• Aucun résultat trouvé

Planar Dimer Tilings

N/A
N/A
Protected

Academic year: 2022

Partager "Planar Dimer Tilings"

Copied!
51
0
0

Texte intégral

(1)

O. Bodini T. Fernique

LIRMM (Montpellier, France)

CSR’06, June 8–12, 2006

O. Bodini, T. Fernique Planar Dimer Tilings

(2)

Domino and lozenge tilings espacially studied (statistical physics).

O. Bodini, T. Fernique Planar Dimer Tilings

(3)

Domino and lozenge tilings espacially studied (statistical physics).

O. Bodini, T. Fernique Planar Dimer Tilings

(4)

Domino and lozenge tilings espacially studied (statistical physics).

O. Bodini, T. Fernique Planar Dimer Tilings

(5)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(6)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(7)

Triangular cells ↔ directed graph:

O. Bodini, T. Fernique Planar Dimer Tilings

(8)

Dimer (lozenge) tiling ↔ weighted edges (black: 1, red: −2):

Note: directed closed paths have weight 0.

O. Bodini, T. Fernique Planar Dimer Tilings

(9)

Weighted edges (black: 1, red: −2) ↔ heights of vertices:

0 1 2 3 2

3 2

3 2 1

2 1 1

0

1 2

3

O. Bodini, T. Fernique Planar Dimer Tilings

(10)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(11)

Proposition

A vertex of maximum height locally enforces weights:

incoming edges have positive weights (black edges) outcoming edges have negative weights (red edges)

O. Bodini, T. Fernique Planar Dimer Tilings

(12)

proposition

A tileable domain admits a tiling whose vertices of max. height are on the boundary.

proof: flip:

2 1

2 1 1

2 3

O. Bodini, T. Fernique Planar Dimer Tilings

(13)

proposition

A tileable domain admits a tiling whose vertices of max. height are on the boundary.

proof: flip:

2 1

2 1 1

2 0

O. Bodini, T. Fernique Planar Dimer Tilings

(14)

O. Bodini, T. Fernique Planar Dimer Tilings

(15)

0 1

2 3

2

3 2

3 2 1

2 1

O. Bodini, T. Fernique Planar Dimer Tilings

(16)

0 1

2 3

2

3 2

3 2 1

2 1

O. Bodini, T. Fernique Planar Dimer Tilings

(17)

0 1

2 3

2

3 2

3 2 1

2 1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(18)

0 1

2 2

3 2

3 2 1

2 1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(19)

0 1

2 2

3 2 1

2 1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(20)

0 1

2 2

2 1

2 1 1

1

O. Bodini, T. Fernique Planar Dimer Tilings

(21)

0 1

2 2

2 1

1 1

1 0

O. Bodini, T. Fernique Planar Dimer Tilings

(22)

0 1

2 2

1 1

1 0

O. Bodini, T. Fernique Planar Dimer Tilings

(23)

0 1

2

1 1

1 0

0

O. Bodini, T. Fernique Planar Dimer Tilings

(24)

0 1

1

1 0

0

O. Bodini, T. Fernique Planar Dimer Tilings

(25)

0 1

1 0

0 −1

O. Bodini, T. Fernique Planar Dimer Tilings

(26)

0 1 0

−1

O. Bodini, T. Fernique Planar Dimer Tilings

(27)

O. Bodini, T. Fernique Planar Dimer Tilings

(28)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(29)

Intuitively:

lozenge tilings: constrained enough for deriving the whole from the boundary

dimer tilings: holes/irregularities can “hide” information to the boundary

O. Bodini, T. Fernique Planar Dimer Tilings

(30)

Consider a set of polygonal cells

O. Bodini, T. Fernique Planar Dimer Tilings

(31)

Suppose it is bipartite gears-like orientation of cells

O. Bodini, T. Fernique Planar Dimer Tilings

(32)

This allows to define a directed graph.

O. Bodini, T. Fernique Planar Dimer Tilings

(33)

1 1

1

1

1 1

1 1

0

0

0

0 0

0

0 0

0 0

0 0

Binary counter: 0-1 weight function δ s.t. δ(cell ) = 1

O. Bodini, T. Fernique Planar Dimer Tilings

(34)

Trival bijection with dimer tilings.

O. Bodini, T. Fernique Planar Dimer Tilings

(35)

v*

1 1

1

1

1 1

1 1

0

0

0

0 0

0

0 0

0 0

0 0

0

Height function: h δ : v 7→ min{δ(p) | p : v v}, for a fixed v .

O. Bodini, T. Fernique Planar Dimer Tilings

(36)

But heights do not more locally enforce weights!

O. Bodini, T. Fernique Planar Dimer Tilings

(37)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(38)

2 0

0

1

0 1 1 0

−1 −1

0 2

−1 1 1

0 1 0

0 1

0

Counter: real weight function ψ s.t. ψ(cell ) = 1.

O. Bodini, T. Fernique Planar Dimer Tilings

(39)

Proposition

One can compute a counter in linear time (using a spanning tree).

Theorem

If ψ is a counter, then one defines a binary counter by:

δ : (v , v 0 ) 7→ ψ(v, v 0 ) − (h ψ (v 0 ) − h ψ (v )).

O. Bodini, T. Fernique Planar Dimer Tilings

(40)

Proposition

One can compute a counter in linear time (using a spanning tree).

Theorem

If ψ is a counter, then one defines a binary counter by:

δ : (v , v 0 ) 7→ ψ(v, v 0 ) − (h ψ (v 0 ) − h ψ (v )).

O. Bodini, T. Fernique Planar Dimer Tilings

(41)

Algorithm

1

construct a counter ψ in time O(n);

2

compute h ψ in time O(n ln 3 n) (SSSP for a planar graph);

3

derive a binary counter in time O(n).

O. Bodini, T. Fernique Planar Dimer Tilings

(42)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(43)

Lozenge tilings of simply connected domains are connected by flips.

Which notion of flip for general dimer tilings?

O. Bodini, T. Fernique Planar Dimer Tilings

(44)

Lozenge tilings of simply connected domains are connected by flips.

Which notion of flip for general dimer tilings?

O. Bodini, T. Fernique Planar Dimer Tilings

(45)

Lozenge tilings of simply connected domains are connected by flips.

Which notion of flip for general dimer tilings?

O. Bodini, T. Fernique Planar Dimer Tilings

(46)

In terms of binary counter:

1

1 1

1 1

1

1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(47)

In terms of binary counter:

1

1 1

1 1

1

1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(48)

In terms of binary counter:

1 1 1

1 1

1

1 1

O. Bodini, T. Fernique Planar Dimer Tilings

(49)

Definition (Flip)

Let A be vertices strongly connected by edges of weight 0 and s.t.

all its incoming edges have weight 0;

all its outcoming edges have weight 1.

Then, a flip on A exchanges these weights (0 ↔ 1).

O. Bodini, T. Fernique Planar Dimer Tilings

(50)

1 The Thurston’s algorithm (lozenge tilings) Weights, heights and flips

Thin out a simply connected domain

2 The general case

Binary counters and heights Relaxation: real counters

3 Structure of the set of tilings Generalized flips

A distributive lattice

O. Bodini, T. Fernique Planar Dimer Tilings

(51)

O. Bodini, T. Fernique Planar Dimer Tilings

Références

Documents relatifs

If a tileset can produce tilings with arbitrarily large periods then it has a model verifying any finite set of such formulae, thus by compactness it has a model that verifies all

Performing a flip on such a hexagon decreases the area of the island (hence the volume of the tiling) and decreases the number of errors by 2(k − 3), where k is the number of

The following results show that substitution tilings with statistical circular symmetry have a diffraction measure which is of (perfect) circular symmetry.. Then the autocorrelation γ

Coordina- tion numbers, in turn, count the vertices on coordination shells of a vertex, defined via the graph distance given by the tiling.. For the Ammann-Beenker tiling, we find

Assigning the critical weight function to edges of their dual graphs, we deduce that triangular quadri-tilings of Q correspond to two superimposed isoradial dimer

Alternative: first allow mismatches to facilitate self-assembly, then perform random locally-defined

Decorations can be encoded by “fluctuations” at the cost of an increase of 1 in the thickness, but the rules are no more natural. Natural undecorated

There exist deficient pairs of tilings of the unitary 12-gone, which yields that this is also true for every 2n-gone, fo n ≥ 6. It is possible, using a computer, to find every