• Aucun résultat trouvé

Integral Points on Certain Elliptic Curves

N/A
N/A
Protected

Academic year: 2022

Partager "Integral Points on Certain Elliptic Curves"

Copied!
20
0
0

Texte intégral

(1)

Integral Points on Certain Elliptic Curves.

HUILINZHU(*) - JIANHUACHEN(**)

ABSTRACT- By using algebraic number theory method and p-adic analysis method, we find all integral points on certain elliptic curves

y2ˆ(x‡a)(x2‡bx‡c); a;b;c2Z; b2<4c:

Furthermore, we can find all integer solutions of certain hyperelliptic equations Dy2ˆAx4‡Bx2‡C; B2<4AC:

As a particular example, we give a complete solution of the equation which was proposed by Zagier

y2ˆx3 9x‡28

by this method. In Appendix I and Appendix II, we give the computational method of finding the fundamental unit and factorizing quadratic algebraic number in the subring of a totally complex quartic field, respectively.

1. Introduction.

A. Baker [1] developed a method based on linear forms in the loga- rithms of algebraic numbers, so as to derive an upper bound for the so- lutions of certain Diophantine equations including elliptic curve. Un- fortunately, this upper bound is too large and sometimes beyond the range of computer searching.

Recent results on elliptic logarithm methods [2] [3] [4] have allowed the determination of integral points on certain elliptic curves rank as big as 8, but in order to apply it we need the generators of infinite order of the

(*) Indirizzo dell'A.: School of Mathematical Sciences, Xiamen University, Fujian 361005, China.

E-mail: huilin9200@yahoo.com

(**) Indirizzo dell'A.: School of Mathematics and Statistics, Wuhan Univer- sity, Wuhan 430072, P.R. China.

E-mail: chenjh_ecc@163.com

The project is supported by the National Natural Science Foundation of China (2001AA141010).

(2)

Mordell-Weil group and the torsion group of the elliptic curve, and the rank should not be too high and the canonical heights of the generators should not be too large either. Mathematicians are asking for simpler method. In this paper, we use an elementary method containing algebraic number theory and p-adic analysis to find all integral points on certain elliptic curves.

In section 2, by this method, we find all integral points (x;y)ˆ( 4;0), ( 1;6); (9;26);(764396;668309460) of the equation proposed by Zagier [5]

y2ˆx3 9x‡28:

(1:1)

In section 3, we find all integral points on a class of elliptic curves y2ˆ(x‡a)(x2‡bx‡c); a;b;c2Z;

(1:2)

where the discriminant of x2‡bx‡c; denote as D; satisfies Dˆb2 4c<0. Furthermore, we can find all integer solutions of certain hyperelliptic Diophantine equations

Dy2ˆAx4‡Bx2‡C; B2<4AC:

(1:3)

In section 4, we discuss other cases of equation (1.2) where the dis- criminantD0.

In Appendix I and Appendix II, we give the computational method of finding the fundamental unit and factorizing quadratic algebraic number in the subring of a totally complex quartic field, respectively.

2. Proof of Main Theorem.

THEOREM 1. All integral points of the elliptic curve (1.1) are (x;y)ˆ( 4;0);( 1;6);(9;26);(764396;668309460):

PROOF.

y2ˆx3 9x‡28ˆ(x‡4)(x2 4x‡7):

Putzˆx‡4, then we have

x2 4x‡7ˆ(x‡4)2 12(x‡4)‡39ˆz2 12z‡39:

Let dˆgcd (z;z2 12z‡39), it is easy to obtain dj39. Because

(3)

Dˆ 12<0, we get

zˆdu2

z2 12z‡39ˆdv2; (

(2:1)

wheredˆ1;3;13;39; gcd (u;v)ˆ1.

When dˆ1; (z 6)2‡3ˆv2; [v (u2 6)][v‡(u2 6)]ˆ3; it is easy to show that there is no solution in rational integeru;v. So equation (2.1) is equivalent to the following three equations

zˆ3u2

z2 12z‡39ˆ3v2; (

(2:2)

zˆ13u2

z2 12z‡39ˆ13v2 (

(2:3) and

zˆ39u2

z2 12z‡39ˆ39v2: (

(2:4)

In the following, we will discuss the three cases, separately.

CASE1: We solve equation (2.2). Reducing mod4 to (2.2), we can get that vis even anduis odd. Putvˆ2v0, hence we can write (2.2) as

zˆ3u2

z2 12z‡39ˆ3(2v0)2: (

Thus we have

(3u2 6)2‡3ˆ3(2v0)2:

We use algebraic number theory method to factor the equation above(see [6][7][8][9]). In the quadratic algebraic fieldQ( 

p 3

), we have h(3u2 6)‡ 

p 3ih

(3u2 6) 

p 3i

ˆ ( 

p 3

)2(2AA0)2;

where A;A0 are two algebraic integers in the quadratic algebraic field Q( 

p 3

) andv0ˆAA0. The class number ofQ( 

p 3

) is one and we get (3u2 6) 

p 3

ˆ 

p 3

wn(2A2);

(2:5)

(4)

wherewˆ 1‡ 

p 3

2 is a root of unity inQ( 

p 3

) andw3ˆ1,nˆ0;1 or 2:

From (2.5), we obtain

(3u)2 6 

p 3

wnA2ˆ183 

p 3

; (3u)22 

p 3

wn( 

p 3

A)2ˆ183 

p 3 : PutA1ˆ 

p 3

A, then we have (3u)2 2 

p 3

wnA21ˆ18 3 

p 3

; (2:6)

or

(3u)2‡2 

p 3

wnA21ˆ18 3 

p 3 : (2:7)

CASE1.1: First, we solve equation (2.6). We write equation (2.6) as (3u)2 2 

p 3

A22ˆ183 

p 3

ˆ15 6wor 21‡6w;

(2:8)

whereA22ˆA21wn, 

p 3

ˆ2w‡1.

Putuˆ 

2 

p 3

p ;u is an algebraic integer in a totally complex quartic field and satisfies u2ˆ2 

p 3

ˆ2‡4w. Define the subring Rˆ

ˆZ[1;u;w;uw]:

For simplicity, we denoteaˆa‡bu‡cw‡duwasaˆ(a;b;c;d) and denote the conjugates ofaas the following:

a ˆa bu‡cw duwˆ(a; b;c; d);

a0ˆa‡bu0‡cw2‡du0w2; a0 ˆa bu0‡cw2 du0w2; where u0ˆ 

2 

p 3

p is the complex conjugate of u. And we denote the coefficients of a as aˆ(a)0;bˆ(a)1;cˆ(a)2;dˆ(a)3: Denote by jzj the complex absolute value of the complex number z and denote kak ˆmax (jaj;ja j;ja0j;ja0 j) as the greatest absolute value ofa;a ;a0and a0.

Because u is an algebraic number in a totally complex quartic field, according to Dirichlet's unit theorem, there is only one independent fun- damental unit inQ(u). By direct computation, the fundamental unit inR (Appendix I) is

eˆ1‡2u‡4w‡2uw:

From (2.8), we get

(3u‡uA2)(3u uA2)ˆ15 6wor 21‡6w:

(5)

Thus we have

3u‡uA2ˆ aekwt; u;k;t2Z;tˆ0;1;2:

(2:9)

If algebraic number j in the fieldQ(u) hasjˆaa0ˆbb0 and bˆae, whereeis the unit in the field Q(u), we callaandb as relevant factors.

Otherwise, we call a;a0;b and b0 as irrelevant factors. By computation (Appendix II), the irrelevant factors of 15 6wand 21‡6ware:

a1 ˆ(3;2;0;1); a1 ˆ(3; 2;0; 1);

a2ˆ(9;4;6; 1); a2 ˆ(9; 4;6; 1):

Now we usep-adic analysis method[10] to solve (2.9). From (2.9), we get

3u uA2ˆ a ekwt; u;k;t2Z;tˆ0;1;2:

(2:10)

(2:9)(2:10), sinceee ˆ1;(3u)2 u2A22ˆ(a2a2 )(ee )kv2t;we gettˆ0.

BecauseA22Q( 

p 3

);we putA2ˆb‡dw; b;d2Z, then we have (3u‡uA2)2ˆ( aek)2ˆ0:

It is the main reason that we take p-adic analysis to solve equations (2.6). To take p-adic analysis, we need to find the primepfrom the prime factors of gcd ((ek)1;(ek)2;(ek)3). Here we choosepˆ109 to take p-adic analysis.

Ifaˆa2 ora2 ,

ee ˆ1; (3u)2 u2A22ˆ(a2a2 )(ee )k ˆa2a2 ˆ (21‡6w);

it leads to contradiction, soaˆa1 ora1 : By direct computation,

e6ˆ( 40223; 45604; 89232; 35828) 1(mod 13);

(a1e)2 1(mod 13); (a1e2)2 1(mod 13); (a1e3)2 6(mod 13);

(a1e4)24(mod 13); (a1e5)21(mod 13):

So we assumekˆ6m;writekˆ108n‡s;0s107;where actually sˆ0;6;12;18;24;30;36;42;48;54;60;66;72;78;84;90;96;102:

By direct computation, we know that onlysˆ0 meets (a1es)20(mod 109):

In the following, we will prove equation (1.1) has the solutions (x;y)ˆ

ˆ( 1;6) whensˆ0.

(6)

Put 109rkn:Because

e108(1;9374;0;8720)(mod 11881ˆ1092);

denote

e108ˆ1‡109(0;86;0;80)‡1092h:

a1e108nˆa1(1‡109((0;86;0;80)‡109h))nˆa1(1‡109n((0;86;0;80)‡109h)‡ );

0(a1e108n)2 (a1)2‡109n(a1(0;86;0;80))2(mod 109r‡2);

a1(0;86;0;80)ˆ( 480;258;36;240); 109y36;

we getnˆ0;uˆ 1;(x;y)ˆ( 1;6): Similarly, we deal withaˆa1 and get (x;y)ˆ( 1;6):

CASE 1.2: Second, we solve equation (2.7). Let uˆ 

2 

p 3

p , wˆ

ˆ 1‡ 

p 3

2 ,RˆZ[1;u;w;uw], we haveu2ˆ 2 4w:We use the similar method above and get

3u‡uA2ˆ aekwt; u;k;t2Z:

By computation, the fundamental unit inRis eˆ(3;0;4;2);

the irrelevant factors of 15 6wand 21‡6winRare:

a1ˆ(3;1;0; 1); a1 ˆ(3; 1;0;1);

a2ˆ(3;1;6; 1); a2 ˆ(3; 1;6;1);

a3ˆ(3;5; 6;1); a3 ˆ(3; 5; 6; 1);

a4ˆ(3;7; 12; 1); a4 ˆ(3; 7; 12;1):

We can get tˆ0 by the same method with Case1.1. Because ee ˆ1;a2a2 ˆ (15 6w);a3a3 ˆ (15 6w); it results in contra- diction, thenaˆa1;a1 ;a4 ora4 :

Ifaˆa1,

e6ˆ(49009; 9776;89232;35828) 1(mod 13);

(a1e)2 1(mod 13); (a1e2)2 1(mod 13); (a1e3)2 6(mod 13);

(a1e4)2 4(mod 13); (a1e5)21(mod 13):

(7)

So we assumekˆ6m;writekˆ108n‡s;0s107;where actually sˆ0;6;12;18;24;30;36;42;48;54;60;66;72;78;84;90;96;102: By direct computation, we know that onlysˆ0 meets

(a1es)20(mod 109):

Put 109rkn. Because

e108(1;654;0;3161)(mod 11881ˆ1092);

denote

e108ˆ1‡109(0;6;0;29)‡1092h:

a1e108nˆa1(1‡109((0;6;0;29)‡109h))nˆa1(1‡109n((0;6;0;29)‡109h)‡ );

0(a1e108n)2(a1)2‡109n(a1(0;6;0;29))2(mod 109r‡2);

a1(0;6;0;29)ˆ(138;18; 36;87); 109y36;

we get nˆ0;uˆ 1;(x;y)ˆ( 1;6):Similarly, we deal withaˆa1

and get (x;y)ˆ( 1;6):Similarly, we deal withaˆa1 ,a4anda4 , so we get (x;y)ˆ( 1;6):

CASE2: We solve equation (2.3). By taking modula 8, we can get thatvis even anduis odd. It can be written as

[(13u2 6)‡ 

p 3

][(13u2 6) 

p 3

]ˆ( 1‡2 

p 3

)( 1 2 

p 3

)(2AA0)2: We have

(13u2 6) 

p 3

ˆ 2( 1‡2 

p 3

)wnA2; where wˆ 1‡ 

p 3

2 is a root of unity in Q( 

p 3

) and w3ˆ1;

nˆ0;1 or 2;u2Z;A;A0are two algebraic integer inZ[w] andvˆ2AA0. LetA1ˆ( 1‡2 

p 3

)A, we can get (2:11) (13u)2 2( 1 2 

p 3

)wnA21ˆ7813 

p 3

ˆ65 26wor 91‡26w;

or

(2:12) (13u)2‡2( 1 2 

p 3

)wnA21ˆ7813 

p 3

ˆ65 26wor 91‡26w:

CASE 2.1: First, we solve equation (2.11). Let A22ˆwnA21;uˆ

ˆ 

2 4 

p 3

p ;thenu2ˆ 6 8w:uis an algebraic integer in a totally complex quartic field. We define a subringRˆZ[1;u;w;uw]:

(8)

From (2.11), we get

13u‡uA2ˆ aekwt; u;k;t2Z; tˆ0;1;2:

(2:13)

By computation, the fundamental unit inRis eˆ(11;3;4;4);

the irrelevant factors of 65 26wand 91‡26winRare:

a1ˆ(13;4;0;3); a1 ˆ(13; 4;0; 3);

a2ˆ(1;4;10;1); a2 ˆ(1; 4;10; 1);

a3 ˆ(3;1;4; 3); a3 ˆ(3; 1;4; 3);

a4ˆ(1;3;10;1); a4 ˆ(1; 3;10; 1);

a5ˆ(17;3;14;7); a4 ˆ(17; 3;14; 7):

We can getuˆ 1;(x;y)ˆ(9;26) by p-adic analysis method similar to Case 1.

CASE 2.2: Second, we solve equation (2.12). Let A22ˆwtA21;uˆ

ˆ 

2‡4 

p 3

p ; then u2ˆ6‡8w: u is an algebraic integer in a totally complex quartic field. We define a ringRˆZ[1;u;w;uw]:

From (2.12), we get

13u‡uA2ˆ aekwt; u;k;t2Z; tˆ0;1;2:

(2:14)

By computation, the fundamental unit inRis eˆ(3;1;2;0);

but there are no irrelevant factors of 65 26wand 91‡26winR, so there is no solution.

CASE3: We solve equation (2.4). It can be written as [(39u2 6)‡ 

p 3

][(39u2 6) 

p 3

]ˆ( 6‡ 

p 3

)( 6 

p 3

)(AA0)2: We have

(39u2 6) 

p 3

ˆ ( 6‡ 

p 3

)wnA2; where wˆ 1‡ 

p 3

2 is a root of unity in Q( 

p 3

) and w3ˆ1;

nˆ0;1 or 2;u2Z;A;A0are two algebraic integers inZ[w] andvˆAA0:

(9)

LetA1ˆ( 6‡ 

p 3

)A, we get (2:15) (39u)2 ( 6 

p 3

)wnA21ˆ23439 

p 3

ˆ195 78wor 273‡78w;

or

(2:16) (39u)2‡( 6 

p 3

)wnA21ˆ23439 

p 3

ˆ195 78wor 273‡78w:

CASE 3.1: First, we solve (2.15). Let A22ˆwnA21; uˆ 

6 

p 3

p ;

then u2ˆ 7 2w:u is an algebraic integer in a totally complex quartic field. We define a subringRˆZ[1;u;w;uw]:

From (2.15), we get

39u‡uA2ˆ aekwt; u;k;t2Z:

(2:17)

By computation, the fundamental unit inRis eˆ(2;1; 1;1);

the irrelevant factors of 195 78wand 273‡78winRare:

a1ˆ(0;5;0; 2); a1 ˆ(0; 5;0;2);

a2ˆ(6;7;24;2); a2 ˆ(6; 7;24; 2);

a3 ˆ(9;4; 3; 1); a3 ˆ(9; 4; 3;1):

We can getuˆ0;140;so (x;y)ˆ( 4;0);(764396;668309460) by p-adic analysis method similar to Case 1.

CASE 3.2: Second, we solve equation (2.16). Let A22ˆwtA21;uˆ

ˆ 

6‡ 

p 3

p ; then u2ˆ7‡2w: u is an algebraic integer in a totally complex quatic field. We can define a ringRˆZ[1;u;w;uw]:

We get

39u‡uA2ˆ aekwt; u;k;t2Z;tˆ0;1;2:

By computation, we know that the fundamental unit inRis eˆ(5;2;3;1);

the irrelevant factors of 195 78wand 273‡78winRare:

a1 ˆ(0;5;0; 2); a1 ˆ(0; 5;0;2);

a2ˆ(6;1;24;8); a2 ˆ(6; 1;24; 8);

a3ˆ(12;5;9;7); a3 ˆ(12; 5;9; 7):

We can get there is no solution by p-adic analysis.

Theorem 1 has been proved.

(10)

3. Method Discussion.

By using algebraic number theory and p-adic analysis method, we can find all integral points on certain elliptic curves

y2ˆ(x‡a)(x2‡bx‡c); a;b;c2Z;

where the discriminant of x2‡bx‡c; denote as D; satisfies Dˆb2 4c<0. Furthermore, we can solve all integer solutions of certain hyperelliptic equations

Dy2ˆAx4‡Bx2‡C; B2<4AC:

Now we give the complete solution of equation (1.2). Putzˆx‡a;from (1.2), we get

x2‡bx‡cˆz2‡(b 2a)z‡(a2 ab‡c);

zˆdu2

z2‡(b 2a)z‡(a2 ab‡c)ˆdv2; (

(3:1)

where dˆgcd (z;z2‡(b 2a)x‡(a2 ab‡c)), so dj(a2 ab‡c). Actu- ally, whendhas a square factor, we can extract it touandv. For some cases of d, we can solve the equations by elementary method. Next we use al- gebraic number theory method and p-adic analysis method to solve all in- tegral points on certain elliptic curves (1.2).

From (3.1), we have

d2u4‡(b 2a)du2‡(a2 ab‡c)ˆdv2: It can be written as the form of equation (1.3)

Dy2ˆAx4‡Bx2‡C; B2<4AC;

whereuˆx;vˆy;Aˆd2;Bˆ(b 2a)d;Cˆa2 ab‡c;Dˆd:

Equation (1.3) can be written as

D1y2ˆx41‡B1x21‡C1; (3:2)

whereD1ˆA3D;B1ˆAB;C1ˆA3C;x1ˆAxandB21<4C1. So we have 4D1y2ˆ(2x21‡B1)2‡(4C1 B21):

Letf ˆ4C1 B21ˆlg2>0 (lis square-free positive integer), we have 4D1y2ˆ(2x21‡B1)2‡lg2:

(3:3)

(11)

We factorize equation (3.3) in complex quadratic fieldQ(pg) to get (2x21‡B1‡lpg)ˆ(KLM2);

(3:4)

where K is the common divisor of ideals (2x21‡B1‡lpg) and (2x21‡B1 lpg),Lis the ideal factorization of 4D1andN(L)ˆ4D1.

We suppose the ideal classes inQ(pg) areI1;I2; ;Ihand their re- presentatives areJ1;J2; ;Jh:There is no loss of generality by assuming thatKLI11;MI21. From (3.4), we have

J1J22(2x21‡B1‡lpg)ˆJ1KL(J2M)2: (3:5)

Since J1KL and J2M are principle ideals, J1J22 is a principle ideal. Let J1KLˆS1;J2MˆS2;J1J22ˆS3, we have

S3(2x21‡B1‡lpg)ˆS1S22: (3:6)

Suppose the conjugation ofS3isS03, andS3S03ˆa. From (3.6), we get 2ax21‡B2ˆS0S22;

(3:7)

whereB2ˆa(B1‡lpg);S0ˆS1S032Q(pg) is an algebraic number in Q(pg). From (3.7), we obtain

2ax21 S0S22ˆ B2; (2ax1)2 2aS0S22ˆ 2aB2: (3:8)

REMARK1. As long as 2aS0in (3.8) has a square factorb2Q(pg), we putu2ˆ2aS0

b2 ;S02ˆbS2. Define the subringRˆZ[1;u;w;uw]:u is an al- gebraic integer in a totally complex quartic field. We choose the basis 1;u;w;uwin order thatkukandkekin the subringRis by far least andp which we choose to take p-adic analysis is the smallest possible.

From (3.8), we have

2ax1‡uS02ˆ wteka;

(3:9)

wherewis a root of unity,eis a fundamental unit in the subringR,ais an irrelevant factor of 2aB2 in Q(u)(the irrelevant factors a of 2aB2 are finite).

SinceS22Q(pg), we putS02ˆb‡du2; b;d2Z. From (3.9), we get 2ax1‡bu‡du3ˆ wteka:

(3:10)

From (3.10), we have

2ax1 bu du3ˆ wteka : (3:11)

(12)

(3:10)(3:11), we gettˆ0:The coefficient ofu2is 0 in the left of (3.10), so (2ax1‡bu‡du3)2ˆ(eka)2ˆ0:

(3:12)

From equation (3.12), we know there must be another equation corre- sponding to the unknownk. Finally we solve it directly by p-adic analysis method.

In [11][12], Ljunggren and Tzanakis proved that solving equation (1.3) is equivalent to solve the integer solutions of a class of quartic Thue equation

p(x;y)ˆAx4‡Bx3y‡Cx2y2‡Dxy3‡Ey4ˆ m;

wherep(x;1)ˆ0 has two real roots and a couple of complex roots. Suppose u is a root of p(x;1)ˆ0, then by Dirichlet's unit theorem there are two independent fundamental units e1;e2 in Q(u). It is complicate to compute them. In [6], Ljunggren's method need compute a relative unit in a quartic field. Obviously, their methods are not easy.

REMARK2. It is necessary to point out that the method works theo- retically. Our computations involved can be carried out successfully but in very exceptional cases. The first point is that there is no control on the size and the computation time of the fundamental unite, even though we find a properuin order thatRˆZ[1;u;w;uw] is a domain. The second point, is that computing a set of representative of ideal class group of an imaginary field can take a lot of time. That is to say, we can not multiply the examples at will. But in fact, many equations can be solved by this method. We compute all integral points on another elliptic curve which Don.Zagier proposed

y2ˆx3 30x‡133 (3:13)

are: (x;y)ˆ( 7;0);( 3;4);(2;9);(6;13);(5143326;116644498677).

Many famous problems are the examples of equation (3.2), for ex- ample[13][2][14]:

x(x 1)

2 2

ˆy(y 1)

2 ;

(3:14)

6y2ˆx3‡5x‡6ˆ(x‡1)(x2 x‡6);

(3:15)

31y2ˆx3 1;

(3:16)

y2ˆ(x‡337)(x2‡3372):

(3:17)

(13)

4. Other Cases' Discussion.

When the discriminant Dˆb2 4cˆ0 in equation (1.2), we have cˆb2

4, thenb is even andc is a square number. Let bˆ2l; l2Z, then cˆl2, so

y2ˆ(x‡a)(x2‡2lx‡l2)ˆ(x‡a)(x‡l)2: (4:1)

Sox‡ais a square number. Putx‡aˆm2;m2Z, then we get y2ˆm2(x‡l)2:

(4:2)

Thus we get the solution

xˆm2 a2

yˆ m(m2 a‡l): (

(4:3)

When the discriminant Dˆb2 4c>0 in equation (1.2), we have c<b2

4, then x2‡bx‡cˆ0 has two different real roots x1 and x2. Especially when Dˆb2 4cˆn2; n2N, we have x1ˆ b n

2 and

x2ˆ b‡n

2 . Hence equation (1.2) can be written as y2ˆ(x‡a)

x b n 2

x b‡n

2 : (4:4)

We can refer to Pell Equation's method in Zagier [5]. WhenDˆb2 4cis not a square number, we refer to linear forms in the logarithms of alge- braic number[1] and elliptic logarithm method [2].

Appendix I

Find a fundamental unit in RˆZ[1;u;w;uw], where uˆ 

12 p4

;wˆ

ˆ 1‡ 

p 3

2 .

If eˆa‡bu‡cw‡duw is a fundamental unit in R, where a;b;c;d2Z, thene ˆa bu‡cw duwis a conjugate ofe. So we have

ee ˆ(a‡bu‡cw‡duw)(a bu‡cw duw)

ˆ(a2 2b2‡8bd c2 2d2)‡(2ac 4b2‡4bd c2‡2d2)wˆF‡Gw:

N(e)ˆN(e )ˆN(F‡Gw)ˆ(F‡Gw)(F‡Gw2)ˆF2 FG‡G2ˆ 1:

(14)

Thus we get

FG1ˆF2‡G22jFGj:

From FG>0;FGˆ0;FG<0; we obtain (F;G)ˆ( 1;1), (1;0), (0;1);where

Fˆa2 2b2‡8bd c2 2d2 Gˆ2ac 4b2‡4bd c2‡2d2: 8<

() :

There is no loss of generation of assumingc6ˆ0, otherwisecˆ0 is the easier condition. From

Gˆ2ac 4b2‡4bd c2‡2d2;

we haveaˆc2‡W

2c ;whereWˆ4b2 4bd 2d2‡G:Then we obtain c2‡W

2c 2

2b2‡8bd c2 2d2ˆF:

Thus we have

3c4‡c2(8b2 32bd‡8d2 2W‡4F) W2ˆ0:

We regard this equation as a quadratic equation with one unknownc1ˆc2, then

c1ˆc2ˆ B 

B2‡12W2 p

6 ; whereBˆ8b2 32bd‡8d2 2W‡4F:

We limit the ranges ofbanddto find the integersa;b;c;dwhich meet (). We supposejbj 5;jdj 5, then in the ranges we search c1ˆc2. If there exist two integersb0andd0to getc1ˆc20;c02Z, we can computea0

fromaˆc2‡W

2c . Ifa0is an integer, we have already found a unit inR. If we can not finda;b;c;din the ranges, we should extend the ranges ofband dtill we find a unite0ˆa0‡b0u‡c0w‡d0uw:

Now we will compute the fundamental uniteˆa‡bu‡cw‡duwfrom e0 ˆa0‡b0u‡c0w‡d0uw, wherea;b;c;d2Z:Ifke0kis not the least, we havee0ˆ et;jtj 2:

(15)

Denote ee e0 e0 0 BB

@ 1 CC

1 u w uw

1 u w uw

1 u0 w2 u0w2 1 u0 w2 u0w2 0

BB

@

1 CC A

ab cd 0 BB

@ 1 CC Aˆ4 M

ab cd 0 BB

@ 1 CC A;

then a

bc d 0 BB

@ 1 CC

AˆM 1

ee e0 e0 0 BB

@ 1 CC A:

FromM 1ˆ 1 4w‡2

1‡w 1‡w w w

1‡w u

1‡w u

w u0

w u0

1 1 1 1

1 u

1 u

1 u0

1 u0 0

BB BB BB BB

@

1 CC CC CC CC A

, we obtain

aˆ 1

4w‡2[(1‡w)e‡(1‡w)e ‡we0‡we0] bˆ 1

4w‡2 h1‡w

u e‡ 1‡w u

e ‡w

u0e0‡ w u0

e0 i cˆ 1

4w‡2(e‡e e0 e0 ) dˆ 1

4w‡2 e

u e

u e0 u0‡e0

u0

: 8>

>>

>>

>>

>>

>>

><

>>

>>

>>

>>

>>

>>

:

From

e0ˆ et e0 ˆ et e00ˆ e0t e00 ˆ e0t 8>

>>

><

>>

>>

:

(wherejtj 2), we get

eˆ e1=t0 e ˆ e1=t0 e0ˆ e01=t0 e0 ˆ e01=t0 8>

>>

>>

><

>>

>>

>>

:

, thus we obtain

jaj 1

4w‡2(j1‡wkej ‡ j1‡wke j ‡ jwke0j ‡ jwke0 j)

ˆ 1

4w‡2(j1‡wke0j1=t‡ j1‡wke0 j1=t‡ jwke00j1=t‡ jwke00 j1=t) 4 1

4w‡2ke0k1=2;

(16)

jbj 1

4w‡21‡w

u0 jej ‡1‡w

u0 je j ‡w

u00je0j ‡w u00je0 j

ˆ 1

4w‡21‡w u0

je0j1=t‡1‡w u0

je0 j1=t‡w

u00je00j1=t‡w

u00je00 j1=t 2 1

4w‡21 u0‡1

u00 ke0k1=2;

jcj 4 1

4w‡2je0k1=2; jdj 2 1

4w‡21 u0‡1

u00 ke0k1=2:

If we can not find integers a;b;c;d in the ranges, then e0ˆa0‡

‡b0u‡c0w‡d0uwis just the fundamental unit.

If we can find integers a00;b00;c00;d00, then we get a unit e1ˆ

ˆa00‡b00u‡c00w‡d00uw whose absolute value ke1k is smaller than ke0k.

We use the same method for e1 till we find the fundamental unit. By computation, the fundamental unit of the subring RˆZ[1;u;w;uw] is eˆ1‡2u‡4w‡2uw:

The method of computation here is more effective than the ones in [15] [16].

Appendix II

Factorize the quadratic algebraic numberjˆ15 6wandj0ˆ21‡6w inRˆZ[1;u;w;uw], wherewˆ 1‡ 

p 3

2 ;uˆ 

4 12 p .

Let jˆ15 6wˆ21‡6w2ˆ aa , j0ˆ21‡6wˆ15 6w2ˆ a0a0 . The factorization is only defined ``up to multiplication by units''. If there are two factors a1ˆ(a1;b1;c1;d1) and a2ˆ(a2;b2;c2;d2) which meet above condition, anda1

a2is an algebraic integer and is a uniteˆa1

a2(N(e)ˆ 1), then they are relevant algebraic numbers. We have

N(j)ˆN(j0)ˆ(15 6w)(21‡6w)ˆ351ˆaa a0a0 ; and we have an important inequality[10]

kak jN(j)j1=4 

pkek

;

(17)

whereeis the fundamental unit in a totally complex quartic fieldQ(u). In the following, we will give a simple proof for above inequality.

By a logarithmic mappingl, we can establish the relation between j and the fundamental unit e. That is to say, from nˆr1‡2r2 ˆ

ˆ10‡22ˆ4;we suppose

h1ˆl(e)ˆ(2 logjej;2 logje0j); h2 ˆ(2;2);

l(a)ˆ(2 logjaj;2 logja0j)ˆx1h1‡x2h2ˆx1l(e)‡x2h2; so we have

2 logjaj ˆ2x1logjej ‡2x2 2 logja0j ˆ2x1logje0j ‡2x2; (

whereeande0aree's conjugates whose absolute values are different,aand a0area's conjugates whose absolute values are different. Hence we obtain 2 logjaj ‡2 logja0j ˆ[2(x1logjej)‡2x2]‡[2(x1logje0j)‡2x2

ˆx1logjee0j2‡4x2ˆ4x2: So we have

x2ˆ1

4 logjaj2ja0j2ˆ1

4 logjN(a)j ˆ1

4logjN(j)j:

Therefore we get

jaj ˆ jx2jjex1j ˆ jN(j)j1=4jex1j:

Put x1ˆm1‡y1;jy1j 1

2;m12Z: From aˆ~aem1; we have ~aˆae m1; then

j~aj jN(j)j1=4max 1

pjej; 

p jej

ˆ jN(j)j1=4ke0k;

wheree0is the fundamental unit inRˆZ[1;u;w;uw]:Because we factorize the quadratic algebraic numberjin the subringR, thea's that we will find are stable under multiplication by powers ofeand actually we compute a set of representatives~amodulo this action.

REMARK3. If there is a factorization ofj, then up to changingaby a relevant integer, the important inequality is fulfilled. Of course it is clear the inequality does not work for any algebraic integer ``relevant'' toa.

(18)

If

a a a0 a0 0 BB BB B@

1 CC CC CAˆ

1 u w uw

1 u w uw

1 u0 w2 u0w2 1 u0 w2 u0w2 0

BB BB B@

1 CC CC CA

a b c d 0 BB BB B@

1 CC CC CAˆM

a b c d 0 BB BB B@

1 CC CC CA;

then

a b c d 0 BB BB B@

1 CC CC CAˆM 1

a a a0 a0 0 BB BB B@

1 CC CC CA:

We get aˆ 1

4w‡2[(1‡w)a‡(1‡w)a ‡wa0‡wa0] bˆ 1

4w‡2

h1‡w u

a‡ 1‡w

u

a ‡w

u0a0‡ w u0

a0 i cˆ 1

4w‡2(a‡a a0 a0 ) dˆ 1

4w‡2 a

u a

u a0 u0‡a0

u0

; 8>

>>

>>

>>

>>

>>

<

>>

>>

>>

>>

>>

>:

jaj 1 2w‡1

j1‡wj ‡ jwj

kak 2

p3 

4351 p 

pkek

ˆ13:5294 jbj 1

2w‡11‡w u ‡w

u0

kak 2

p3



351 p4



12 p4 

pkek

ˆ7:26913 jcj 2

2w‡1kak 2

p3 

4351 p 

pkek

ˆ13:5294 jdj 1

2w‡11 u‡1

u0

kak 1

p3 2

12 p4 

4351 p 

pkek

ˆ7:26913 : 8>

>>

>>

>>

>>

>>

><

>>

>>

>>

>>

>>

>>

:

In the range of

jaj 13;jbj 7;jcj 13;jdj 7;

there are somea;b;c;d2Zsatisfying

jˆ (15 6w)ˆaa ˆ(a‡bu‡cw‡duw)(a bu‡cw duw)

(19)

ˆ(a‡cw)2 u2(b‡dw)2ˆ(a2‡2acw‡c2w2) (4w‡2)(b2‡2bdw‡d2w2)

ˆ(a2 2b2‡8bd c2 2d2)‡(2ac 4b2‡4bd c2‡2d2)wˆF‡Gw:

If there are two factors a1ˆ(a1;b1;c1;d1) and a2ˆ(a2;b2;c2;d2) which meet above condition, anda1

a2is an algebraic integer and is a unit. We should filter one of them(for examplea2) and remain another(for examplea1). We do the procedure till all remained factorsaofjare irrelevant.

By computation, we get the irrelevant factors of jˆ15 6w and j0ˆ21‡6wfactoring in the subringRare:

a1ˆ(3;2;0;1); a01ˆ(3; 2;0; 1);

a2ˆ(9;4;6; 1); a02ˆ(9; 4;6;1):

Acknowledgments. We express our gratitude to everyone who takes part in discussion of this paper in School of Mathematics and Statistics in Wuhan University. Especially, we thank Dr. Jing-bo Xia for his kind help.

The first author express his gratitude to Guo-tai Deng, Yong-wei Yu and Wen-bo Wang for their help in programming. Finally, we thank the referee Professor Ph. Satge for his valuable suggestions and Giovanni Gerotto for his patient work.

REFERENCES

[1] A. BAKER,Linear forms in the logarithms of algebraic number I, Mathema- tika,13(1966), pp. 204-216; II: ibid,14(1967), pp. 102-107; III: ibid,14(1967), pp. 220-228; IV: ibid,15(1968), pp. 204-216.

[2] R. J. STROEKER- N. TZANAKIS,Solving Elliptic Diophantine Equations by Estimating Linear Forms in Elliptic Logarithms, Acta Arith.,29(2) (1994), pp. 177-196.

[3] R. J. STROEKER- N. TZANAKIS,On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement, Experimental Mathemetics,8(2) (1999), pp. 135-149.

[4] R. J. STROEKER- N. TZANAKIS,Computing All Integer Solutions of a Genus1 Equation, Math. Comp.,72(2003), pp. 1917-1933.

[5] D. ZAGIER, Large Integral Point on Elliptic Curves, Math. Comp., 48(177) (1987), pp. 425-536.

[6] W. LJUNGGREN,A Diophantine Problem, Jour London Math. Soc.,3(2) (1971), pp. 385-391.

[7] J. H. CHEN,A Note on the Diophantine Equation x2‡1ˆdy4, Abh. Math.

Sem. Univ. Hamburg,64(1994), pp. 1-10.

[8] K. Q. FENG,Algebraic Number Theory, Science Press, 2000 (Chinese).

[9] L. G. HUA,Introduction to Number Theory, Science Press, 1979 (Chinese).

(20)

[10] R. J. STROEKER- N.TZANAKIS,On the Application of skolem's p-adic Method to the solution of Thue Equations, Journal of Number Theory,29(1988), pp.

166-195.

[11] W. LJUNGGREN,Solution complete de quelquls equations du sixieme, degre a deux indeterminees, Arch. Math.,48(7) (1946), pp. 26-29.

[12] N. TZANAKIS, On the Diophantine equation x2 dy4ˆk, Acta Arith.,46(3) (1986), pp. 257-269.

[13] L. J. MORDELL,Diophantine Equations, London: Academic Press, 1969.

[14] Z. F. CAO- S. Z. MU- X. L. DONG,A New Proof of a Conjecture of Antoniadis, Jour Number Theory,83(2000), pp. 185-193.

[15] J. BUCHMANN, A generalization of Voronoi's unit algorithm (I II), Jour.

Number Theory,20(1985), pp. 177-209.

[16] J. BUCHMANN,The Computation of the Fundamental Unit of Totally Comples Quartic Orders, Math. Comp.,48(177) (1987), pp. 39-54.

Manoscritto pervenuto in redazione l'8 gennaio 2006

Références

Documents relatifs

In this paper we prove the existence of a Banach density of the set of rational and integral points on subvarieties of abelian varieties (or more generally, commutative group

Thus, by Northcott’s Theorem, it is enough to prove that S 2 ( C ) is defined over a number field of finite absolute degree.. Using some geometry of numbers, we shall prove that

The first two exceptional cases N=40, 48 are the values of N for which Xo(N) is hyperelliptic, but the hyperelliptic involution is not of Atkin-Lehner type (this is also the case

It is easy to give examples of elliptic curves over Q which do not acquire everywhere good reduction over any abelian extension of Q: for example, any.. elliptic

Kevin Mugo, A Generating Polynomial for the Octahedral Extension in the 4-torsion Point Field of an Elliptic Curve. Preprint, HAL ID:

elliptic curve, simplest quartic field, Mordell-Weil group, rank, infinite family, integral points.. This work was supported in part by French projects ANR-16-CE39-0012 “SafeTLS”

has shown that one can also bound the height of integral points of an elliptic curve E using lower bounds for linear forms in elliptic logarithms, in a more natural way than

* Origin of samples (NP natural population, CC clone collection); ** Available voucher specimens (S silica-gel dried leaves, C clone collection, N no