• Aucun résultat trouvé

Groundwater resources of the Pyrenees in the global change context -The PIRAGUA Project

N/A
N/A
Protected

Academic year: 2021

Partager "Groundwater resources of the Pyrenees in the global change context -The PIRAGUA Project"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-02287336

https://hal-brgm.archives-ouvertes.fr/hal-02287336

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Groundwater resources of the Pyrenees in the global

change context -The PIRAGUA Project

Santiago Beguería, Javier Luis, Jorge Lambán, Benoît Dewandel,

Jean-François Desprats, Ane Zabaleta, Iñaki Antigüedad, Yvan Caballero,

Sandra Lanini, Pierre Le Cointe, et al.

To cite this version:

Santiago Beguería, Javier Luis, Jorge Lambán, Benoît Dewandel, Jean-François Desprats, et al.. Groundwater resources of the Pyrenees in the global change context -The PIRAGUA Project. 46th IAN Congress Malaga - IAH 2019, Sep 2019, Malaga, France. 2019. �hal-02287336�

(2)

Present and future potential groundwater

recharge from precipitations over France

Yvan Caballero

1

, Sandra Lanini

1

, Pierre Le Cointe

2

, Sandra Beranger

2

,

L. Arnaud

3

, Stéphanie Pinson

3

, Jeremy Lechevalier

1

(1) BRGM French Geological Survey, Montpellier (France)

(2) BRGM French Geological Survey, Toulouse (France)

(3) BRGM French Geological Survey, Orléans (France)

(3)

>2

Future groundwater resource?

Renewable groundwater resource: Potential

groundwater recharge by precipitation

(infiltration of effective precipitation)

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

Projected impacts of

Climate Change?

Future T° and Precip°

(4)

>3

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

From effective precipitation  Potential recharge

Effective Rainfall Infiltration ratio

(5)

Effective precipitation computation

>4

(6)

>5

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

WBM Effective precipitation (2010)

Effective precipitation computation quality

Reference: Surfex (2010)

Soil Vegetation Transfer Scheme

(Masson et al., 2013)

Effective precipitation (mm)

Difference

Surfex

– WBM Eff Precip

(7)

>

Effective precipitation infiltration ratio? (EPIR)

IDPR V2017 Map

(Mardhel et al., 2004)

Potential recharge

by precipitation

EPIR?

Mean yearly effective precipitation

(1981 – 2010)

3 WBM mean

(8)

>

V2017: New data:

DEM 20 m (BD ALTI V2 IGN©)

Hydrographic Network (BD TOPO IGN©)

IDPR V2017 concept

(9)

From effective precipitation  Potential recharge

>

IDPR / Base Flow Index (BFI)  EPIR

BFI computation over 350 river basins

Wallingford method

(Gustard et al., 1992)

At yearly scale:

o

« Natural » river basin

o

No lateral nor vertical groundwater flux

o

Negligible stock variation

Recharge ~ base flow / Eff. Precip° ~ total discharge

(10)

>9

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

From effective precipitation  Potential recharge

y = -0,0005x + 1,0797 R² = 0,762 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 0 500 1000 1500 2000 BF I Wa lli n gf o rd IDPR

Sedimentary rocks

0 0,5 1 0 500 1000 1500 2000 BF I Wa lli n gf o rd IDPR

Karstic systems

0,00 0,50 1,00 0 500 1000 1500 2000 BF I Wa lli n gf o rd IDPR

Hard rocks

0 0,5 1 0 500 1000 1500 2000 BF I W allin gf o rd IDPR

Folded rocks

EPIR = 55%

EPIR = 65%

EPIR = 55%

(11)

>10

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

From effective precipitation  Potential recharge

EPIR

X

(12)

Climate projections  Future effective precipitation

RCP Scenarios 2.6 (optimist) and 8.5 (pessimist)

5 GCMs:

(NCAR CSM1, CanESM2, NorESM1, IPSL, CNRM-CM3)

2 downscaling methods: (

DSCLIM / DAYON

)

Future potential recharge?

downscaling

DESCLIM

(Pagé et al., 2010)

Analogs

(Dayon, 2016)

SAFRAN grid (8x8 km)

(13)

>12

46thIAH 2019 Congress - Malaga, 22 – 27 September 2019

(14)

Towards a decreasing of the potential recharge by

precipitations over France

Method for large scale potential recharge estimation  to be assessed

Probable decrease of the effective precipitations over France, with

regional differences to be assessed (higher impacts in the northern

regions at short term…)

Necessary uncertainties assessment at the different levels of the

computation and comparison of future / present variability

(15)

>14

References cited

Gustard A., A. Bullock and J. M. Dixon (1992), Low flow estimation in the United Kingdom, Report n°108, Institute of Hydrology, ISBN 0 948540 45 1

Dayon G. (2015) Evolution du cycle hydrologique continental en France au cours des prochaines décennies. Thèse de doctorat de l’Université Toulouse 3 Paul Sabatier.

Mardhel, V., Frantar P., Uhan J. and Miso A. (2004). Index of development and persistence of the river networks as a component of regional groundwater vulnerability assessment in Slovenia. International conference on groundwater vulnerability assessment and mapping, Ustron, Poland, 15-18 June 2004

Masson, V., P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P.

Brousseau, E. Brun, J. -. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A. -. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J. -. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet and A. Voldoire (2013), The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , Geosci. Model Dev., 6(4), 929-960, doi:10.5194/gmd-6-929-2013 Pagé, C., L. Terray et J. Boé, (2009) Dsclim: A software package to downscale climate scenarios at regional scale using a

weather-typing based statistical methodology. Technical Report TR/CMGC/09/21, SUC au CERFACS, URA CERFACS/CNRS No1875, Toulouse, France

Scanlon, B. R., K. E. Keese, A. L. Flint, L. E. Flint, C. B. Gaye, W. M. Edmunds and I. Simmers (2006), Global synthesis of groundwater recharge in semiarid and arid regions, Hydrol.Process., 20(15), 3335-3370, doi:10.1002/hyp.6335

Références

Documents relatifs

The framework includes soil (organic C (carbon), C sequestration, water ero- sion, structure, stability, water holding capacity, fertility, microbial and invertebrate func-

Left: source plane model (centre left) the reconstructed image in the lens plane with the lensing galaxies G1 and G2 subtracted, (centre right) observed data linearly scaled between

Wenink then gave an account of his recent studies of the development of the ventricular septum, introducing the concept of a primary muscular septum subsequently joined by inlet

In this paper, we examine how specific extrinsic and intrinsic drivers that operate across multiple scales of organization (global, individual, molecular) modulate mechanisms

It shows various characteristic groundwater environments in their areal extent: blue colour is used for large and rather uniform groundwater basins (aquifers and aquifer systems

• The mission of the Trans-Tisza Region Environmental and Water Directorate in the scope of the WFD is the prevention of aquatic ecosystems deterioration, long-term protection

„ 65% of drinking water demand is exploitated from sensitive or vulnerable groundwater sources and resources.. „ Over 500 public waterworks have obtained drinking water from

While the world was alerted about the limits of resources 45 years ago (Meadows et al., 1972), sustainable development became an objective 30 years ago (Brundtland, 1987), the