumberwhichalsodenotestheratioofthesolutemassin the immobiledomaintothatinthemobiledomainatequilibrium.Weshow thatthis1-dimensionalCTRWmodelperfectlyreproducesthedirect 2-dimensional TDRW simulationsofthe transportof soluteina linear fractureembeddedintoaporousmatrix.

However,thissimpleupscaledmodelisnotabletoreproduce accu-ratelythetrans-portinthedigitalizedcarbonatesampleMC10thatis usedtoillustratehighlyheterogeneousporousmediaforwhichwe per-formeddirect3-dimensionalTDRWsimulations.Yet,thedirect simula-tionsallowthethoroughstatisticalanalysisofthemasstransfer dynam-icswithinthetwodomainsandofthemassexchangedattheirinterface whichisspatiallydiscontinuousandheterogeneousintermsoftrapping rate.Wefoundthatthisheterogeneityofthemobile-immobileinterface, togetherwiththecomplexityoftheflowinthemobiledomaincausesa deviationfromtheCTRWmodelpresentedinSection3.2orequivalently adeviationfromtheMRMTmodel.

Forinstance,thediscrepancybetweenthecomputedsurvivaltime distributionforMC10andtheexponentialdistributioncharacterizing thesingletrappingratemodelarisesfromthenon-uniquenessof the trappingrate;𝛾 isafunctionoftm(Fig.9).Thesurvivaltime

distribu-tiondisplaysapowerlawtrendforshortsurvivaltimeswhichdenotes thesuperpositionofexponentialdistributionsof𝜏s(tm)withdistinct

(12)

av-Fig.10. Left: conditional probabilitylog10(Pn (n|tm )) obtainedfortheMC10sample.Right:conditional prob-abilitylog10(Pn (n|tm )) correspondingtothe theoreti-calPoissondistributioncomputedusing thefunction

𝛾(tm ) displayed in Fig. 9. Blackcolor indicates val-uesoflog10(Pn (n|tm ))smallerthan-5whilecolorscale fromdarkredtowhitedenotesvaluesoflog10(Pn (n|tm )) rangingfrom-5to-0.68.Thegreendashedlineisa vi-suallandmarkidenticaltoFig.6.Resultsaregivenfor

𝑃𝑒=100,𝜅(x)=𝜙(x)1−𝑚 withm=2.5and𝜁 =0.1.(For

interpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthis article.)

Fig.11. ThefigureontheleftdisplaysthecomparisonofPDFsofthetotaltt ̌𝜓𝑡 𝑡computedbytheTDRWfortheUPSCALmodelwith𝜓𝑡 𝑡 thetotaltimePDFs resultingfromtheCTRWusingasinputthemobiletimePDFs ̌𝜓𝑡 𝑚computedbytheTDRWmodelwithoutimmobiledomain(correspondingtotheidenticalgray filledcirclecurvedisplayedinallplotsof Fig.8).ThefigureontherightdisplaysthecomparisonofPDFsofthetotaltt ̌𝜓𝑡 𝑡computedbytheTDRWfortheFULL modelwith𝜓𝑡 𝑡thetotaltimePDFsresultingfromtheCTRWusingasinputthemobiletimePDFs ̌𝜓𝑡 𝑚computedbytheFULLTDRWmodel(correspondingtothe immobile-domain-properties-dependentblacklinecurvesdisplayedinFig.8).

erage:⟨𝜏s⟩(tm)≡ 1/𝛾(tm).Conversely,theincreaseoftheoccurrenceof

largersurvivaltimescomparedtotheexponentialdistributiondenotes thelacunarityofthemobile-immobileinterface;thedistance(andthus thetime)between twotrappingeventscanbeaugmentedduetothe absenceofavailableimmobiledomaininsomepartsofthemobile do-main.

Introducingthisfunctionaldependenceofthetrappingratetothe mobiletimeallowscomplyingwithamobiletimedependentcompound Poissonprocess.Inotherwords,themasstransfersatthescaleofthe sample can be modeled as the ensemble average of residence-time-dependent masstransfersthat canindividuallybe modeled assingle rateprocesses.

The comparison of the upscaled model against the direct 3-dimensional TDRWfordifferent assumedproperties of theimmobile domainanddifferentvaluesofthePécletnumberpermitstoprovethe efficiencyofthemodeltoreproducethecomplexmasstransfersinthe twodomainsandattheirinterface,aslongasthespreadingofsolute duetotheimmobiledomaindoesnotreachalevelwhereitproduces astrongdecorrelationof thevelocityexperiencedbytheparticlesin themobiledomain.Thissituationoccurswhenimmobiledomain

clus-tersallowshort-cutconnectionsbetweenzonesofthemobiledomain displayingdistinctlydifferentflowrates.Fortunately,thissituationis quiteunlikelyinreservoirrockssincethediffusivityintheimmobile domainisgenerallydecreasingfromthemobile-immobileinterface en-suringtogetherwiththepresenceofnon-diffusingzonesacertain insu-lationbetweenadjacentflowingporenetworks.

Thefinalconclusionofthisstudyisthattheproposedupscaled La-grangiantransportmodelprovidesanaccuratedescriptionof the ob-servednon-Fickianbreakthroughcurvesinheterogeneousdual-porosity media,evenwhentheyaredisplayingbroaddistributionsofflow veloc-ityvaluesandhighlyheterogeneousimmobilezones,suchasthe carbon-ateexamplestudiedhere.Thismodelisadualmultiratemasstransfer model(DMRMT),inwhichthemultipleratesoftrappingarisefromboth theheterogeneityofthediffusioninimmobiledomainandthe hetero-geneityoftheflowinthemobiledomain.

Acknowledgments

PG andDRacknowledge fundingfrom theCNRSIEAthrough the projectCROSSCALE(ex-PICSn\260280090).MDandAPacknowledge

Figure

Fig. 1. Porosity map of a slice normal to the main flow direction z positioned at
Fig. 2. Left: normalized fluid Eulerian velocity PDF in the direction of the main flow
Fig. 3. PDFs of the survival time ̌
Fig. 4. Green, red and blue circles denote ̌
+7

Références

Documents relatifs

We show that these vectorial exponential functions can achieve high order convergence with a significant gain in term of the number of basis functions compare to more

Keywords: railway substructure; physical model; cyclic loading; pore water pressure; interlayer creation; 37..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

On the other hand, if the transformation tool maintains a link relating each port to a port in a target model, then a property like the correctness of a Goto-From removal can

The comparison of experimental results of infiltration (dynamics images and mass data) and modeling could improve our comprehension of preferential flow phenomenon and allow a

c) the estimated overall AM-PM of the corresponding LMBA. In red and blue the curves corresponding to the peak output power and maximum back-off efficiency respectivelly. 121

1 Q Contribution des eaux souterraines aux débits et à la qualité des eaux de surface : exemple de la Garonne de ses sources à la confluence du Tam.. Caractérisation

De nombreuses configurations ont donc été testées sur la surface (monodentate, bidentate) pour les deux types de complexes possibles : tétraédrique et octaédrique. Le taux de