• Aucun résultat trouvé

The convex and monotone functions associated with second-order cone

N/A
N/A
Protected

Academic year: 2022

Partager "The convex and monotone functions associated with second-order cone"

Copied!
23
0
0

Texte intégral

(1)

Vol. 55, No. 4, August 2006, 363–385

The convex and monotone functions associated with second-order cone

JEIN-SHAN CHEN*

Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

(Received 2 December 2004; in final form 21 April 2006)

Like the matrix-valued functions used in solutions methods for semidefinite programs (SDPs) and semidefinite complementarity problems (SDCPs), the vector-valued functions associated with second-order cones are defined analogously and also used in solutions methods for second-order-cone programs (SOCPs) and second-order-cone complementarity problems (SOCCPs). In this article, we study further about these vector-valued functions associated with second-order cones (SOCs). In particular, we define the so-called SOC-convex and SOC-monotone functions for any given functionf:R!R. We discuss the SOC-convexity and SOC-monotonicity for some simple functions, e.g., fðtÞ ¼t2, t3, 1=t, t1=2, jtj, and [t]þ. Some characterizations of SOC-convex and SOC-monotone functions are studied, and some conjectures about the relationship between SOC-convex and SOC-monotone functions are proposed.

Keywords: Second-order cone; Convex function; Monotone function; Complementarity;

Spectral decomposition

Mathematics Subject Classifications 2000: 26A27; 26B05; 26B35; 49J52; 90C33

1. Introduction

The second-order cone (SOC) inRn, also called the Lorentz cone, is defined by Kn¼ ðx 1,x2Þ 2RRn1j kx2k x1

, ð1Þ

wherekk denotes the Euclidean norm. Ifn¼1, let Kn denote the set of nonnegative reals Rþ. For any x, y in Rn, we write xKny if xy2 Kn; and write xKn y if xy2intðKnÞ. In other words, we have xKn 0 if and only if x2 Kn, and xKn0 if and only ifx2intðKnÞ. The relationKnis a partial ordering but not a linear ordering

*Tel. 886-2-29325417. Fax: 886-2-29332342. Email: jschen@math.ntnu.edu.tw

Optimization

ISSN 0233-1934 print/ISSN 1029-4945 onlineß2006 Taylor & Francis http://www.tandf.co.uk/journals

DOI: 10.1080/02331930600819514

(2)

inKn, i.e., there existx,y2 Kn such that neitherxKny noryKnx. To see this, for n¼2, letx¼(1, 1),y¼(1, 0). Then, we have xy¼ ð0, 1Þ2 K= n,yx¼ ð0,1Þ2 K= n.

Recently, the SOC has received much attention in optimization, particularly in the context of applications and solutions methods for the second-order-cone program (SOCP) [14] and second-order-cone complementarity problem (SOCCP) [5–8].

For those solutions methods, spectral decompositionassociated with SOC is required.

The basic concepts are as follows. For any x¼ ðx1,x2Þ 2RRn1, x can be decomposed as

1uð1Þþ2uð2Þ, ð2Þ

where1,2andu(1),u(2)are the spectral values and the associated spectral vectors ofx given by

i¼x1þ ð1Þikx2k, ð3Þ

uðiÞ¼ 1

2 1,ð1Þi x2

kx2k

, ifx2¼= 0, 1

21,ð1Þiw

, ifx2¼0, 8>

<

>: ð4Þ

for i¼1, 2 with w being any vector in Rn1 satisfying kwk ¼1. If x2¼= 0, the decomposition is unique.

For any functionf:R!R, the following vector-valued function associated withKn (n1) was considered [8,10]:

fsocðxÞ ¼fð1Þuð1Þþfð2Þuð2Þ, 8x¼ ðx1,x2Þ 2RRn1: ð5Þ Iffis defined only on a subset ofR, thenfsocis defined on the corresponding subset of Rn. The definition (5) is unambiguous whether x2¼= 0 or x2¼0. The cases of fsoc(x)¼x1/2,x2, exp(x) are discussed in [9]. In fact, the equation (5) is analogous to one associated with the semidefinite coneSnþ [19,21].

In this article, we further define the so-called SOC-convex and SOC-monotone functions (section 3), which are parallel to matrix-convex and matrix-monotone functions [2,11]. We study the SOC-convexity and SOC-monotinicity for some simple functions, e.g.,f(t)¼t2,t3, 1/t,t1/2,jtj, and [t]þ. Then, we explore the characterizations of SOC-convex and SOC-monotone functions. In addition, we state some conjectures about the relationship between SOC-convex and SOC-monotone functions. It is our intention to extend the existing properties of matrix-convex and matrix-monotone functions shown as in [2,11]. As will be seen in section 3, the vector-valued functions associated with SOC are accompanied by the Jordan product (will be defined in section 2). However, unlike matrix multiplication, the Jordan product associated with SOC is not associative, which is the main source of difficulty when we do the extension.

Therefore, the ideas for proofs are usually quite different from those for matrix-valued functions. The vector-valued functions associated with SOC are heavily used in the solutions methods for SOCP and SOCCP. Therefore, further study on these functions will be helpful for developing and analyzing more solutions methods. That is one of the main motivations for this article.

In what follows and throughout the article,h,idenotes the Euclidean inner product and kk the Euclidean norm. The notation ‘‘:¼’’ means ‘‘define’’. For any

(3)

f:Rn!R, rfðxÞ, denotes the gradient of f and x. For any differentiable mapping F¼ ðF1,F2,. . .,FmÞT:Rn!Rm, rFðxÞ ¼ ½rF1ðxÞ rFmðxÞ, is a nm matrix denotes the transposed Jacobian ofF at x. For any symmetric matrices A,B2Rnn, we write AB (respectively, AB) to mean AB is positive semidefinite (respectively, positive definite). We also use p.s.d. (respectively, p.d.) to represent the abbreviation of positive semidefinite (respectively, positive definite).

2. Jordan product and related properties

For any x¼ ðx1,x2Þ 2RRn1 and y¼ ðy1,y2Þ 2RRn1, we define their Jordan productas

x y¼ ðxTy, y1x2þx1y2Þ: ð6Þ We writex2to meanx xand writexþyto mean the usual componentwise addition of vectors. Then , þ, together with e¼ ð1, 0,. . ., 0ÞT2Rn have the following basic properties [9,10]: (1) e x¼x, for all x2Rn, (2) x y¼y x, for all x,y2Rn, (3) x ðx2 yÞ ¼x2 ðx yÞ, for allx,y2Rn and (4)ðxþyÞ z¼x zþy z, for all x,y,z2Rn. The Jordan product is not associative. For example, for n¼3, let x¼(1,1, 1) and y¼z¼(1, 0, 1), then we have ðx yÞ z¼ ð4, 1, 4Þ¼= x ðy zÞ ¼ ð4, 2, 4Þ. However, it is power associative, i.e., x ðx xÞ ¼ ðx xÞ x for all x2Rn. Thus, we may, without fear of ambiguity, writexmfor the product of mcopies of xand xmþn¼xm xn for all positive integersmand n. We define x0¼e.

Besides, Kn is not closed under Jordan product. For example, x¼ ð ffiffiffi p2

, 1, 1Þ 2 K3, y¼ ð ffiffiffi

p2

, 1, 1Þ 2 K3, butx y¼ ð2, 2 ffiffiffi p2

, 0Þ2 K= 3.

For eachx¼ ðx1,x2Þ 2RRn1, thedeterminantand thetraceof xare defined by detðxÞ ¼x21 kx2k2, trðxÞ ¼2x1:

In general, detðx yÞ¼= detðxÞdetðyÞunlessx2¼y2. A vectorx¼ ðx1,x2Þ 2RRn1is said to be invertible if det(x)¼= 0. If x is invertible, then there exists a unique y¼ ðy1,y2Þ 2RRn1 satisfyingx y¼y x¼e. We call thisy the inverse ofxand denote it byx1. In fact, we have

x1¼ 1

x21 kx2k2ðx1, x2Þ ¼ 1

detðxÞðtrðxÞexÞ:

Therefore, x2intðKnÞ if and only if x12intðKnÞ. Moreover, if x2intðKnÞ, then xk¼(xk)1is also well-defined. For anyx2 Kn, it is known that there exists a unique vector inKn denoted byx1/2such thatðx1=2Þ2¼x1=2 x1=2 ¼x. Indeed,

x1=2¼ s,x2

2s

, wheres¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1

2 x1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21þ kx2k2

q

s

:

In the preceding formula, the term x2/s is defined to be the zero vector if x2¼0 ands¼0, i.e.,x¼0.

For anyx2Rn, we always havex22 Kn (i.e.,x2Kn0). Hence, there exist a unique vectorðx2Þ1=2 2 Kndenoted byjxj. It is easy to verify thatjxj Kn0 andx2¼ jxj2for any x2Rn. It is also known thatjxj Kn x. For anyx2Rn, we define [x]þto be the nearest point (in Euclidean norm, since Jordan product does not induce a norm) projection ofx

(4)

onto Kn, which is the same definition as in Rn

þ. In other words, [x]þis the optimal solution of the parametric SOCP:½xþ¼arg minfkxyk jy2 Kng. It is well-known that

½xþ¼1=2ðxþ jxjÞ; see Property 2.2(f).

Next, for anyx¼ ðx1,x2Þ 2RRn1, we define a linear mapping fromRn toRn as Lx:Rn!Rn

y!Lxy:¼ x1 xT2 x2 x1I

y:

It can be easily verified thatx y¼Lxy,8y2Rn, andLxis positive definite (and hence invertible) if and only if x2intðKnÞ. However, L1x y¼= x1 y, for some x2intðKnÞ andy2Rn, i.e.,L1x ¼= Lx1.

The spectral decomposition along with the Jordan algebra associated with SOC entail some basic properties as listed in the following text. We omit the proofs since they can be found in [9,10].

Property 2.1 For any x¼ ðx1,x2Þ 2RRn1 with the spectral values 1, 2 and spectral vectorsu(1),u(2)given as in equations (3)–(4), we have

(a) u(1)andu(2)are orthogonal under Jordan product and have length 1= ffiffiffi p2

, i.e., uð1Þ uð2Þ¼0, kuð1Þk ¼ kuð2Þk ¼ 1

ffiffiffi2 p : (b) u(1)andu(2)are idempotent under Jordan product, i.e.,

uðiÞ uðiÞ ¼uðiÞ, i¼1, 2:

(c) 1,2are nonnegative (positive) if and only ifx2 Knðx2intðKnÞÞ, i.e., i0, 8i¼1, 2()xKn 0:

i>0, 8i¼1, 2()xKn 0:

(d) The determinant, the trace and the Euclidean norm of x can all be represented in terms of1,2:

detðxÞ ¼12, trðxÞ ¼1þ2, kxk2 ¼1

221þ22 :

Property 2.2 For any x¼ ðx1,x2Þ 2RRn1 with the spectral values 1, 2 and spectral vectorsu(1),u(2)given as in equations (3)–(4), we have

(a) x2¼21uð1Þþ22uð2Þ. (b) Ifx2 Kn, thenx1=2¼ ffiffiffiffiffi

1

p uð1Þþ ffiffiffiffiffi 2

p uð2Þ. (c) jxj ¼ j1juð1Þþ j2juð2Þ.

(d) ½xþ¼ ½1þuð1Þþ ½2þuð2Þ, ½x¼ ½1uð1Þþ ½2uð2Þ. (e) jxj ¼ ½xþþ ½xþ¼ ½xþ ½x.

(f) ½xþ¼1=2ðxþ jxjÞ, ½x¼1=2ðx jxjÞ.

Property 2.3

(a) Any x2Rn satisfiesjxj Knx.

(b) For anyx,yKn0, ifxKny, thenx1=2Kny1=2.

(5)

(c) For anyx,y2Rn, ifx2Kny2, thenjxj Knjyj.

(d) For anyx2Rn,xKn 0, hx,yi 0,8yKn0.

(e) For anyxKn0 and y2Rn,x2Kny2)xKny.

In the following propositions, we study and explore more characterizations about spectral values, determinant, and trace ofx as well as the partial order Kn. In fact, Propositions 2.1–2.4 are parallel results analogous to those associated with positive semidefinite cone [11]. Even though bothKnandSnbelong to self-dual cones and share similar properties, as we will see, the ideas for proving these results are quite different.

One reason is that the Jordan product is not associative as mentioned earlier.

PROPOSITION 2.1 For any xKn0and yKn0,the following results hold.

(a) If xKny, thendetðxÞ detðyÞ, trðxÞ trðyÞ.

(b) If xKny, theniðxÞ iðyÞ,8i¼1, 2.

Proof (a) From definition, we know that

detðxÞ ¼x21 kx2k2, trðxÞ ¼2x1, detðyÞ ¼y21 ky2k2, trðyÞ ¼2y1:

Since xy¼ ðx1y1,x2y2Þ Kn0, we have kx2y2k x1y1. Thus, x1y1, and then tr(x)tr(y). Besides, the assumption on xandygives

x1y1 kx2y2k kx 2k ky2k, ð7Þ which is equivalent tox1 kx2k y1 ky2k>0 andx1þ kx2k y1þ ky2k>0. Hence,

detðxÞ ¼x21 kx2k2 ¼ ðx1þ kx2kÞðx1 kx2kÞ ðy1þ ky2kÞðy1 ky2kÞ ¼detðyÞ:

(b) From definition of spectral values, we know that

1ðxÞ ¼x1 kx2k, 2ðxÞ ¼x1þ kx2k and 1ðyÞ ¼y1 ky2k, 2ðyÞ ¼y1þ ky2k:

Then, by the inequality (7) in the proof of part (a), the results follow immediately. g PROPOSITION 2.2 For any xKn0and yKn0,we have

(a) detðxþyÞ detðxÞ þdetðyÞ.

(b) detðx yÞ detðxÞ detðyÞ.

(c) detðxþ ð1ÞyÞ 2detðxÞ þ ð1Þ2detðyÞ, 80< <1:

(d) ðdetðeþxÞÞ1=21þdetðxÞ1=2, 8xKn0:

(e) detðeþxþyÞ detðeþxÞ detðeþyÞ.

Proof

(a) For anyxKn0 and yKn0, we knowkx2k x1andky2k y1, which implies jhx2,y2ij kx2k ky2k x1y1:

Hence, we obtain

detðxþyÞ ¼ ðx1þy1Þ2 kx2þy2k2

¼ ðx21 kx2k2Þ þ ðy21 ky2k2Þ þ2ðx1y1 hx2,y2iÞ ðx21 kx2k2Þ þ ðy21 ky2k2Þ

¼detðxÞ þdetðyÞ:

(6)

(b) Applying the Cauchy inequality gives detðx yÞ ¼ hx,yi2 kx1y2þy1x2k2

¼ðx1y1þ hx2,y22x21ky2k2þ2x1y1hx2,y2i þy21kx2k2

¼x21y21þ hx2,y2i2x21ky2k2y21kx2k2 x21y21þ kx2k2 ky2k2x21ky2k2y21kx2k2

¼ ðx21 kx2k2Þ ðy21 ky2k2Þ

¼detðxÞ detðyÞ:

(c) For anyxKn0 andyKn 0, it is clear thatxKn 0 andð1ÞyKn0 for every 0 << 1. In addition, we observe that detðxÞ ¼2detðxÞ, for all> 0. Hence,

detðxþ ð1ÞyÞ detðxÞ þdetðð1ÞyÞ ¼2detðxÞ þ ð1Þ2detðyÞ, where the inequality is from part (a).

(d) For anyxKn0, we know detðxÞ ¼120, whereiare the spectral values ofx.

Hence, detðeþxÞ ¼ ð1þ1Þð1þ2Þ ð1þ ffiffiffiffiffiffiffiffiffiffi 12

p Þ2¼ ð1þdetðxÞ1=2Þ2. Then, taking square root both sides yields the desired result.

(e) Again, For anyxKn0 and yKn 0, we have x1 kx2k 0, y1 ky2k 0,

jhx2,y2ij kx2k ky2k x1y1: 8>

<

>: ð8Þ

Also, we know detðeþxþyÞ ¼ ð1þx1þy1Þ2 kx2þy2k2, detðeþxÞ ¼ ð1þx1Þ2 kx2k2 and detðeþyÞ ¼ ð1þy1Þ2 ky2k2. Hence,

detðeþxÞ detðeþyÞ detðeþxþyÞ

¼ ð1 þx1Þ2 kx2k2

ð1þy1Þ2 ky2k2

ð1 þx1þy1Þ2 kx2þy2k2

¼2x1y1þ2hx2,y2i þ2x1y21þ2x21y12y1kx2k22x1ky2k2 þx21y21y21kx2k2x21ky2k2þ kx2k2 ky2k2

¼2ðx1y1þ hx2,y2iÞ þ2x1ðy21 ky2k2Þ þ2y1ðx21 kx2k2Þ þ ðx21 kx2k2Þðy21 ky2k2Þ

0,

where we multiply out all the expansions to obtain the second equality and the last

inequality holds by (8). g

PROPOSITION 2.3 For any x,y2Rn,we have (a) trðxþyÞ ¼trðxÞ þtrðyÞ.

(b) 1ðxÞ2ðyÞ þ1ðyÞ2ðxÞ trðx yÞ 1ðxÞ1ðyÞ þ2ðxÞ2ðyÞ.

(c) trðxþ ð1ÞyÞ ¼trðxÞ þ ð1Þ trðyÞ,82R.

(7)

Proof Parts (a) and (c) are trival. Thus, it remains to verify (b). Using the fact that trðx yÞ ¼2hx,yi, we obtain

1ðxÞ2ðyÞ þ1ðyÞ2ðxÞ ¼ ðx1 kx2kÞðy1þ ky2kþðx1þ kx2kÞðy1 ky2

¼2ðx1y1 kx2kky2kÞ 2ðx1y1þ hx2,y2i

¼2hx,yi ¼trðx yÞ 2ðx1y1þ kx2kky2

¼ ðx1 kx2kÞðy1 ky2kÞ þ ðx1þ kx2kÞðy1þ ky2kÞ,

which completes the proof. g

The following two lemmas are well-known results in matrix analysis and are key to proving Proposition 2.4, which is an important extension about the function ln det() from positive semidefinite cone to SOC.

LEMMA 2.1 For any nonzero vector x2Rn, the matrix xxT is positive semidefinite (p.s.d.)with only one nonzero eigenvaluekxk2.

Proof The proof is routine, hence we omit it. g

LEMMA 2.2 Suppose that a symmetric matrix is partitioned as

A B

BT C

,

where A and C are square. Then this matrix is positive definite (p.d.)if and only if A is positive definite and CBTA1B.

Proof See Theorem 7.7.6 in [11]. g

PROPOSITION 2.4 For any xKn0and yKn0,we have

(a) The real-valued function fðxÞ ¼lnðdetðxÞÞis concave on intðKnÞ.

(b) detðxþ ð1ÞyÞ ðdetðxÞÞðdetðyÞÞ1, 80< <1:

(c) The function real-valued f(x)¼ln(det(x1)is convex on intðKnÞ.

(d) The real-valued function f(x)¼tr(x1) is convex onintðKnÞ.

Proof

(a) Since intðKnÞ is a convex set, it is enough to show that r2fðxÞ is negative semidefinite. From direct computation, we know

rfðxÞ ¼ 2x1

x21 kx2k2, 2x2

x21 kx2k2

!

¼2x1,

(8)

and

r2fðxÞ ¼

2x212kx2k2 ðx21 kx2k2Þ2

4x1xT2 ðx21 kx2k2Þ2 4x1x2

ðx21 kx2k2Þ2

2ðx21 kx2k2ÞI4x2xT2 ðx21 kx2k2Þ2 2

66 64

3 77 75

¼ 2

ðx21 kx2k2Þ2

ðx21þ kx2k2Þ2 2x1xT2

2x1x2 ðx21 kx2k2ÞIþ2x2xT2

" #

:

Letr2fðxÞbe denoted by the matrix

A B

BT C

given as in Lemma 2.2 (hereAis a scalar). Then, we have ACBTB¼ ðx21þ kx2k2Þ ðx 21 kx2k2ÞIþ2x2xT2

4x21x2xT2

¼ ðx41 kx2k4ÞI2ðx21 kx2k2Þx2xT2

¼ ðx21 kx2k2Þ ðx 21þ kx2k2ÞI2x2xT2

¼ ðx21 kx2k2Þ M,

were we denote the whole matrix in the big parenthesis of the last second equality byM. From Lemma 2.1, we know that x2xT2 is a p.s.d. with only one nonzero eigenvalue kx2k2. Hence, all the eigenvalues of the matrix M are ðx21þ kx2k2Þ 2kx2k2¼ x21 kx2k2 and x21þ kx2k2 with multiplicity of n2, which are all positive. Thus,M is positive definite which implies that r2fðxÞ is negative definite and hence negative semidefinite.

(b) From part (a), for all 0 << 1, we have

ln detðxð þ ð1ÞyÞÞ ln detðxÞð Þ þ ð1Þln detðyÞð Þ

¼ln detðxÞð Þþln detðyÞð Þ1

¼ln detðxÞð ÞðdetðyÞÞ1:

Since natural logarithm is an increasing function, the desired result follows.

(c) We observe that det(x1)¼1/det(x), for all x2intðKnÞ. Therefore, ln detðx1Þ ¼ ln detðxÞis a convex function by part (a).

(d) The idea for proving this is the same as the one for part (a). Since intðKnÞ is a convex set, it is enough to show that r2f is positive semidefinite. Note that fðxÞ ¼trðx1Þ ¼2x1=ðx21 kx2k2Þ. Thus, from direct computations, we have

r2fðxÞ ¼ 2 ðx21 kx2k2Þ3

2x31þ6x1kx2k2, ð6x21þ2kx2k2ÞxT2 ð6x21þ2kx2k2Þx2, 2x1ðx21 kx2k2ÞIþ4x2xT2

" #

:

Again, letr2fðxÞbe denoted by the matrix

A B

BT C

(9)

given as in Lemma 2.2 (hereAis a scalar). Then, we have ACBTB¼2x12x31þ6x1kx2k2

ðx21 kx2k2ÞIþ4x2xT2

6x21þ2kx2k22

x2xT2

¼4x41þ12x21kx2k2

x21 kx2k2

I20x4124x21kx2k2þ4kx2k4 x2xT2

¼4x41þ12x21kx2k2

x21 kx2k2

I4 5x 21 kx2k2

x21 kx2k2

x2xT2

¼x21 kx2k2

4x41þ12x21kx2k2

I4 5x 21 kx2k2 x2xT2

¼x21 kx2k2 M,

where we denote the whole matrix in the big parenthesis of the last second equality byM. From Lemma 2.1, we know that x2xT2 is a p.s.d. with only one nonzero eigenvalue kx2k2. Hence, all the eigenvalues of the matrix M are ð4x41þ 12x21kxk220x21kx2k2þ4kx2k4Þ and 4x41þ12x21kx2k2 with multiplicity of n2, which are all positive since

4x41þ12x21kx2k220x21kx2k2þ4kx2k4¼4x418x21kx2k2þ4kx2k4

¼4x21 kx2k2

>0:

Thus, by Lemma 2.2, we obtain that r2fðxÞ is positive definite and hence is positive semidefinite. Therefore,fis convex on int(Kn). g

3. SOC-convex function and SOC-monotone function

In this section, we define the SOC-convexity and SOC-monotonicity and the study some examples of such functions.

Definition 3.1 Let f:R!R. Then

(a) f is said to be SOC-monotone of order n if the corresponding vector-valued functionfsocsatisfies the following:

xKny)fsocðxÞ Kn fsocðyÞ:

(b) fis said to be SOC-convex of ordernif the corresponding vector-valued function fsocsatisfies the following:

fsocðð1ÞxþyÞKnð1ÞfsocðxÞ þfsocðyÞ, ð9Þ for allx,y2Rn and 01.

We say f is SOC-monotone (respectively, SOC-convex) if f is SOC-monotone of all ordern(respectively, SOC-convex of all ordern). Iffis continuous, then the condition in equation (9) can be replaced by the more special condition:

fsoc xþy 2

Kn1

2ðfsocðxÞ þfsocðyÞÞ: ð10Þ It is clear that the set of SOC-monotone functions and the set of SOC-convex functions are both closed under positive linear combinations and under pointwise limits.

(10)

PROPOSITION 3.1 Let f:R!Rbe f(t)¼þt,then (a) f is SOC-monotone on Rfor every2Rand0.

(b) f is SOC-convex onRfor all,2R.

Proof The proof is straightforward by checking that Definition 3.1 is satisfied. g PROPOSITION 3.2

(a) Let f:R!Rbe f(t)¼t2,then f is SOC-convex onR.

(b) Hence, the function gðtÞ ¼þtþt2 is SOC-convex on R for all ,2R and 0.

Proof

(a) For anyx,y2Rn, we have

1

2ðfðxÞ þfðxÞÞ f xþy 2

¼x2þy2

2 xþy

2

2

¼1

4ðxyÞ2Kn0:

Sincefis continuous, the above implies thatfis SOC-convex.

(b) This is an immediate consequence of (a). g

Example 3.1 The functionf(t)¼t2is not SOC-monotone on R.

To see this, let x¼(1, 0), y¼(2, 0), then xy¼ ð3, 0Þ Kn0. But, x2y2¼ ð1, 0Þ ð4, 0Þ ¼ ð3, 0Þ 6Kn0.

It is clear that f(t)¼t2 is also SOC-convex on the smaller interval [0,1) by Proposition 3.2(a). We may ask a natural question: Isf(t)¼t2SOC-monotone on the interval [0,1)? The answer is: it is true only for n¼2 and is, false for general n3.

We show this in the following example.

Example 3.2

(a) The function f(t)¼t2is SOC-monotone on [0,1) forn¼2.

(b) However,f(t)¼t2is not SOC-monotone on [0,1) forn3.

(a) Let x¼ ðx1,x2Þ K2 y¼ ðy1,y2Þ K2 0. Then we have the following inequalities:

jx2j x1, jy2j y1, jx2y2j x1y1,

which implies

x1x2y1y20, x1þx2y1þy20:

8<

: ð11Þ

We want to prove that fðxÞ fðyÞ ¼ ðx21þx22y21y22, 2x1x22y1y2Þ K20, which is enough to verify thatx21þx22y21y22 j2x1x22y1y2j. This can been

(11)

seen by

x21þx22y21y22 j2x1x22y1y2j

¼ x21þx22y21y22 ð2x1x22y1y2Þ if x1x2y1y20 x21þx22y21y22 ð2y1y22x1x2Þ if x1x2y1y20 (

¼ ðx1x2Þ2 ðy1y2Þ2 ifx1x2y1y20 ðx1þx2Þ2 ðy1þy2Þ2 ifx1x2y2y20 (

0,

where the inequalities are true due to the inequalities (11).

(b) Forn3, we give a counterexample to show thatf(t)¼t2is not SOC-monotone on the interval [0,1). Let x¼ ð3, 1,2Þ 2 K3 and y¼ ð1, 1, 0Þ 2 K3. It is clear that xy¼ ð2, 0,2Þ K30. But x2y2¼ ð14, 6, 12Þ ð2, 2, 0Þ ¼ ð12, 4, 12Þ 6K3 0.

Now we look at the function f(t)¼t3. As expected,f(t)¼t3is not SOC-convex.

However, it is true thatf(t)¼t3is SOC-convex on [0, 1) forn¼2, whereas it is false forn3. Besides, we will sef(t)¼t3is neither SOC-monotone onRnor SOC-monotone on the interval [0,1) in general. Nonetheless, it is true that it is SOC-monotone on the interval [0,1) forn¼2. The following two examples show what we have just said.

Example 3.3

(a) The function f(t)¼t3is not SOC-convex onR.

(b) Moreover,f(t)¼t3is not SOC-convex on [0,1) forn3.

(c) However,f(t)¼t3is SOC-convex on [0,1) forn¼2.

To see (a), let x¼(0,2), y¼(1, 0). It can be verified that 1=2ðfðxÞ þfðyÞÞ fððxþyÞ=2Þ ¼ 9=8,ð 9=4Þ 6K20, which says f(t)¼t3 is not SOC-convex onR.

To see (b), let x¼(2, 1,1), y¼ ð1, 1, 0Þ K30, then we have 1=2ðfðxÞ þ fðyÞÞ fðxþy=2Þ ¼ ð3, 1,3Þ 6K30, which implies f(t)¼t3 is not even SOC-convex on the interval [0,1).

To see (c), it is enough to show that fððxþyÞ=2Þ K21=2ðfðxÞ þfðyÞÞ for any x,yinK2 0. Letx¼ ðx1,x2Þ K2 0 andy¼ ðy1,y2Þ K20, then we have

x3 ¼ ðx31þ3x1x22, 3x21x2þx32Þ, y3¼ ðy31þ3y1y22, 3y21y2þy32Þ, (

which yields f xþy

2

¼1

8ðx1þy2Þ3þ3ðx1þy1Þðx2þy2Þ2, 3ðx1þy1Þ2ðx2þy2Þ þ ðx2þy2Þ3 , 1

2ðfðxÞ þfðyÞÞ ¼1

2 x31þy31þ3x1x22þ3y1y22,x32þy32þ3x21x2þ3y21y2

: 8>

<

>:

(12)

After simplifications, we denote 1=2ðfðxÞ þfðyÞÞ fððxþyÞ=2Þ:¼1=8ð1,2Þ, where 1¼4x31þ4y31þ12x1x22þ12y1y32 ðx1þy1Þ33ðx1þy1Þðx2þy2Þ2, 2¼4x32þ4y32þ12x21x2þ12y21y2 ðx2þy2Þ33ðx1þy1Þ2ðx2þy2Þ:

(

To show that1 j2jwe discuss two cases. First, if 20, then

1 j2j ¼ ð4x31þ12x1x2212x21x24x32Þ þ ð4y31þ12y1y2212y21y24y32Þ ðx 1þy1Þ3þ3ðx1þy1Þðx2þy2Þ23ðx1þy1Þ2ðx2þy2Þ ðx2þy2Þ3

¼4ðx1x2Þ3þ4ðy1y2Þ3 ðxð 1þy1Þ ðx2þy2ÞÞ3

¼4ðx1x2Þ3þ4ðy1y2Þ3 ðxð 1x2Þ þ ðy1y2ÞÞ3

¼3ðx1x2Þ3þ3ðy1y2Þ33ðx1x2Þ2ðy1y2Þ 3ðx1x2Þðy1y2Þ2

¼3ððx1x2Þ þ ðy1y2ÞÞ ðx 1x2Þ2 ðx1x2Þðy1y2Þ þ ðy1y2Þ2 3ðx1x2Þðy1y2Þ ðxð 1x2Þ þ ðy1y2ÞÞ

¼3ððx1x2Þ þ ðy1y2ÞÞ ðxð 1x2Þ ðy1y2ÞÞ2 0,

where the inequality is true sincex,y2 K2. Similarly, if20, we also have, 1 j2j ¼ ð4x31þ12x1x22þ12x21x2þ4x32Þ þ ð4y31þ12y1y22þ12y21y2þ4y32Þ

ðx 1þy1Þ3þ3ðx1þy1Þðx2þy2Þ2þ3ðx1þy1Þ2ðx2þy2Þ þ ðx2þy2Þ3

¼4ðx1þx2Þ3þ4ðy1þy2Þ3 ðxð 1þy1Þ þ ðx2þy2ÞÞ3

¼4ðx1þx2Þ3þ4ðy1þy2Þ3 ðxð 1þx2Þ þ ðy1þy2ÞÞ3

¼3ðx1þx2Þ3þ3ðy1þy2Þ33ðx1þx2Þ2ðy1þy2Þ 3ðx1þx2Þðy1þy2Þ2

¼3ððx1þx2Þ þ ðy1þy2ÞÞ ðx 1þx2Þ2 ðx1þx2Þðy1þy2Þ þ ðy1þy2Þ2 3ðx1þx2Þðy1þy2Þ ðxð 1þx2Þ þ ðy1þy2ÞÞ

¼3ððx1þx2Þ þ ðy1þy2ÞÞ ðxð 1þx2Þ ðy1þy2ÞÞ2 0,

where the inequality is true since x,y2 K2. Thus, we have verified that f(t)¼t3 is SOC-convex on [0,1) forn¼2.

Example 3.4

(a) The function f(t)¼t3is not SOC-monotone onR.

(b) Moreover,f(t)¼t3is not SOC-monotone on [0,1) forn3.

(c) However,f(t)¼t3is SOC-monotone on [0,1) forn¼2.

To see (a) and (b), let x¼ ð2, 1,1Þ K30 and y¼ ð1, 1, 0Þ K3 0. It is clear that xK3y. But, we have f(x)¼x3¼(20, 14,14) and f(y)¼y3¼(4, 4, 0), which

(13)

gives fðxÞ fðyÞ ¼ ð16, 10, 14Þ 6K30. Thus, we show that f(t)¼t3 is not even SOC-monotone on the interval [0,1).

To see (c), let x¼ ðx1,x2Þ K2y¼ ðy1,y2Þ K2 0. Again, we have the following inequalities:

jx2j x1, jy2j y1, jx2y2j x1y1, which leads to the inequalities (11). In addition, we know

fðxÞ ¼x3 ¼x31þ3x1x22, 3x21x2þx32 , fðyÞ ¼y3¼y31þ3y1y22, 3y21y2þy32

:

We denotefðxÞ fðyÞ:¼ ð1,2Þ, where

1¼x31y31þ3x1x223y1y22, 2¼x32y32þ3x21x23y21y2: (

We wish to prove thatfðxÞ fðyÞ ¼x3y3K2 0, which is enough to show1|2|.

This is true because

x31y31þ3x1x223y1y22 x32y32þ3x21x23y21y2

¼ x31y31þ3x1x223y1y22 ðx32y32þ3x21x23y21y2Þ if20 x31y31þ3x1x223y1y22þ ðx32y32þ3x21x23y21y2Þ if20 (

¼ ðx1x2Þ3 ðy1y2Þ3 if20 ðx1þx2Þ3 ðy1þy2Þ3 if20 (

0,

where the inequalities are true by the inequalities (11).

Hence, we complete the verification.

Now, we move to another simple functionf(t)¼1/t. We will prove that1/tis SOC- monotone on the interval (0,1) and 1/tis SOC-convex on the interval (0,1) as well.

For the proof, we need the following technical lemmas.

LEMMA 3.1 For any ab> 0and cd> 0,we always have a

b

c d

aþc

bþd ð12Þ

Proof The proof is followed byacðbþdÞ bdðaþcÞ ¼abðcdÞ þcdðabÞ 0. g LEMMA 3.2 For any x¼ ðx1,x2Þ, y¼ ðy1,y2Þ 2 Kn,we have

(a) ðx1þy1Þ2 ky2k24x1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2

q .

(b) ðx1þy1 ky22 4x1ðy1 ky2kÞ.

(c) ðx1þy1þ ky22 4x1ðy1þ ky2kÞ:

(d) x1y1 hx2,y2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21 kx2k2 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

. (e) ðx1þy1Þ2 kx2þy2k24 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 kx2k2 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

.

(14)

Proof

(a) The proof follows from

ðx1þy1Þ2 ky2k2 ¼x21þ ðy21 ky2k2Þ þ2x1y1

2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

þ2x1y1

2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

þ2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

¼4x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2 q

,

where the first inequality is true due to the fact thataþb2 ffiffiffiffiffi pab

for any positive numbersaandb.

(b) The proof follows from x1þy1 ky2k

ð Þ24x1ðy1 ky2kÞ ¼x21þy21þ ky2k22x1y12y1ky2k þ2x1ky2k

¼ðx1y1þ ky220:

(c) Similarly, the proof follows from x1þy1þ ky2k

ð Þ24x1ðy1þ ky2kÞ ¼x21þy21þ ky2k22x1y1þ2y1ky2k 2x1ky2k

¼ðx1y1 ky220:

(d) We know thatx1y1 hx2,y2i x1y1 kx2k ky2k 0, and x1y1 kx2k ky2k

ð Þ2x21 kx2k2

y21 ky2k2

¼x21ky2k2þy21kx2k22x1y1kx2k ky2k

¼ðx1ky2k y1kx220:

Hence, we obtainx1y1 hx2,y2i x1y1 kx2k ky2k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x21 kx2k2 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y21 ky2k2

q .

(e) The proof follows from

ðx1þy1Þ2 kx2þy2k2¼x21 kx2k2

þy21 ky2k2

þ2ðx1y1 hx2,y2iÞ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx21 kx2k2Þðy21 ky2k2Þ q

þ2ðx1y1 hx2,y2iÞ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx21 kx2k2Þðy21 ky2k2Þ q

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx21 kx2k2Þðy21 ky2k2Þ q

¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðx21 kx2k2Þðy21 ky2k2Þ q

, where the first inequality is true sinceaþb2 ffiffiffiffiffi

ab

p for all positive a,b and the

second inequality is from part(d). g

PROPOSITION 3.3 Let f:ð0,1Þ ! ð0,1Þbe f(t)¼1/t.Then (a) f is SOC-monotone on(0,1).

(b) f is SOC-convex on(0,1).

Références

Documents relatifs

~o. The theorem is therefore established.. The component therefore contains no interior point.. Thus our component must have interior points, a contradiction. M~

Zaslavski, The turnpike property for extremals of nonautonomous variational problems with vector-valued functions, Nonlinear Anal. Zaslavski, Turnpike Properties in the Calculus

Our main result is that if the obstacle function ?p has distributional derivatives of order one which are of class EP for some p &amp;#x3E; n and is Holder

to vector valued functions on a semigroup.- Indeed we shall consider more general topological vector spaces than Banach spaces.. Notations and

MITCHELL, Constant functions and left invariant means on semi-groups,

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

The theorem of L. SCHWARTZ on mean periodic functions of one variable states that every closed translation-invariant subspace of the space of continuous complex functions on 1R

THEOREM 2.. lattice) isomorphism between two Z-semisimple f-rings induces a homeomorphism between their spaces of maximal Z-ideals [4] (resp.. (3) implies(2) because any