• Aucun résultat trouvé

Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line

N/A
N/A
Protected

Academic year: 2021

Partager "Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01191347

https://hal.archives-ouvertes.fr/hal-01191347

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Ivermectin induces P-glycoprotein expression and

function through mRNA stabilization in murine

hepatocyte cell line

Cécile Menez-Berlioz, Laila Mselli-Lakhal, Magali Vignault-Foucaud, Patrick

Balaguer, Roger Alvinerie, Anne Lespine

To cite this version:

Cécile Menez-Berlioz, Laila Mselli-Lakhal, Magali Vignault-Foucaud, Patrick Balaguer, Roger

Alvinerie, et al.. Ivermectin induces P-glycoprotein expression and function through mRNA

stabi-lization in murine hepatocyte cell line. Biochemical Pharmacology, Elsevier, 2012, 83 (2), pp.269-278.

�10.1016/j.bcp.2011.10.010�. �hal-01191347�

(2)

Ivermectin

induces

P-glycoprotein

expression

and

function

through

mRNA

stabilization

in

murine

hepatocyte

cell

line

Ce´cile

Me´nez

a,

*

,

Laı¨la

Mselli-Lakhal

a

,

Magali

Foucaud-Vignault

a

,

Patrick

Balaguer

b,c,d,e

,

Michel

Alvinerie

a

,

Anne

Lespine

a

a

INRAUMR1331,Universite´ deToulouse,INP,TOXALIM,Toulouse,F-31027,France

b

IRCM,InstitutdeRechercheenCance´rologiedeMontpellier,Montpellier,F-34298,France

c

INSERM,U896,Montpellier,F-34298,France

dUniversite´ Montpellier1,Montpellier,F-34298,France e

CRLCVald’AurellePaulLamarque,Montpellier,F-34298,France

1. Introduction

Macrocyclic lactones (MLs), such as ivermectin, are a large family of broad spectrum antiparasitic drugs intensively used worldwideinlivestocktotreatdiseasescausedbygastrointestinal nematodesandexternalparasites.Inhumans,ivermectinisused throughmassdrugadministrationprogramsforthetreatmentof onchocerciasis,a tropicalparasiticdiseasecaused bythefilarial nematode Onchocerca volvulus. MLs resistance has become a

worsening problem in veterinary medicine and recent reports suggestthathumanivermectin-resistantparasitesareemerging, thusthreateningthesustainableefficacyofthisdrug[1].

P-glycoprotein (P-gp, MDR1/ABCB1) is a plasma membrane proteinbelongingtotheATP-bindingcassette(ABC)transporters family. Thistransporter is an ATP-dependent efflux pump that reduces the intracellular concentration of a broad range of hydrophobic compounds and is involved in the multidrug resistance(MDR)[2].TheactivityofeffluxABCtransporterscan besubjecttoregulationbyinhibitionorinductionand consider-able evidence has accumulated to indicate that MDR gene expressioncanberapidlyandtransientlyinducedfollowingacute exposure to some xenobiotics [3,4]. The regulation of ABC transporters occurs by transcriptional or post-transcriptional events. At transcriptional level, the constitutive androstane receptor (CAR, NR1I3)and the pregnaneX receptor(PXR, SXR, NR1I2),twonuclearreceptorsprimarilyexpressedintheliver,are

BiochemicalPharmacology83(2012)269–278

ARTICLE INFO

Articlehistory:

Received29August2011 Accepted11October2011 Availableonline18October2011

Keywords: Ivermectin Macrocycliclactones P-glycoprotein Mdr1 Hepatocytes ABSTRACT

Ivermectiniswidelyusedinhumanandveterinarymedicineforthecontrolofhelminthinfections. IvermectinisknowntointeractwithP-glycoprotein(P-gp/MDR1),beingagoodsubstrateandapotent inhibitor,however,theinfluenceofivermectin ontheexpressionofthetransporter hasnot been investigated.ExpressionofP-glycoproteinwas investigatedin culturedmouse hepatocytesacutely exposedtoivermectin.ThetwoP-glycoproteinmurineisoforms,Mdr1aandMdr1b,mRNAlevelswere assessed byreal-timeRT-PCR. Ivermectin induced acleartime- and concentration-dependent up-regulationofMdr1aandMdr1bmRNAlevels(asearlyasa12-hexposureandupto2.5-foldat10mM). Moreover,ivermectin-treatedcellsdisplayedenhancedcellulareffluxoftheP-glycoproteinsubstrate calcein that was inhibited by the P-glycoprotein blocker valspodar, providing evidence that the ivermectin-inducedP-glycoprotein was functional. Themechanisms underlyingthese effectswere investigated.Ivermectin-mediatedMdr1mRNAinductionwasindependentofthetwonuclearreceptors CARandPXR,whichareknowntobeinvolvedindrugtransportersregulation.Moreover,byusing reportercelllinesthatdetectsspecificligand-activatedtranscriptionfactors,weshowedthativermectin didnotdisplayedCAR,PXRorAhRligandactivities.However,studieswithactinomycinDrevealedthat thehalf-lifeofMdr1aandMdr1bmRNAweresignificantlyprolongedbytwo-foldinivermectin-treated cellssuggestingapost-transcriptionalmodeofivermectinregulation.Thisstudydemonstratesforthe firsttimethativermectininducesP-glycoproteinoverexpressionthroughpost-transcriptionalmRNA stabilization,thusofferinginsightintothemechanismofreducedtherapeuticefficacyanddevelopment ofivermectin-resistantparasites.

ß2011ElsevierInc.Allrightsreserved.

Abbreviations:ABC,ATP-bindingcassette;AhR,aryl-hydrocarbonreceptor;CAR, constitutiveandrostanereceptor;IVM,ivermectin;MLs,macrocycliclactones; P-gp,P-glycoprotein;PXR,pregnaneXreceptor.

*Correspondingauthorat:INRAToxAlim–UMR1331INRA/INP,180cheminde Tournefeuille–BP93173,31027ToulouseCedex3,France.Tel.:+33561285152; fax:+33561285310.

E-mailaddress:cecile.menez@toulouse.inra.fr(C.Me´nez).

ContentslistsavailableatSciVerseScienceDirect

Biochemical

Pharmacology

j our na l ho me p a ge : w ww . e l se v i e r . com / l oc a te / b i och e mph a rm

0006-2952/$–seefrontmatterß2011ElsevierInc.Allrightsreserved. doi:10.1016/j.bcp.2011.10.010

(3)

nowbothwidelyrecognizedtoplaythemostimportantroleinthe regulationof MDR1 [5–7]. Other specificligand-activated tran-scription factors have been implicated in regulation of drug transportersexpressionsuchasaryl-hydrocarbonreceptor(AhR) [8].Apartfromtranscriptionalregulation,overexpressionofP-gp has also been shown to be controlled partially through post-transcriptional mechanisms, such as mRNA stability alteration [9,10].

P-gphasbeenclearlyidentifiedasthemainfactorthatcontrols the concentration of ivermectin by affecting its absorption, distribution, and elimination in the host [11,12], but also its neurotoxicitybylimitingitspenetrationinthebrain[13].Despite thekeyroleofP-gpinmetabolism,toxicity,efficacyanddrug–drug interactions of many other xenobiotics [14], the question of whetherivermectincanaffecttheexpressionlevelsofP-gphasnot beenaddressed.Severalargumentsfromtheliteratureimplythat ivermectinmaymodulateP-gpexpression.(i)ManyP-gpfunction modulators are oftenfound to influence the expressionof the transporter in cells [15], and ivermectin is reported as good substrateandpotentinhibitorofP-gp[16,17].(ii)Ivermectinwas previously shown to induce the expression and activity of cytochrome P450 isoenzymes, including CYP1A, 2B and 3A subfamilies in vivo [18,19], suggesting that ivermectin could interactwithcellulartranscriptionfactorssuchasAhR,CARand PXR which are involved in chemical induction of these cyto-chromes [20]. Since several studies have shown that the biotransformation systems (phase I/II) and efflux proteins are regulatedbythesamenetworkoftranscriptionfactors,onecan speculatethativermectinmayalsoregulateABCefflux transpor-tersexpression.(iii)P-gphomologsexpressionlevelswereshown tobeincreasedinivermectin-resistantnematodes[21–23].

Inthiscontext,thisstudyaimedatinvestigatingP-gpregulation in response to acute ivermectin treatment. Hepatocytes were chosen as a suitable in vitro model system for studying the potentialofxenobioticstomodulateP-gpgeneexpression[24]and elucidating the role of specific transcription factors in the regulation of gene involved in the metabolism of xenobiotics [25,26].Theobjectivesweretoevaluatetheabilityofivermectinto modulate P-gp gene expression, to determine the functional significanceofthismodulationandtofurtherestablishmolecular mechanismsunderlyingthiseffect.Our findingdemonstratefor the first time that acute exposure to ivermectin led to over-expression of functional P-gp in mouse liver cells through increasedstabilityofmRNAinthecell.

2. Materialsandmethods 2.1. Materials

1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene(TCPOBOP), preg-nenolone 16

a

-carbonitrile (PCN), dimethylsulfoxide (DMSO), T0901317,geneticin(G418),TritonX-100,calcein-AM, actinomy-cinD(Act-D)andivermectinwerepurchasedfromSigma–Aldrich Chimie(StQuentinFallavier,France).LuciferinwasfromPromega (Charbonnie`res-les-bains,France).Valspodar(VP)wasagenerous gift from Novartis (Basel, Switzerland). 2,3,7,8-Tetrachlorodi-benzo-p-dioxin(TCDD,dioxin)waspurchased fromPromochem (Wesel,Germany).Dulbecco’smodifiedEagle’smedium(DMEM), phosphate buffered saline (PBS), fetal bovine serum (FBS), glutamine,penicillin–streptomycinsolution(10,000units/ml pen-icillinand10,000

m

g/mlofstreptomycin),trypsin–EDTAsolution (0.05% trypsin, 0.53mM EDTA) and lipofectamine 2000 were obtained from Invitrogen – Life Technologies (Cergy Pontoise, France). Tissue culture plastic flasks and culture plates were supplied by Sarstedt (Orsay, France). All otherchemicals were obtainedfromSigma–Aldrich,unlessotherwisestated.

2.2. Cellcultureandtreatment

JWZmurinehepaticcells,alsoreferredtoasMuSH immortal-ized hepatocytes [27], were kindly provided by Dr. J.P. Gray (Pennsylvania, USA). These cells expressed standard levels of Retinoid X Receptor (RXR), the heterodimeric partner of the nuclearreceptorsCARandPXR,whileCARandPXRtranscriptare barely detectable, providing a useful tool for mechanistic examinationoftheroleofnuclearreceptorsin generegulation, aspreviouslydescribed[27,28].JWZcellswereculturedinDMEM supplementedwith10%fetalbovineserum,2mML-glutamineand

100U/mlpenicillin, 100

m

g/mlstreptomycin. Cellswerekept at 348Cin 5% CO2 and 95%humidity. Every 3–4days, cells were

trypsinizedandseededat5105cellsper6-wellclustertraysfor

induction studies. The cells were grown at more than 80% confluenceandexposedtoivermectinordifferentcompoundsof interestatvariousconcentrationsortothevehiclefor6,12,24,48 or72h.AlldrugsweredissolvedinDMSOatafinalconcentration of0.1%(v/v).

2.3. Cytotoxicityassays

2.3.1. Cellviability:theMTS-tetrazoliumsaltassay

Thecellviabilityinpresenceofivermectinwasevaluatedusing theCellTiter961

AQueousNon-RadioactiveCellProliferationAssay

(Promega, Charbonnie`res-les-bains, France). The MTS (3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium)assayisbasedontheabilityofviablecells toconvertasolubletetrazoliumsalttoaformazanproduct.JWZ cellswereseededat5104cellsin96-wellcultureplates.24h

afterseeding,increasingconcentrationsofivermectinwereadded; mediaand DMSO wereused as negativeand positive controls, respectively.JWZcellswerefurtherincubatedat348Cfor24,48or 72h.Thereafter,20

m

loftheMTS/PMSmixture(MTS/PMSratio: 20:1)wasaddedtoeachwellandplateswereincubatedat348Cfor 4h.Attheendofincubationperiod,absorbancewasrecordedat 492nmusingamultiwell-scanningspectrophotometer.

2.3.2. Releaseoflactatedehydrogenase

Theeffectofivermectinuponcellintegritywasalsodetermined by measurement of lactate dehydrogenase (LDH)-release as a markerofcellmembranedamageusingtheCytotoxicityDetection Kit(RocheAppliedScience,Meylan,France).JWZcellsgrownon 96-welldisheswereincubatedwithincreasingconcentrationsof ivermectin.After24,48or72hofexposure100

m

lsampleswere withdrawnandanalyzedforLDHcontent.Incontrolexperiments, cellswereincubatedwithmediumor1%TritonX-100.Afterwards, resultswerenormalizedto0%and100%LDHrelease,respectively. 2.4. FunctionaldetectionoftheP-gpactivity(calceinassay)

P-glycoprotein transport activitywasassessed following the intracellular accumulation of the P-gp fluorescent substrate calcein,aspreviouslydescribed[29].Briefly,confluentJWZcells in 24-well cluster plates were cultured with (treated cells) or without(controlcells)10

m

Mivermectinfor48h.Cellswerethen incubatedwithorwithoutthereferenceP-gpinhibitorvalspodar (5

m

M) for 40min. After this pre-incubation period, cells were washedwithPBSbufferand 0.5

m

Mcalcein-AM(inDMSO)was added for a 2-hincubation period at 348C. Medium wasthen removed,cellswerewashed2timeswithice-coldPBSandalysis buffer (1%Triton X-100 and SDS 0.1% in PBS) was added. The intracellularfluorescencecorrespondingtocalceinaccumulation wasmeasuredincelllysatebyusingamicroplatereader(TECAN, InfiniteTM200,Lyon,France),witha485nmexcitationwavelength

(4)

contentperwelldeterminedbyusingaBio-Radproteinassaykit (Bio-RadLaboratories,Marnes-la-Coquette,France).

2.5. TotalRNAisolationandRT-PCRanalysis 2.5.1. IsolationofRNAandcDNAsynthesis

Aftertwowasheswithice-coldPBS,thecellswereharvested andtotalcellularRNAwasisolatedusingTrizolReagent (Invitro-gen, Cergy Pontoise, France) according to the manufacturer’s instructions.TotalRNAwasquantifiedusingnanodropND-1000 spectrophotometer(NanodropTechnologiesInc.,Wilmington,DE, USA).RNApuritywascheckedbymeasurementoftheA260/280nm

ratio, which was routinely in the range of 1.8–2.0, and RNA integrity was checked upon migration in 1% agarose gel and visualizationwithethidiumbromidestainingandUVirradiation. cDNAwas synthesizedfrom2

m

gof totalRNAusing the High-CapacitycDNA Reverse Transcriptionkit (AppliedBiosystems – LifeTechnologies,Courtaboeuf,France).

2.5.2. QuantificationofmRNAexpressionbyRT-PCR

Real-timequantitative PCR (RT-qPCR)was performed using anABIPrism 7300SequenceDetectionSysteminstrumentand software (Applied Biosystems, Courtaboeuf, France). Gene-specificprimers for SYBRGreen assays are described in Table 1. All primers were designed using Primer Express software version2.0(AppliedBiosystems)andsynthesizedbyInvitrogen (CergyPontoise,France).AllprimerswereenteredintotheNCBI Blastprogramtoensurespecificity.Resultswereexpressedusing the comparative Ct method as described in User Bulletin 2 (AppliedBiosystem).Briefly,the

D

Ct valueswerecalculatedin

every sample for each gene of interest as following: Ctgene o-f interestCt reporter gene,withTATA-box bindingprotein(TBP)as

thereportergene.Thefoldchange intheleveloftargetmRNA betweentreatedanduntreatedcellswasthenexpressedas2DCt with

D

CtS.D.whereS.D.isthestandarddeviationofthemeanof

the

D

Ct value. A dissociation curve allowed us to verify the

specificityoftheamplification.

2.6. TransienttransfectionassayandDNAconstructs

The pCR3-mCARconstruct expressing the murineCARwas kindlyprovidedbyDr.M.Negishi(NorthCarolina,USA)andthe pSG5-mPXR construct expressing the murine PXR was kindly provided by Dr. J.M. Pascussi (Montpellier, France). These plasmids were described previously [28,30]. JWZ cells (1.5106) wereplated onto10-cm culture dishes andgrown

inDMEMsupplementedwith10%fetalbovine serum,2mML

-glutamine,100U/mlpenicillin,100

m

g/mlstreptomycinina5% CO2atmosphereat348C.24hafterseeding,cellsweretransiently

transfectedwith8

m

g/plateofplasmidconstructcontainingthe cDNAformouseCAR(pCR3-mCAR),mousePXR(pSG5-mPXR),or theircontrolexpressionvector(pCR3orpSG5),using lipofecta-mine2000accordingtothemanufacturer’sprotocol.Cellswere transferredto6-wellplatesatadensityof5105cells/well16h

after transfection. Drugtreatments were performed24hafter transfection.

2.7. StudyoftheCAR-,PXR-andAhR-activatingcapacityof ivermectin

2.7.1. Stablereportercelllines

HG5LN parental cells, obtained by integration of GAL4RE5

-b

Glob-Luc-SVNeoinHeLacellsandcontainingastablyintegrated GAL4-responsivegene,havealreadybeendescribed[31]. mCAR-andmPXR-expressingcellswereobtained,aspreviouslydescribed [32,33], by transfecting HG5LN cells with

pSG5-GAL4(DBD)-mPXR(LBD)-puro or pSG5-GAL4(DBD)-mCAR(LBD)-puro, which enables theexpressionoftheDNA bindingdomainof theDNA bindingdomainoftheyeastactivatorGAL4(Met1–Ser147)fused to the ligand binding domain of mCAR or mPXR and confers resistancetopuromycin.TherodentAhR-activatingcapacitywas assessedwiththeH4IIEXRE-LUCcellline,whichwasobtainedby transfecting rat H4IIE hepatocytes cells with CYP1A1-Luc and pSG5-puro plasmids.A similardioxin reporter cellline, HAhLP, usedtoassessinteractionswithhumanAhR,haspreviouslybeen described[34].

2.7.2. Cellcultureconditions

HG5LN-mCAR,HG5LN-mPXRandH4IIEXRE-LUCcelllineswere

culturedinDMEMF12,supplementedwith5%offetalcalfserum (FCS)and1%antibiotic(penicillin/streptomycin)ina5%CO2and

95%air-humidifiedatmosphereat378C.HG5LNcellmediumwas

supplementedwith1mg/mlgeneticin(G418)andHG5LN-mPXR

and -mCARcellmediumwith1mg/ml geneticinand0.5

m

g/ml puromycin. Totest ivermectinforitsmCAR-,mPXR- and rAhR-activatingcapacity,cellsweregrowninDMEMF12supplemented with5%dextran-coated,charcoal-treatedfetal calfserum (DCC-FCS).

2.7.3. Livingcellluciferaseassay

Reportercellswereseededatadensityof2.5104cellsper

well in 96-well white opaque tissue culture plates (Greiner, France) and grown in 150

m

l DCC-FCS. Ivermectin or the referenceeffector(agonistorantagonist) wasadded24hafter seeding and the cells were then incubated for 24h with the compounds.Variousconcentrationsweretestedthroughserial dilutionusinganautomatedworkstation(biomek1

2000, Beck-manCoulter).Toensure100%cellviability,ivermectin concen-tration rangeused wassetfrom 108Mto3.3

106M.Each

concentration was tested in quadruplicate in at least two experimentswhichincludedbothnegative(solvent)andpositive (reference agonist or antagonist) controls. At the end of incubation, medium was removed and replaced with 0.3mM luciferin-containingculturemedium.Intactlivingcell lumines-cence was measured for 2s usinga Microbeta Wallac lumin-ometer.Resultswereexpressedasafold-inductionofthebasal luciferaseactivitymeasuredinuntreatedcells,whichwassetto 1.ReferenceagonistligandwasusedinHG5LN-mPXRandH4IIE

XRE-LUCcells(PCN10

m

MandTCDD(dioxin)10nM, respective-ly).DuetothehighconstitutiveactivityofCARinHG5LN-mCAR

cells, a reference antagonist ligand was used as control (T0901317 10

m

M). All effectors were dissolved in DMSO at 10mMandthendilutedinculturemedium.

Table1

PrimersequencesusedinquantificationofthegeneexpressionbyqRT-PCR.

Targetedgene Forwardprimer(50to30) Reverseprimer(50to30)

Mdr1a(Abcb1a) CATGACAGATAGCTTTGCAAGTGTAG GGCAAACATGGCTCTTTTATCG

Mdr1b(Abcb1b) AAGCCAGTATTCTGCCAAGCAT CTCCAGACTGCTGTTGCTGATG

Cyp3a11 TCACACACACAGTTGTAGGCAGAA GTTTACGAGTCCCATATCGGTAGAG

Cyp2b10 TTTCTGCCCTTCTCAACAGGAA ATGGACGTGAAGAAAAGGAACAAC

TBP ACTTCGTGCAAGAAATGCTGAA GCAGTTGTCCGTGGCTCTCT

(5)

2.8. DeterminationofMdr1mRNAsstability

Thehalf-livesofMdr1aandMdr1bmRNAweredeterminedby an Act-D chase assay, as previously described [35]. JWZ cells were pre-treatedwith ivermectin (10

m

M) or DMSO for 24h. Thereafter,thetranscriptioninhibitoractinomycinDwasadded to inhibit further RNA synthesis. Act-D was used at a final concentrationof5

m

g/mlfor1h,then,toavoidAct-D toxicity, mediumwasreplacedandAct-D,inthepresenceorabsenceof ivermectin10

m

M,wasaddedataconcentrationof1

m

g/mlfor thefollowing24h.Cellswereharvested,atvarioustimes(0,3,6, 10and24h)aftertheadditionof1

m

g/mlAct-D,totalRNAwas isolatedandlevelsofMdr1aandMdr1bmRNAswerequantified by RT-qPCR as described above. TBP mRNA levels were also monitoredascontrol.Thedatawererepresentedaspercentage decreasein mRNA levelsversus timeusing a semilogarithmic scale.ThemRNAhalf-lifevaluesweredeterminedwiththeuseof regressioncurves.

2.9. Statisticalanalysis

All experiments were conducted at least in triplicate and resultsareexpressedasmeanstandarddeviation(S.D.). Statisti-cal analysis was performed using one-way analysis of variance (ANOVA)withaTukeypost-testtocomparetheeffectofivermectin overcontrolcells,whileindividualcomparisonsbetweenpairsof data were performed using the Mann–Whitney test (GraphPad Instat,SanDiego,CA,USA).Statisticalsignificancewasacceptedas p<0.05.

3. Results

3.1. Effectsofivermectinoncellviability

Theaimofthesestudieswastodeterminesubtoxic concentra-tionsofivermectinwhichcouldbeusedinthesubsequentstudies onhepatocytesJWZcells.Thecytotoxicityofivermectintowards JWZcellswasexaminedusingtheMTSassayandLDHrelease.The dose-dependentviabilityofJWZcellstreatedwithivermectinfor 24,48 or72his presentedinFig.1.Theseresultsshowedthat ivermectin had cytotoxic effects in a concentration- and time-dependentmanner.A24-htreatmentwithivermectinupto25

m

M induced no significant mitochondrial toxicity or cell-growth inhibitiontowardsJWZcells,asrevealedbytheMTSassaywith morethan90%cellviability;howeverLDHreleasearound35%was observed.WhenJWZcellswereexposedtoivermectinfor72hat concentrationbelow12.5

m

M,nocytotoxiceffectswereobserved. TheeffectiveLD50values(concentrationthatcauses50%lethality)

at 24, 48 and 72h were determined graphically and were approximately75,30and20

m

M,respectively.Subsequentstudies wereperformedfollowinganivermectinincubationperiodupto 72handwithconcentrationsupto10

m

M,atimeand concentra-tionexposureofivermectinthatgavemorethan80%cellviability andmoderateLDHrelease(lessthan20%).

3.2. Time-dependenteffectsofivermectinonP-glycoproteinmRNA expression

We first analyzed the effects of ivermectin treatment as a functionoftime ontheexpressionofthe2genesencodingthe murineP-glycoprotein,Mdr1aandMdr1b(Abcb1aandAbcb1b)in JWZ mouse cultured hepatocytes. JWZ cells were exposed to 10

m

Mivermectinfor6,12,24,48,or72handmRNAlevelswere determined by RT-qPCR. Fig. 2 shows a time-dependent up-regulationinMdr1aandMdr1bmRNAwhencellswereexposedto 10

m

M ivermectin. A significant increase in mRNA level was

0 20 40 60 80 100 120 100 10 1 0 Ivermectin (µM) LDH release (% of control) 24h 48h 72h 0 20 40 60 80 100 120 100 10 1 0 Ivermectin (µM)

Cell viability (% of control)

24h 48h 72h

A

B

Fig.1. Cytotoxiceffectsofivermectin onJWZcellsasafunctionoftimeand concentration.CytotoxicitywasmeasuredbytheMTSassay(A)andLDHrelease(B) following24,48or72hincubationat348C,5%CO2and95%relativehumidity.For

theMTSassay,mediumandDMSOwereusedaspositive(100%cellviability)and negative(0%cellviability)controls,respectively.ForLDHassay,mediumandTriton 1%wereusedasnegative(0%LDHrelease)andpositive(100%LDHrelease)controls, respectively,and results were normalized to 0% and 100% LDH-release. All measurementswereexpressedasmeanS.D(n=8).

0 1 2 3 72 60 48 36 24 12 0 Time (h) G e n e exp ressi o n l e vel s Fold induc tion r e la ti v e t o c o nt ro l Mdr1a Mdr1b ** *** ** *** *** *** 6

Fig.2.Time-dependenteffectsofivermectinonMdr1aandMdr1bmRNAlevels. MouseJWZhepatocytesweretreatedwith10mMivermectin(IVM)orwiththe vehiclealone(DMSO)for6,12,24,48or72h.Mdr1aandMdr1bmRNAexpression wasthendeterminedbyreal-timeqPCRusinggene-specificprimersasdescribedin Section2.ThemRNAexpressionlevelswereexpressedas-foldincreaseoverthe correspondingcontrol(untreatedcells)giventhearbitraryvalueof1.Dataare reported as the meanS.D. of three independent experiments. **p<0.01; ***p<0.001versusuntreatedcontrol.

(6)

observed as early as 12h after treatment for Mdr1a (1.5-fold, p<0.01) and 24h for Mdr1b (1.6-fold, p<0.01). The two P-glycoproteinmRNAsweremaximallyup-regulatedafter48h (1.9-and2.4-foldovercontrolforMdr1aandMdr1b,respectively).The up-regulationofMdr1expressionappearedtobetransientwitha lowerinductionaftera longerexposuretoivermectin(1.2-and 2.0-fold of control levels with a 72hexposure for Mdr1a and Mdr1b, respectively). TBP mRNA, which wasused as a loading control,remainedstableoverthetimeperiodofthestudy(datanot shown).

3.3. Concentration-dependenteffectsofivermectinonP-glycoprotein mRNAexpression

Thedose-responserelationshipforivermectineffectstowards P-glycoproteinexpression wasthen characterized. JWZ hepato-cyteswereeitheruntreatedorexposedtovariousconcentrationof ivermectinrangingfrom0.5to10

m

Mfor48h.Resultsareshown inFig.3.Evenatlowconcentrationsuchas0.5

m

M,ivermectinwas abletoaltertheexpressionofMdr1awithaslightbutsignificant 1.3-fold increase (p<0.05). When higher concentrations were used,Mdr1aandMdr1bmRNAlevelsweresignificantlyincreased by ivermectin treatment in a clear concentration-dependence mannerupto2.1-and2.5-foldforMdr1aandMdr1b,respectively. 3.4. P-glycoproteinfunctionalactivityinJWZhepatocytesunder influenceofivermectin

We then determined whether the induction of Mdr1 gene expressionbyivermectinresultedinamodulationof P-glycopro-teintransportfunction.TomeasureP-gptransportactivityinJWZ cells,weusedafluorometricassaypreviouslydescribed[29].This assayutilizeslipophilicnonfluorescentcalcein-AMwhich pene-tratesintothecell,whereitisimmediatelycleavedbyesterasesto highlyfluorescentcalcein.Becausecalcein-AMisa high-affinity substrate for P-gp, intracellular calcein fluorescence inversely

correlateswithP-gpactivityand,therefore,isameasureof P-gp-mediatedtransport. Thus,anincreaseinP-gpactivityresultsin reducedintracellularcalceinfluorescenceandviceversa.

As expected, the presence of valspodar, the P-glycoprotein-selective blocker, in untreated cells resulted in a significant increaseincalceinaccumulationofmorethat1.6-foldcompared with control (Fig. 4). This result indicates that P-gp actively extrudedcalceinfromJWZcellsandthatvalspodarclearlyinhibit P-gp transport function in these cells. When JWZ cells were cultured with10

m

M ivermectinfor 48hbefore measuringthe intracellularcalceinaccumulation,atreatmentwhichwasshown to increase Mdr1 gene expression, intracellular calcein fluores-cencewasreducedbymorethan30%comparedwithuntreated cells, indicating that the P-gp-mediated efflux of calcein was increased.TheseresultsdemonstratethattheinductionofMdr1 mRNAexpressionobservedwith10

m

Mivermectinfollowinga 48-h exposure is associated with an increase in P-gp transport function.Itisimportanttonotethatthiseffectwasabolishedwith valspodar (Fig. 4), indicating that the reduction in intracellular calceinfluorescencewasspecificallymediatedbyP-gp.

3.5. Roleoftranscriptionfactorsintheivermectin-induced modulationofP-glycoproteinmRNAexpression

BecauseCAR,PXRandAhRhavebeenrecognizedas transcrip-tionfactorsplayinganimportantroleinthexenobiotic-induced regulationoftheexpressionofeffluxABCtransporterssuchasP-gp [6,36,37],weinvestigatedtheirroleintheivermectin-induced up-regulation of Mdr1 mRNA expression through two different approaches.

3.5.1. InductionofMdr1aandMdr1bmRNAbyivermectinin CAR-andPXR-overexpressingcells

Nuclearreceptors-overexpressinghepatocyteshaveprovedto beusefulmodelsinelucidatingtheroleoftranscriptionfactorsin the induction of ABC efflux transporters or cytochromes by xenobiotics[25,26].We thereforefirstlyevaluatedtheeffectsof ivermectin in JWZ hepatocytes overexpressing the functional mouse CAR (Fig.5A)or PXR(Fig. 5B). Aspreviously described,

0 1 2 3 Mdr1b Mdr1a

Gene expression levels

Fold induction relative to control

CTR IVM 0.5 µM IVM 1 µM IVM 5 µM IVM 10 µM * *** *** *

Fig.3.Concentration-dependenteffectsofivermectinonMdr1aandMdr1bmRNA levels. Mouse JWZ hepatocytes were either untreated (CTR) or exposed to increasingconcentrationsofivermectin(IVM),rangingfrom0.5to10mM,for 48h.ChangesinMdr1aandMdr1bmRNAlevels,normalizedwithrespecttoTBP mRNAlevels,weredeterminedbyreal-timeqPCRusinggene-specificprimersas describedin Section 2. ThemRNAexpression levels wereexpressedas-fold inductionrelativetocontrol(DMSO)andarereportedasthemeanS.D.ofsix independentexperiments.*p<0.05;***p<0.001versuscontrol.

Fig. 4. P-glycoprotein transportactivity in JWZ cells exposed to ivermectin. Intracellularcalceinfluorescencewasassessedinuntreatedcellsorfollowinga 48-htreatmentwithivermectin(IVM,10mM)withorwithouta40-minpre-exposure to the P-gp-specific inhibitor valspodar (VP, 5mM). Data are expressed as percentage of control; each data represents meanS.D. (n=4). ***p<0.001, significantlygreaterthancontrol;###

p<0.001,significantlylowerthancontrol. C.Me´nezetal./BiochemicalPharmacology83(2012)269–278 273

(7)

Cyp2b10andCyp3a11, theprototypicaltargetgenesofCAR [38] andPXR[39],wereusedasa positiveindicatorforCARorPXR activation,respectively;whileTCPOBOP,asyntheticdirectagonist ofmouseCAR,andPCN,asyntheticagonistofmousePXR,were usedaspositivecontrols.

In untransfected JWZcells,mouse CARand PXRconstitutive expression levels were extremely low under basal conditions, which correlated with the impaired induction of Cyp2b10 by TCPOBOPorCyp3a11by PCN,respectively (Fig. 5). InJWZ cells transientlytransfectedwithpmCARorpmPXR,TCPOBOPorPCN wereabletoincreaseeitherCyp2b10(3.4-fold,p<0.001,Fig.5A)or Cyp3a11(4.1-fold, p<0.001,Fig.5B)expression, demonstrating that these nuclear receptors could be further activated in our model by an agonist. Fig. 5 shows that a 48-h exposure of ivermectinmodifiedtheexpressionlevelofMdr1aandMdr1bin the exact same manner in CAR- or PXR-overexpressing cells comparedwithJWZcellstransfectedwiththecontrolplasmid:the overexpression of these nuclear receptors did not further up-regulate Mdr1 in ivermectin-treated cells and no significant differencesinfold-inductionlevelswereobservedcomparedwith controlJWZcells.Theseresultsprovidesupportforthehypothesis thattheivermectin-inducedregulationswereindependentofthe activationofCARorPXRnuclearreceptors.

3.5.2. ActivationofPXR,CARandAhRbyivermectin

Inordertoprovidemoredataonthecapacityofivermectinto activate specific transcription factors, we used bioluminescent reporter cell lineswhich have already proved to bea valuable model to detect nuclear receptor ligands [31,40]. These cells expressed the GAL4-DNA binding domain fused to different nuclearreceptorligandbindingdomainsandallowthedetection ofcompoundsthatactivatesomespecifictranscriptionfactors.

Ivermectin was tested for its ability to activate rodent transcriptionfactors (murineCAR, murinePXR andrat AhR)by using three different reporter celllines (HG5LN-mCAR, HG5

LN-mPXRandH4IIEXRE-LUC)inwhichPXR,CARandAhRagonistsor antagonists induced or repressed luciferase gene expression. Activationwasmeasuredinthesecellsinthepresenceofincreased concentrations ofivermectin from108Mto3.3

106M. The

vehicle alone (DMSO) was used as negative control (luciferase activitybaselinesetto1)andknownreferenceeffectorswereused aspositivecontrol,asalreadydescribed[34].Resultsarepresented inTable2.Asexpected,thebasalluciferaseactivityofthemPXR andrAhRcelllinesaftertreatmentwiththeirreferenceagonistwas increased (2.3- and 10.1-fold, respectively) and the luciferase activityofthemCARcelllinewassignificantlydecreasedformore thanfourfoldaftertreatmentwiththeantagonistligandT0901317

Fig.5.InfluenceofthenuclearreceptorsCAR(A)andPXR(B)ontheivermectin-inducedmodulationofMdr1aandMdr1bgeneexpression.JWZcellsweretransiently transfectedwithmouseCAR(pCR3-mCAR),mousePXR(pSG5-mPXR),ortheirrespectivecontrolexpressionvector(pCR3andpSG5).24haftertransfection,cellsweretreated withthevehiclealone(0.1%DMSO;CTR),TCPOBOP(250nM),PCN(1mM)orincreasingconcentrationsofivermectin(IVM)for48h.ChangesinMdr1a,Mdr1b,Cyp2b10and Cyp3a11mRNAlevels,normalizedwithrespecttoTBPmRNAlevels,weredeterminedbyreal-timeqPCRusinggene-specificprimersasdescribedinSection2.ThemRNA expressionlevelswereexpressedas-foldinductionrelativetocontrolandarereportedasthemeanS.D.(n=6).*p0.05;**p0.01;***p0.001versuscontrol.

(8)

(Table 2). Ivermectin, at all concentrations tested, did not modulatedluciferase gene expressionin HG5LN-mCAR,HG5

LN-mPXR or H4IIE XRE-LUC cell lines (Table 2): the activation in ivermectin-treated cells was not statistically different from untreatedcells.Theseresultsshowedthativermectinwasnota CAR,PXRorAhRligand.

3.6. EffectofivermectinonMdr1aandMdr1bmRNAstability The level of mRNA expression is the result of the balance between the transcription and the elimination rate, through processinganddegradation.TheabsenceofinfluenceofCARand PXR on ivermectin-induced up-regulation of P-glycoprotein encoding genes prompted us to study theeffect of ivermectin onMdr1aandMdr1bmRNAstability.Therefore,thehalf-livesof Mdr1mRNAincontrolandivermectin-treatedcells were exam-ined,usinganAct-Dchaseexperiment.JWZcellswerestimulated withivermectinfor24htoinduceMdr1mRNAexpression,after whichthetranscriptioninhibitorAct-Dwasaddedinthepresence ofivermectinforanother24h.Steady-statelevelsofMdr1aand Mdr1bmRNAweredeterminedatvarioustimepointsafteradding Act-D. There was a significantly slower rate of decline for ivermectin-treated cells versus control (Fig. 6). The half-life of Mdr1a and Mdr1b mRNA under control conditions were 8.6h

(Fig. 6A) and 10.4h (Fig. 6B), respectively. By contrast, in ivermectin-inducedcells,Mdr1aandMdr1bmRNAhalf-liveswere 17.3h(Fig. 6A) and 17.2h(Fig. 6B), respectively. Thistwofold increase of the half-life of the P-gp mRNA demonstrates that ivermectintreatmentleadstothestabilizationoftheP-gpmRNA.It hastobenoted that thedegradationprofilesfor TBP mRNAin untreated and ivermectin-treated cells were similar (data not shown).Taken together,theseresultsclearlyindicatedthat up-regulationofMdr1mRNAfollowingexposuretoivermectinoccurs, atleastpartially,atpost-transcriptional levelthroughaspecific increaseinMdr1mRNAstability.

4. Discussion

Despite the well documented interactions of ivermectin, a commonly used anthelmintic, withP-gp, thereis no dataon a possible modulation of the expression of this transporter by ivermectin.Wehaveusedmurineculturedhepatocytestostudy the effects of short-term exposure to ivermectin on P-gp expressionandfunction.

In this study, ivermectinwas found toup-regulate the two mouseP-gpisoformsMdr1aandMdr1bgeneexpressioninbotha time-anddose-dependentmanner,demonstratingthespecificity oftheivermectin-inducedeffect.Mdr1mRNAlevelswererapidly

Table2

Modulationofluciferaseexpressionbyivermectininstabletransfectedcells. Celllines Transcriptionfactor Luciferaseactivity(foldinductiontoCTR)

CTR(DMSO) IVMconcentration Referenceeffector 108M 3.3 108M 107M 3.3 107M 106M 3.3 106M HG5LN-mCAR mCAR 1.000.05 1.030.07 nd 1.050.05 nd 1.040.05 nd T090131710mM (referenceantagoniste) 0.240.02*** HG5LN-mPXR mPXR 1.000.03 1.020.03 nd 1.040.03 nd 1.030.03 nd PCN10mM (referenceagoniste) 2.330.05*** H42EXRE rAhR 1.000.15 1.090.07 1.030.01 1.120.20 1.150.11 1.050.05 1.070.12 TCDD(dioxin)10nM

(referenceagoniste) 10.830.86*** TheluciferaseactivityofHG5LN-mCAR,HG5LN-mPXRandH42EXREcellswasmeasuredinuntreated,ivermectin-treatedandreferenceligand-treatedcells.Concentration

rangeofivermectinwasfrom108

Mto3.3106

M.ReferenceeffectorsusedwereT0901317(10mM),PCN(10mM)andTCDD(dioxin,10nM)formCAR,mPXRandrAhR, respectively.Theincubationperiodwithcompoundswas24h.Resultsareexpressedasafold-inductionofthebasalluciferaseactivitymeasuredinuntreatedcells(CTR), whichwassetto1,andarepresentedasmeanS.D.(quadruplet).***p<0.001versuscontrol.nd:notdetermined;m:murine;andr:rat.

Fig.6.EffectofivermectinonP-glycoproteinmRNAdecaypatternafteractinomycinDaddition.JWZcellsweretreatedwithDMSO(0.1%,CTR,whitesquare)orivermectin (10mM,IVM,blacksquare)for24h,afterwhichthetranscriptioninhibitoractinomycinD(Act-D5mg/mlfor1hand1mg/mlforthefollowing24h)wasaddedtoinhibit nascentRNAsynthesis.Cellswereharvestedatvarioustime-points(3,6,10or24hpostAct-Dtreatment),totalRNAwasisolatedandMdr1a(A)andMdr1b(B)mRNAlevels weredeterminedbyqRT-PCR,asdescribedinSection2.ThedatawereplottedasthepercentageofmRNAremainingusingasemilogarithmicscaleandwerereportedasthe meanS.D.ThemRNAlevelatzerotimepoint(beforetheAct-Dtreatment)wasconsideredas100%.Thehalf-livesofmRNA(t1/2)weredeterminedwiththeuseofregression

curves.

(9)

induced,asearlyas12hafterivermectinadditionforMdr1a,with concentrationaslowas0.5

m

M,andthemaximaleffectforboth Mdr1aandMdr1bwasobserved48hafterincubation. Further-more,theinductionofMdr1wasfoundtobetransient:therapid increaseinMdr1mRNAlevelreachedaplateauat24hor48hand thendecreased afterlonger exposuretimes,suchas72h.This kindoftransientinductionofMDR1hasalreadybeendescribedin hepatocytesafterexposuretohepatocytegrowthfactor[41],or with two PXR activators, rifampicin and hyperforin [42]. The time- and concentration-dependent effect suggests that in-creased levels of P-gp in ivermectin-treatedcells likely corre-spondtoanacuteinductioninresponsetotheanthelminticdrug. Thisis,toourknowledge,thefirstreportshowingthativermectin isabletoup-regulatetheexpressionofthiscrucialtransporter. KnowingthativermectinisagoodsubstrateofP-gp,ourresults are in agreement with thefact that,among other factors,the ability of drugs tointeract with ABC transporters can lead to overexpressionoftheseproteins[15].TheexpressionoftheMDR1 genecanberapidlyandtransientlyinducedafterashort-term exposuretoavarietyofxenobioticsin manycelllines,suchas rodent cultured hepatocytes [3,43], human cancer cell lines [44,45], but also after acute in vivo exposure of a tumor to cytotoxicchemotherapy[4].Ourresultsdealtwiththeexpression ofmurineP-gp anditwould behazardous toextrapolatethis conclusiontootherspeciessuchashumans.Additionaldataare neededinordertoexploretheabilityofivermectintoregulatethe P-gpgeneexpressioninhumanhepatocytes.Nevertheless,ithas beendemonstrated thatmdr1a andmdr1b geneexpression in rodentandMDR1inhumansare,atleastpartially,controlledby the same negative regulatory element [46]. In addition, P-gp mRNA levels were increased in a dose- and time-dependent mannerupontransientexposuretoavarietyofcytotoxicdrugs includingdoxorubicin[44,45]anddaunorubicin[45,47]inhuman cellsbutalsoinrodentcells[3,48],demonstratingthatsimilar regulatoryeffectofxenobioticonP-gpexpressioninhumanand rodentcellscanbeobserved.

Thepossiblemechanismsinvolvedinivermectinup-regulation of Mdr1a and Mdr1b gene expression were investigated. The rapidityoftheresponseuponivermectintreatmentexcludesgene amplification, gene rearrangement or mutations and supports transcriptionalactivationorpost-transcriptionalregulationasthe underlyingmechanism.

Wefirstlyexaminedtheroleofsometranscriptionfactorssince transcriptional activation is the most common mechanism describedforup-regulationofMDR1geneexpression,andseveral regulatoryelementshavebeenidentifiedandcharacterizedinthe MDR1promoterregion.SincethenuclearreceptorsCARandPXR arecellularsensorscapableofrespondingtochemicalexposure [49–51]andhavebeenimplicatedinMDR1regulation[37,52],we investigated their potential role in the ivermectin-induced modulation of P-gp. We therefore used mouse hepatocytes transiently overexpressing the functional mouse CAR or PXR. Similarpatternsandextentofthedose-dependentmodulationsof P-gp induced by ivermectin were observed in CAR- or PXR-overexpressingcellsandincontrolcells,whichexpressCARand PXRataverylowlevel.Thisstronglysuggeststhativermectinmay have CAR- and PXR-independent effects on gene expression. Furthermore,usingbioluminescentcelllinesexpressing transcrip-tionfactors,wehavedemonstratedthativermectinwasnotaCAR, PXRorAhRligand.Inaccordancewithourresults,itwaspreviously shownthattoxicinsultincreasedMDR1expressionthrough CAR-independent mechanisms [53]. However, the role of other transcriptionfactors,includingnuclearreceptors,inthe ivermec-tin-inducedregulationscannotbediscardedsincenumberofthem suchasPPAR

g

,aswellasNrf2, aredescribedtobeinvolvedin effluxABCtransporterstranscriptionalregulation[8,37].

Besidestranscriptionalactivation,post-transcriptional regula-tionatthelevelofmRNAstabilitywasshowntobeanimportant mechanism for P-gp overexpression in vitro [54] and in vivo [10,55].In ourstudy,Mdr1 mRNAdecaywasexamined. mRNA half-lifeinuntreatedcellswasfoundtobearound9hwhichisin therangeofvaluesreportedintheliterature[35,56].Interestingly, stabilityofMdr1aandMdr1b mRNAwasmarkedlyincreasedby ivermectintreatment,demonstratingthatthisdrugreducedthe degradationrateofMdr1mRNAthuscontributing,atleastinpart, totheincreaseofP-gpgeneexpression.Interestingly,varietyof drugs–suchascycloheximide[57],doxorubicin[58],vinblastine [58],colchicine[58], daunorubicin[47]oretoposide[47],were previouslyshowntoinduceMDR1geneexpressioninmammalian cellsuponacutetreatment,asshortasa24-hexposure,through enhancedmRNAstabilityratherthanincreasedtranscription.In furtheragreementwithourresults,atorvastatin,aP-gpsubstrate [59]andinhibitor[60],asivermectinis,wasabletoinduceP-gp mRNA expression[61]. More interestingly, regulation of MDR1 mRNA expression in human hepatocytes by atorvastatin was recentlyassociatedwithamodulationinmRNAdegradation[9]. ThedetailedmechanismthatcausesstabilizationofP-gpmRNAin alloftheabovestudiesiscurrentlyunknown.Thestabilityofa particular mRNA is partially controlled by specific interactions betweenitsstructuralelements andtrans-actingfactors:mRNA bindingproteinsandsomemicroRNAs.Recently,miRNAs,which contribute to post-transcriptional processing through 30

-UTR-interference,havebeeninvolvedintheregulationofABCB1mRNA degradation[62,63].Sinceseveralcompoundshavebeenshownto influence P-gp mRNA stability, it is reasonable to think that ivermectinmayinteractwitha putativetrans-actingstabilizing factor which is activated upon drug exposure, resulting in increasedmRNAstability.However,themRNAstabilizing mecha-nism which is responsiblefor the differentialstability of P-gp mRNAinivermectin-treatedcellsversusuntreatedcellsremainsto beelucidated.

In our conditions, when JWZ hepatocytes were exposed to 10

m

Mivermectin,Mdr1mRNAlevelwasincreasedupto2.5-fold, duetoatwofoldincreaseinMdr1mRNAhalf-life,comparedwith untreated cells. It is now recognized that a two to fourfold fluctuationinmRNAhalf-lifecanhavesignificanteffectsonmRNA andproteinabundance[64].Therefore,toinvestigatewhetherthe inductionoftheP-gpmRNAlevelbyivermectinwasreflectedat theproteinandtransportactivitylevel,anassaypreviouslyusedto screenforP-gp–druginteractions[29]wasperformed.Whencells weretreatedwith10

m

Mivermectinfor48h,conditionswhich caused a 2.5-fold increase in Mdr1 gene expression, the P-gp transportfunctionwasincreasedbymorethan30%.Consistently with our observation, an important correlation between P-gp modulation at the level of mRNA and the transport activity [3,65,66],butalsobetweenP-gpproteinlevelsandeffluxactivity followingtreatment withvariousdrugs[67]hasbeenreported. Interestingly,manycompoundsdefinedasP-gpsubstratesactedto induceP-gpgeneexpressionandactivity,butrarelydisplayedan inhibitoryactivityonthetransporter[61].Ourresultsdemonstrate thativermectin,acompetitivesubstratedisplayingbothsubstrate and inhibitory activity, was also able to up-regulated mRNA expressionandconsequentlytransportactivityoftheP-gp.

P-gpisexpressedinmultiplekeyorgansindrugdisposition such as smallintestine, blood–brain barrier, kidneyand liver and it is well established that induction of the P-gp activity cancausereduceddrugsbiodispositionanddecreased therapeu-tic efficacy [68]. It was recently shown that even moderate increasesintheexpressionofMdr1genesaresufficienttocause doxorubicinresistanceinvivo[69],suggestingapossibleimpact onthepharmaco-andtoxicokineticofmanydrugsand endoge-nousP-gpsubstrates.Thepotentialinvolvementofivermectinin

(10)

P-gp-mediateddrug–druginteractionswhenadministeredwith otherdrugsthatareP-gpsubstratesshouldthereforebetakeninto account in human andveterinary therapy. Furthermore, since ivermectindispositioninhostismainlycontrolledbyP-gpefflux attheintestinal[11]andhepaticlevel[12,13,70],up-regulationof itsexpressionmaycontributetotheautoinductionofivermectin elimination,resultinginadecreaseofthebodydispositionandthe intracellular levels of this anthelmintic agent in the host organism.Thistransportregulationmaybeconsideredasafirst stepinloweringthedrugdispositionandthereforedrugefficacy. Acquiredresistancetoivermectin isbecominga majorclinical concernintheprevention/treatmentofparasitesandeventhough the factors responsible for the development of resistance to antiparasitic compounds are not perfectly understood, one of them is the exposure of parasites to subtherapeutic drug concentrations[71].Therefore,thisstudyoffersinsightintothe potential for resistance development through modulation of ivermectin pharmacokinetic in the mammalian host. Further-more,P-gphomologsarethoughttoplayanimportantroleinthe resistanceofnematodeparasitesagainstMLs[21],anddatafrom the literature suggests that induction of P-gp expression in responsetoivermectintreatmentmayalsoexistinnematodes. Indeed, P-gp homologs were shown to be overexpressed in ivermectin-resistantwormssuchasHaemonchuscontortus[22] andCaenorhabditiselegans[23],andafterexposureofthesealice LepeophtheirussalmonistotheMLemamectin[72].Up-regulation oftheseproteinswouldservetoeliminateMLsfromtheparasite, limitingtheaccumulationofatoxicconcentrationatthetarget receptors,thereforeofferingprotectionoftheparasite. Interest-ingly,multidrugresistancephenotypehasbeenassociatedtoan overexpressionofsomeP-gphomologsthrough post-transcrip-tionalregulation,includingincreaseinmRNAstabilityinBacillus subtilis [73], but also in the protozoan parasites Entamoeba histolytica[74].Altogether,thesedatademonstratethatexposure toMLs,ivermectininparticular,potentlymodulatesP-gpsinboth mammals and parasites and that partial similarities in the mechanisms of ABC efflux transporters regulation may exist betweenmammalsandparasites.Theelucidationofthe molecu-larmechanismsofoverexpressionofABCeffluxtransportersin nematodes could provide useful markers for monitoring MLs resistanceandpossibletargetsforinterventionindrugresistant parasites.

Insummary, this reportdemonstrates forthefirsttime that acute ivermectin treatment induces P-gp gene expression and activity in mouse hepatocytes through post-transcriptional regulationaffectingP-gp mRNAdegradation.Theseresultshave significant clinical implications regarding alteration of drug dispositionanddrug–druginteractionsinhostandofferinsight intothepotentialforemergenceofmultidrugresistanceduring anthelmintictreatmentinparasites.

Acknowledgments

We gratefully acknowledge Abdel Boulahtouf and Virginie Belletforreportercelllinesstudies.WealsothankArnaudPolizzi (Integrative Toxicology and Metabolism, INRA UMR1331) for helpfuladvicesinqPCRstudies.

References

[1]Osei-AtweneboanaMY,AwadziK,AttahSK,BoakyeDA,GyapongJO,Prichard RK.Phenotypicevidenceofemergingivermectin resistanceinOnchocerca volvulus.PLoSNeglTropDis2011;5:e998.

[2]SchinkelAH,Jonker JW.Mammalian drugefflux transportersofthe ATP bindingcassette(ABC)family:anoverview.AdvDrugDelivRev2003;55:3–29. [3]ChinKV,ChauhanSS,PastanI,GottesmanMM.RegulationofmdrRNAlevelsin responsetocytotoxicdrugsinrodentcells.CellGrowthDiffer1990;1:361–5.

[4]AbolhodaA,WilsonAE,RossH,DanenbergPV, BurtM,ScottoKW.Rapid activationofMDR1geneexpressioninhumanmetastaticsarcomaafterinvivo exposuretodoxorubicin.ClinCancerRes1999;5:3352–6.

[5]MaglichJM,StoltzCM,GoodwinB,Hawkins-BrownD,MooreJT,KliewerSA. Nuclearpregnanexreceptorandconstitutiveandrostanereceptorregulate overlappingbutdistinctsetsofgenesinvolvedinxenobioticdetoxification. MolPharmacol2002;62:638–46.

[6]SynoldTW,DussaultI,FormanBM.TheorphannuclearreceptorSXR coordi-natelyregulatesdrugmetabolismandefflux.NatMed2001;7:584–90. [7]WeiP,ZhangJ, DowhanDH,HanY,MooreDD.Specificandoverlapping

functions ofthe nuclear hormonereceptors CARand PXR in xenobiotic response.PharmacogenomicsJ2002;2:117–26.

[8]MaherJM,ChengX,SlittAL,DieterMZ,KlaassenCD.Inductionofthemultidrug resistance-associatedproteinfamilyoftransportersbychemicalactivatorsof receptor-mediatedpathwaysinmouseliver.DrugMetabDispos2005;33: 956–62.

[9]RodriguesAC,CuriR,HirataMH,HirataRD.DecreasedABCB1mRNA expres-sioninducedbyatorvastatinresultsfromenhancedmRNAdegradationin HepG2cells.EurJPharmSci2009;37:486–91.

[10]LeeCH,BradleyG,LingV.IncreasedP-glycoproteinmessengerRNAstabilityin ratlivertumorsinvivo.JCellPhysiol1998;177:1–12.

[11]Kiki-MvouakaS,MenezC,BorinC,LyazrhiF,Foucaud-VignaultM,DupuyJ, etal.RoleofP-glycoprotein inthedispositionofmacrocycliclactones: a comparisonbetweenivermectin,eprinomectin,andmoxidectininmice.Drug MetabDispos2010;38:573–80.

[12]KweiGY,AlvaroRF,ChenQ,JenkinsHJ,HopCE,KeohaneCA,etal.Disposition ofivermectinandcyclosporinAinCF-1micedeficientinmdr1a P-glycopro-tein.DrugMetabDispos1999;27:581–7.

[13]SchinkelAH,SmitJJ,vanTellingenO,BeijnenJH,WagenaarE,vanDeemterL, etal.Disruptionofthemousemdr1aP-glycoproteingeneleadstoadeficiency intheblood–brainbarrierandtoincreasedsensitivitytodrugs.Cell1994;77: 491–502.

[14]LespineA,ChanoitG,Bousquet-MelouA,LallemandE,BassissiFM,Alvinerie M,etal.Contributionoflymphatictransporttothesystemicexposureoforally administeredmoxidectininconsciouslymphduct-cannulated dogs.EurJ PharmSci2006;27:37–43.

[15]SchrenkD,BausPR,ErmelN,KleinC,VorderstemannB,KauffmannHM. Up-regulationoftransportersoftheMRPfamilybydrugsandtoxins.ToxicolLett 2001;120:51–7.

[16]LespineA,MartinS,DupuyJ,RouletA,PineauT,OrlowskiS,etal.Interactionof macrocycliclactoneswithP-glycoprotein:structure–affinityrelationship.Eur JPharmSci2007;30:84–94.

[17]DidierA,LoorF.Theabamectinderivativeivermectinisapotent P-glycopro-teininhibitor.AnticancerDrugs1996;7:745–51.

[18] SkalovaL,SzotakovaB,MachalaM,NecaJ,SoucekP,HavlasovaJ,etal.Effect ofivermectinonactivitiesofcytochromeP450isoenzymesin mouflon (Ovismusimon)andfallowdeer(Damadama).ChemBiolInteract2001;137: 155–67.

[19]SkalovaL,SzotakovaB,MachalaM,NecaJ,LamkaJ,DuchacekL,etal.Effectof ivermectinoninductionofcytochromesP450inmalerats.ChemPapers 2000;54:249–53.

[20]OkeyAB.EnzymeinductioninthecytochromeP-450system.PharmacolTher 1990;45:241–98.

[21]PrichardRK,RouletA.ABCtransporters andbeta-tubulin inmacrocyclic lactoneresistance:prospectsformarkerdevelopment.Parasitology2007;134: 1123–32.

[22]XuM,MolentoM,BlackhallW,RibeiroP,BeechR,PrichardR.Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog.MolBiochemParasitol1998;91:327–35.

[23]James CE,DaveyMW. IncreasedexpressionofABCtransportproteinsis associatedwithivermectinresistanceinthemodelnematodeCaenorhabditis elegans.IntJParasitol2009;39:213–20.

[24]NishimuraM,KoedaA,SuzukiE,KawanoY,NakayamaM,SatohT,etal. RegulationofmRNAexpressionofMDR1,MRP1,MRP2andMRP3by proto-typicalmicrosomalenzymeinducersinprimaryculturesofhumanandrat hepatocytes.DrugMetabPharmacokinet2006;21:297–307.

[25]SueyoshiT,KawamotoT,ZelkoI,HonkakoskiP,NegishiM.Therepressed nuclearreceptor CARresponds tophenobarbitalinactivating thehuman CYP2B6gene.JBiolChem1999;274:6043–6.

[26]XiongH,YoshinariK,BrouwerKL,NegishiM.Roleofconstitutiveandrostane receptorintheinvivoinductionofMrp3andCYP2B1/2byphenobarbital. DrugMetabDispos2002;30:918–23.

[27]TienES,GrayJP,PetersJM,VandenHeuvelJP.Comprehensivegeneexpression analysisofperoxisomeproliferator-treatedimmortalizedhepatocytes: iden-tification of peroxisome proliferator-activated receptor alpha-dependent growthregulatorygenes.CancerRes2003;63:5767–80.

[28]EveillardA,Mselli-LakhalL,MoghaA,LasserreF,PolizziA,PascussiJM,etal. Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor(CAR):anovelsignallingpathwaysensitivetophthalates.Biochem Pharmacol2009;77:1735–46.

[29]HolloZ,HomolyaL,DavisCW,SarkadiB.Calceinaccumulationasa fluoro-metricfunctionalassayofthemultidrugtransporter.BiochimBiophysActa 1994;1191:384–8.

[30]PascussiJM,RobertA,NguyenM,Walrant-DebrayO,GarabedianM,MartinP, etal.PossibleinvolvementofpregnaneXreceptor-enhancedCYP24 expres-sionindrug-inducedosteomalacia.JClinInvest2005;115:177–86. C.Me´nezetal./BiochemicalPharmacology83(2012)269–278 277

(11)

[31]SeimandiM,LemaireG,PillonA,PerrinA,CarlavanI,VoegelJJ,etal. Differen-tialresponsesofPPARalpha,PPARdelta,andPPARgammareportercelllinesto selectivePPARsyntheticligands.AnalBiochem2005;344:8–15.

[32]LemaireG, MnifW,PascussiJM,PillonA,Rabenoelina F,Fenet H,et al. IdentificationofnewhumanpregnaneXreceptorligandsamongpesticides usingastablereportercellsystem.ToxicolSci2006;91:501–9.

[33]LemaireG,BenodC,NahoumV,PillonA,BoussiouxAM,GuichouJF,etal. Discoveryofahighlyactiveligandofhumanpregnanexreceptor:acasestudy frompharmacophoremodelingandvirtualscreeningto‘‘invivo’’biological activity.MolPharmacol2007;72:572–81.

[34]DagninoS,GomezE,PicotB,CavaillesV,CasellasC,BalaguerP,etal.Estrogenic andAhRactivitiesindissolvedphaseandsuspendedsolidsfromwastewater treatmentplants.SciTotalEnviron2010;408:2608–15.

[35]MullerC,GoubinF,FerrandisE,Cornil-ScharwtzI,BaillyJD,BordierC,etal. Evidencefortranscriptionalcontrolofhumanmdr1geneexpressionby verapa-milinmultidrug-resistantleukemiccells.MolPharmacol1995;47:51–6. [36]MathieuMC,LapierreI,BraultK,RaymondM.Aromatichydrocarbonreceptor

(AhR).AhRnucleartranslocator-andp53-mediatedinductionofthemurine multidrugresistancemdr1geneby3-methylcholanthreneand benzo(a)pyr-eneinhepatomacells.JBiolChem2001;276:4819–27.

[37]BurkO,ArnoldKA,GeickA,TegudeH,EichelbaumM.Aroleforconstitutive androstanereceptorintheregulationofhumanintestinalMDR1expression. BiolChem2005;386:503–13.

[38]HonkakoskiP,ZelkoI,SueyoshiT,NegishiM.Thenuclearorphanreceptor CAR-retinoidXreceptorheterodimeractivatesthephenobarbital-responsive enhancermoduleoftheCYP2Bgene.MolCellBiol1998;18:5652–8. [39]LehmannJM,McKeeDD,WatsonMA,WillsonTM,MooreJT,KliewerSA.The

humanorphannuclearreceptorPXRisactivatedbycompoundsthatregulate CYP3A4geneexpressionandcausedruginteractions.JClinInvest1998;102: 1016–23.

[40]BalaguerP,BoussiouxAM,DemirpenceE,NicolasJC.Reportercelllinesare usefultoolsformonitoringbiologicalactivityofnuclearreceptorligands. Luminescence2001;16:153–8.

[41]LeVeeM,LecureurV,MoreauA,StiegerB,FardelO.Differentialregulationof drugtransporterexpressionbyhepatocytegrowthfactorinprimaryhuman hepatocytes.DrugMetabDispos2009;37:2228–35.

[42]OttM,FrickerG,BauerB.PregnaneXreceptor(PXR)regulatesP-glycoprotein attheblood–brainbarrier:functionalsimilaritiesbetweenpigandhuman PXR.JPharmacolExpTher2009;329:141–9.

[43]SchrenkD,MichalkeA,GantTW,BrownPC,SilvermanJA,ThorgeirssonSS. Multidrug resistancegene expressioninrodents androdent hepatocytes treatedwithmitoxantrone.BiochemPharmacol1996;52:1453–60. [44]ChaudharyPM,RoninsonIB.Inductionofmultidrugresistanceinhumancells

bytransientexposuretodifferentchemotherapeuticdrugs.JNatlCancerInst 1993;85:632–9.

[45]HuXF,SlaterA,WallDM,KantharidisP,ParkinJD,CowmanA,etal.Rapid up-regulationofmdr1expressionbyanthracyclinesinaclassical multidrug-resistantcellline.BrJCancer1995;71:931–6.

[46]GantTW,SilvermanJA,ThorgeirssonSS.RegulationofP-glycoproteingene expressioninhepatocyteculturesandlivercelllinesbyatrans-acting tran-scriptionalrepressor.NucleicAcidsRes1992;20:2841–6.

[47]BakerEK,JohnstoneRW,ZalcbergJR,El-OstaA.EpigeneticchangestotheMDR1 locusinresponsetochemotherapeuticdrugs.Oncogene2005;24:8061–75. [48]Fardel O, LecureurV,DavalS, CorluA,Guillouzo A.Up-regulationof

P-glycoproteinexpressioninratlivercellsbyacutedoxorubicintreatment. EurJBiochem1997;246:186–92.

[49]TimsitYE,NegishiM.CARandPXR:thexenobiotic-sensingreceptors.Steroids 2007;72:231–46.

[50]TolsonAH,WangH.Regulationofdrug-metabolizingenzymesbyxenobiotic receptors:PXRandCAR.AdvDrugDelivRev2010;62:1238–49.

[51]XieW,BarwickJL,SimonCM,PierceAM,SafeS,BlumbergB,etal.Reciprocal activationofxenobioticresponsegenesbynuclearreceptorsSXR/PXRand CAR.GenesDev2000;14:3014–23.

[52]KotaBP,TranVH,AllenJ,BebawyM,RoufogalisBD.CharacterizationofPXR mediatedP-glycoproteinregulationinintestinalLS174Tcells.PharmacolRes 2010;62:426–31.

[53]HaslamIS,JonesK,ColemanT,SimmonsNL.Rifampinanddigoxininductionof MDR1expressionandfunctioninhumanintestinal(T84)epithelialcells.BrJ Pharmacol2008;154:246–55.

[54]LeeCH,BradleyG,LingV.OverexpressionoftheclassIIP-glycoproteingenein primaryrathepatocyteculture:evidenceforincreasedmRNAstability.Cell GrowthDiffer1995;6:347–54.

[55]KrenBT,TrembleyJH,SteerCJ.AlterationsinmRNAstabilityduringratliver regeneration.AmJPhysiol1996;270:G763–77.

[56]ProkipcakRD,RaoufA,LeeC.TheAU-rich30untranslatedregionofhuman

MDR1mRNAisaninefficientmRNAdestabilizer.BiochemBiophysRes Com-mun1999;261:627–34.

[57]LeeCH.InductionofP-glycoproteinmRNAtranscriptsbycycloheximidein animaltissues:evidencethatclassIPgpistranscriptionallyregulatedwhereas classIIPgpispost-transcriptionallyregulated.MolCellBiochem2001;216: 103–10.

[58]YagueE,ArmesillaAL,HarrisonG,ElliottJ,SardiniA,HigginsCF,etal. P-glycoprotein(MDR1)expressioninleukemiccellsisregulatedattwodistinct steps,mRNAstabilizationandtranslationalinitiation.JBiolChem2003;278: 10344–52.

[59]HochmanJH,PudvahN,QiuJ,YamazakiM,TangC,LinJH,etal.Interactionsof humanP-glycoproteinwithsimvastatin,simvastatinacid,andatorvastatin. PharmRes2004;21:1686–91.

[60]BoydRA,SternRH,StewartBH,WuX,ReynerEL,ZegaracEA,etal.Atorvastatin coadministrationmayincreasedigoxinconcentrationsbyinhibitionof intes-tinalP-glycoprotein-mediatedsecretion.JClinPharmacol2000;40:91–8. [61]HaslamIS,JonesK,ColemanT,SimmonsNL.Induction ofP-glycoprotein

expressionandfunctioninhumanintestinalepithelialcells(T84).Biochem Pharmacol2008;76:850–61.

[62]KovalchukO,FilkowskiJ,MeservyJ,IlnytskyyY,TryndyakVP,ChekhunVF, etal.InvolvementofmicroRNA-451inresistanceoftheMCF-7breastcancer cellstochemotherapeuticdrugdoxorubicin.MolCancerTher2008;7:2152–9. [63]ZhuH,WuH,LiuX,EvansBR,MedinaDJ,LiuCG,etal.RoleofMicroRNA miR-27aandmiR-451intheregulationofMDR1/P-glycoproteinexpressionin humancancercells.BiochemPharmacol2008;76:582–8.

[64]RossJ.mRNAstabilityinmammaliancells.MicrobiolRev1995;59:423–50. [65]SchrenkD,GantTW,MichalkeA,OrzechowskiA,SilvermanJA,BattulaN,etal.

Metabolicactivationof2-acetylaminofluoreneisrequiredforinductionof multidrugresistancegeneexpressioninratlivercells.Carcinogenesis1994;15: 2541–6.

[66]CermanovaJ,FuksaL,BrcakovaE,HrochM,KuceraO,KolouchovaG,etal. Up-regulationofrenalMdr1andMrp2transportersduringamiodarone pretreat-mentinrats.PharmacolRes2010;61:129–35.

[67]AbuznaitAH,PatrickSG,KaddoumiA.ExposureofLS-180cellstodrugsof diversephysicochemicalandtherapeuticpropertiesup-regulates P-glycopro-teinexpressionandactivity.JPharmPharmSci2011;14:236–48. [68]GlaeserH.ImportanceofP-glycoproteinfordrug-druginteractions.Handb

ExpPharmacol2011;1:285–97.

[69]PajicM,IyerJK,KersbergenA,vanderBurgE,NygrenAO,JonkersJ,etal. ModerateincreaseinMdr1a/1bexpressioncausesinvivoresistanceto doxo-rubicininamousemodelforhereditarybreastcancer.CancerRes2009;69: 6396–404.

[70]GeyerJ,GavrilovaO,PetzingerE.Brainpenetrationofivermectinand sela-mectininmdr1a,bP-glycoprotein-andbcrp-deficientknockoutmice.JVet PharmacolTher2009;32:87–96.

[71]VanZeverenAM,CasaertS,AlvinerieM,GeldhofP,ClaereboutE,VercruysseJ. Experimentalselectionforivermectin resistanceinOstertagiaostertagi in cattle.VetParasitol2007;150:104–10.

[72]TribbleND,BurkaJF,KibengeFS.Evidenceforchangesinthetranscription levelsoftwoputativeP-glycoproteingenesinsealice(Lepeophtheirus salmo-nis)inresponsetoemamectinbenzoateexposure.MolBiochemParasitol 2007;153:59–65.

[73]OhkiR,TatenoK.Increasedstabilityofbmr3mRNAresultsina multidrug-resistantphenotypeinBacillussubtilis.JBacteriol2004;186:7450–5. [74]Lopez-CamarilloC,Luna-AriasJP,MarchatLA,OrozcoE.EhPgp5mRNA

stabil-ityisaregulatoryeventintheEntamoebahistolyticamultidrugresistance phenotype.JBiolChem2003;278:11273–80.

Figure

Fig. 2. Time-dependent effects of ivermectin on Mdr1a and Mdr1b mRNA levels.
Fig. 4. P-glycoprotein transport activity in JWZ cells exposed to ivermectin.
Fig. 6. Effect of ivermectin on P-glycoprotein mRNA decay pattern after actinomycin D addition

Références

Documents relatifs

Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment... The first two authors should be regarded as joint

Table S14 List of the deregulated exons in colorectal adenomas in comparison with normal mucosae, for the genes from the Agilent TM gene expression signature of 44

The aim of the present study was to characterize the transcriptional profile of such intratumoral NK cells, by comparative microarray analysis of sorted NK cells isolated

(A) H1299 cells were transfected with plasmids encoding different p53-dependent firefly luciferase reporter genes together with a plasmid encoding a renilla

The corresponding vascular cast image with multiple intussusception involved branching and, due to pruning altered capillary plexus, is presented in Figure 2H.. These

We gave particular attention to several transcripts regulated by Fsh independently of the mediation of steroids, as they encode growth factor related products or cytokines, that may

To induce FXR target gene expression, HepG2 cells and human primary hepatocytes were treated for 24 hours with chenodeoxycholic acid (CDCA; 75µM) (Sigma, Saint-Quentin, France) or

La mesure de l’effet des concentrations croissantes de p-PD (18,5 μM, 46,3 μM) sur le taux de prolifération d’un nombre restreint de cellules P3X63Ag8,653 (5 cellules par puits)