• Aucun résultat trouvé

EfficientSystemDesignsforSingleand Multi-User Spatial Modulations

N/A
N/A
Protected

Academic year: 2021

Partager "EfficientSystemDesignsforSingleand Multi-User Spatial Modulations"

Copied!
213
0
0

Texte intégral

(1)

EfficientSystemDesignsforSingleand Multi-User Spatial Modulations

by

cIbrahimOsamaIbrahim MahmoudAl-Nahhal AdissertationsubmittedtotheSchoolofGraduateStudies

inpartialfulfillmentoftherequirementsforthedegreeof

DoctorofPhilosophy

FacultyofEngineeringandAppliedScience MemorialUniversityofNewfoundland

October2020 St.John’s,Newfoundland

(2)

Abstract

Spatialmodulation(SM)andquadratureSM(QSM)arepromisingversionsofthesingle-user multiple-inputmultiple-output(MIMO)systemthatovercometheproblemofinter-channel- interferencewhichoccursinconventional MIMOsystems.BothSMandQSMexploitthe indexoftheactivatedantenna(s)tocarryadditionalinformationtoenhancethetotalspectral efficiencyofthesystemtransmission.Inthedetection,theSMandQSMsystemsjointly detecttheindexoftheactivatedantenna(s)aswellasthetransmittedmodulationsymbol, whichisanexhaustiveprocessespeciallyforhigherordermodulationsandlargesystem dimensions.Thisexhaustiveprocesscontradictsthedemandsoffuturewirelessnetworks thatrequirelow-powerconsumptionandlowcommunicationlatency.

Tofulfillthedemandoflow-complexdecodersatthereceiversideforfuturewireless networks,Iproposethreedifferentlow-complexitydecodersforsingle-userSMandQSM MIMOsystems.Thesealgorithmsarebasedontheconceptofspheredecodingforthe tree-searchstructure.Thefirstproposedalgorithmprovidesasignificantreductioninthe decodingcomplexitywithoptimalbiterrorrate(BER)performance.Thesecondproposed algorithmprovidesanextrareductioninthedecodingcomplexitywithoutsacrificingthe optimalityoftheBERperformance.Finally,thethirdalgorithmprovidesaflexibletrade-off betweencomplexityandBERperformancetobesuitableformosthardwareimplementations. TheproposedalgorithmsarestudiedintermsofBERperformanceandexpecteddecoding complexityforthesingle-userSMandQSM MIMOsystems.

(3)

Formulti-userSM-MIMO,alow-costsystemisproposedusingthesparsecodemul- tipleaccess(SCMA)technique.Theproposedlow-costSM-SCMAsystemsignificantly reducestherequirednumberoftransmitantennaswithalmostnolossintermsoftheBER performanceanddecodingcomplexity,comparedwiththeconventionalSM-SCMA.Atthe receiver,themessagepassingalgorithm(MPA)isemployedtodetectthetransmittedsignals, whichsuffersfromhighdecodingcomplexityinpracticalimplementations.Toaddressthis issue,threelow-complexitydecodingalgorithmsareproposedfortheSM-SCMAsystem. Thefirstalgorithmprovidesthebenchmarkforthedecodingcomplexityattheexpenseofthe BERperformance.Thesecondalgorithmslightlyincreasesthedecodingcomplexitywitha significantimprovementintheBERperformance.Finally,thethirdalgorithmprovidesa near-optimumBERperformancewithaconsiderabledecodingcomplexityreductionwhen comparedtothe MPAdecoder. Moreover,itsupportstheparallelhardwareimplementation andstrikesatrade-offbetweendecodingcomplexityandBERperformance.

Morespecifically,thethreelow-complexityreceiversforthesingle-userSMandQSM MIMOsystemsareintroducedinChapters2,3,4and5.InChapter2,thefirstlow- complexityalgorithmforsingle-userQSM-MIMOsystemisproposed.Thesecondlow- complexityalgorithmforSM-MIMOsystemisintroducedinChapter3,andisanalyzedin Chapter4.Thereliabledecoderforsingle-userSM-MIMOsystemisproposedinChapter5. Formulti-userSM-SCMA,thelow-costsystemisproposedinChapter6;atthereceiverside, thethreelow-complexitydecodersfortheSM-SCMAsystemareproposedandanalyzedin Chapter7.

(4)

Tomyfatherandmother... Tomylovelywifeandkids... Tomytwosistersandtwobrothers...

Tomyentirefamilyandfriends...

(5)

Acknowledgments

PraisebetoAllah,theCherisherandSustaineroftheWorlds.AfterthankingAlmighty

"ALLAH"forhisblessingandguidancetocompletethiswork,Iwouldliketooffermy sincerethankstomysupervisorsProf.OctaviaDobreandDr.SalamaIkkifortheirvaluable guidanceandadvice.IwouldliketoexpressmydeepappreciationtoProf. Octaviafor herprofessionalismandpersonalcaringforherstudentsbeforeandafterthestudy;Iwas luckytobeherstudent,andIencouragehard-workergraduatestudentstogothroughthis amazingexperiencewithher.Iwouldliketoacknowledgethefinancialsupportprovidedby mysupervisors,theFacultyofEngineeringandAppliedScience,theSchoolofGraduate Studies,andtheNaturalScienceandEngineeringResearchCouncilofCanada(NSERC). IwouldliketothankmyEgyptianuniversity,Al-AzharUniversityinCairo,forletting metrythisfruitfulexperience.SinceasignificantpartofmyeducationwasinEgyptandmy foundationswerelaidinschoolsoftheZagazigandCairocities,Iwouldliketothankmy elementaryschoolteachers,myuncleHosnywhotaughtmemathatsecondaryandhigh schools,myB.Sc.professors,andmy M.Sc.thesissupervisorProf. MasoudAlghoniemy whoputmeontherightpathofscientificresearchandhasbeenstillintouchwithme.

Thefinalwordofacknowledgmentisreservedtomyparentsfortheirunconditional support,tomytwosistersandtwobrothersfortheirlove,tomyfriendsallovertheworld, tomysweetheartandlovelywifeIsraaandourkidsfortheirpatienceandformotivatingme. Finally,Iwouldliketosaythat“Iamnothingwithoutyouall.”

(6)

Co-AuthorshipStatement

I,IbrahimAl-Nahhal,holdaprincipleauthorstatusforallthemanuscriptchapters(Chapters 2-7)inthisdissertation. However,eachmanuscriptisco-authoredbymysupervisors andco-researchers,whosecontributionshavefacilitatedthedevelopmentofthisworkas describedbelow.

•Paper1inChapter2:I.Al-Nahhal,O.A.Dobre,andS.Ikki,“QuadratureSpatial ModulationDecodingComplexity:StudyandReduction,”IEEE WirelessCommuni- cationsLetters,vol.6,pp.378-381,Jun.2017.

Iwastheprimaryauthor,withauthors2and3contributingtotheidea,itsformulation anddevelopment,andrefinementofthepresentation.

•Paper2inChapter3:I.Al-Nahhal,O.A.Dobre,andS.Ikki,“LowComplexityDe- codersforSpatialandQuadratureSpatial Modulations,”inProceedingIEEEVehicle TechnologyConference(VTC-Spring),2018,pp.1–5.

Iwastheprimaryauthor,withauthors2and3contributingtotheidea,itsformulation anddevelopment,andrefinementofthepresentation.

•Paper3inChapter4:I.Al-Nahhal,E.Basar,O.A.Dobre,andS.Ikki,“Optimum Low-ComplexityDecoderforSpatial Modulation,”IEEEJournalonSelectedAreas inCommunications,vol.37,no.9,pp.2001-2013,Jul.2019.

(7)

anddevelopment,andrefinementofthepresentation.

•Paper4inChapter5:I.Al-Nahhal,O.A.Dobre,andS.Ikki,“ReliableDetection forSpatial ModulationSystems,”accepted,IEEEVehicleTechnologyConference (VTC-Fall),2020.

Iwastheprimaryauthor,withauthors2and3contributingtotheidea,itsformulation anddevelopment,andrefinementofthepresentation.

•Paper5inChapter6:I.Al-Nahhal,O.A.Dobre,E.Basar,andS.Ikki,“Low-Cost UplinkSparseCode MultipleAccessforSpatial Modulation,”IEEETransactions VehicleTechnology,vol.68,no.9,pp.9313-9317,Jul.2019.

Iwastheprimaryauthor,withauthors2-4contributingtotheidea,itsformulation anddevelopment,andrefinementofthepresentation.

•Paper6inChapter7:I.Al-Nahhal,O.A.Dobre,andS.Ikki,“OntheComplexity ReductionofUplinkSparseCode MultipleAccessforSpatial Modulation,”accepted, IEEETransactionsonCommunications,Aug.2020.

Iwastheprimaryauthor,withauthors2and3contributingtotheidea,itsformulation anddevelopment,andrefinementofthepresentation.

IbrahimAl-Nahhal Date

(8)

TableofContents

Abstract ii

Acknowledgments v

Co-AuthorshipStatement vi

TableofContents viii

ListofTables xiv

ListofFigures xv

ListofAbbreviations xix

1 Introduction 1

1.1 Background... 1

1.2 MIMOSystems... 2

1.3 Single-UserSpatial Modulation ... 3

1.3.1 SMFunctionality... 4

1.3.2 TheQSM-MIMOSystem ... 4

1.4 Multi-UserSM... 6

1.4.1 SCMAFunctionality... 7

(9)

1.4.2 TheSM-SCMASystem ... 9

1.5 PotentialApplicationsofSMtoEmergingCommunicationSystems.... 9

1.6 MotivationandOutline... 11

1.7 Contributions... 12

References... 14

2 QuadratureSpatial ModulationDecodingComplexity:StudyandReduction 20 2.1 Abstract... 20

2.2 Introduction... 21

2.3 TheQSMSystem Model... 22

2.4 TheQSM-MLDecoderComplexity... 23

2.5 Reduced-ComplexityQSMAlgorithm... 24

2.6 ComplexityanalysisoftheQSM-RC... 26

2.7 Numericalresults... 28

2.8 Conclusion ... 30

2.9 APPENDIX:Proofof(2.8)... 30

References... 33

3 LowComplexityDecodersforSpatialandQuadratureSpatial Modulations 36 3.1 Abstract... 36

3.2 Introduction... 37

3.3 SMandQSMSystem Models ... 38

3.3.1 Spatial Modulation... 38

3.3.2 QuadratureSpatial Modulation... 39

3.3.3 TheTree-SearchStructureConcept... 40

3.4 Proposedm-MLow-ComplexityAlgorithm... 40

3.5 ComplexityAnalysis... 43

(10)

3.6 UnionBoundErrorProbabilityAnalysis... 45

3.7 Numericalresults... 47

3.8 Conclusion ... 49

References... 49

4 OptimumLow-ComplexityDecoderforSpatial Modulation 54 4.1 Abstract... 54

4.2 Introduction... 55

4.3 System Model... 57

4.3.1 SM Modulator... 57

4.3.2 SM-MLDemodulation... 58

4.4 Minimum-Distanceof Maximum-LengthAlgorithm... 60

4.5 ComplexityAnalysis... 64

4.5.1 PerfectChannelStateInformationattheReceiver... 66

4.5.2 ImperfectChannelStateInformationattheReceiver... 68

4.6 OptimalityofBERPerformance... 70

4.7 NumericalResultsandDiscussions... 72

4.7.1 BERComparison... 73

4.7.2 AnalyticalComplexityAssessment ... 74

4.7.3 ComplexityComparison... 75

4.7.4 ComplexityReductionSensitivity... 76

4.7.5 Discussions... 77

4.8 Conclusion ... 79

References... 79

5 ReliableDetectionforSpatial ModulationSystems 95 5.1 Abstract... 95

(11)

5.2 Introduction... 96

5.3 System Model... 97

5.4 TheProposedRSDAlgorithm... 99

5.5 TheoreticalAnalysis ...101

5.5.1 BERUpperBoundAnalysis...101

5.5.2 ExpectedComplexityAnalysis...103

5.6 SimulationResults...105

5.6.1 AssessmentofExpectedComplexityfortheRSDAlgorithm....105

5.6.2 ComparisonswithLiteratureAlgorithms ...106

5.7 Conclusion ...107

References...107

6 Low-CostUplinkSparseCode MultipleAccessforSpatial Modulation 114 6.1 Abstract...114

6.2 Introduction...115

6.3 Related Workand Motivation...116

6.4 RGSM-SCMASystem Model ...117

6.5 RGSM-SCMASignalDetection...119

6.5.1 MLDecoder...120

6.5.2 MAPDecoder ...120

6.5.3 MPADecoder...122

6.5.4 MPAComplexityAnalysis...123

6.6 SimulationResults...124

6.7 Conclusion ...125

References...127

(12)

7 OntheComplexityReductionofUplinkSparseCode MultipleAccessforSpa-

tial Modulation 131

7.1 Abstract...131

7.2 Introduction...132

7.3 System Model...135

7.3.1 TransmittedandReceivedSignal...135

7.3.2 SignalDetection...137

7.3.2.1 MLDecoder...138

7.3.2.2 MPADecoder...138

7.4 TheProposedDecodingAlgorithms...140

7.4.1 TheSUDAlgorithm...141

7.4.2 The MSUDAlgorithm...142

7.4.3 TheFCSDAlgorithm...144

7.4.3.1 SM-SCMATree-search...144

7.4.3.2 TheFCSDAlgorithm...147

7.5 ComplexityAnalysis...150

7.5.1 TheSUDAlgorithm...150

7.5.2 The MSUDAlgorithm...151

7.5.3 TheFCSDAlgorithm...152

7.6 SimulationResultsandDiscussions ...152

7.6.1 ParametersSensitivity...153

7.6.2 BERPerformanceAssessment...157

7.6.3 DecodingComplexityAssessment...158

7.7 Conclusions...158

References...159

(13)

8 ConclusionsandPotentialDirectionsofFutureInvestigation 171

8.1 Conclusions...171

8.2 PotentialDirectionsofFutureInvestigation...172

References 174 Chapter1...174

Chapter2...178

Chapter3...179

Chapter4...181

Chapter5...185

Chapter6...186

Chapter7...188

(14)

ListofTables

6.1 TheRGSM-SCMAantennagroupingvectorlookuptableforNt=5,Na=2, Nc=8,andηus=3bpcu...118 6.2 Therealoperationsofthe MPAdecodersfortheSM-SCMAandRGSM-SCMA

systems...124

(15)

ListofFigures

1.1 TridimensionalconstellationdiagramoftheSM-MIMOsystemfor4trans- mitantennasand4modulationsymbols... 5 1.2 Exampleofinputbit-streammappingintheSM-MIMOsystemfor4transmit

antennasand4modulationsymbols... 5 1.3 TridimensionalconstellationdiagramoftheQSM-MIMOsystemfor4

transmitantennasand4modulationsymbols... 6 1.4 BasicconceptofSCMAtechniquefor6usersand4subcarriers... 8 1.5 ExampleofSCMAtechniquefor6usersand4subcarriers... 8 2.1 Thetree-searchstructurefortheQSM-RCdecoderforη=4bit/sec/Hz,

Nr=3,Nt=2andMQSM=4. ... 25 2.2 ComplexityreductioncomparisonofdifferentQSMdecodersforMQSM=4,

η=6bit/sec/Hz,Nt=4andNr=4... 29 2.3 NumberofVNscomparisonofdifferentQSMdecodersforMQSM=4,SNR

=10dBandNr=8... 29 2.4 BER-performancecomparisonofdifferentQSMdecodersforη=8bit/sec/Hz,

Nr=4,Nt=4,MSM=64andMQSM=16. ... 31 2.5 ComplexityreductioncomparisonofdifferentQSMdecodersforη=

8bit/sec/Hz,Nr=4,Nt=4,MSM=64andMQSM=16. ... 31

(16)

3.1 Thetree-searchstructurefortheSM-SDalgorithmfoSM=4b/s/Hz, Nr=3,Nt=2andMSM=2... 41 3.2 ReductionincomplexitybetweentheSM-MLandproposedm-Malgorithms

forη=6b/s/Hzandη=10b/s/Hz. ... 48 3.3 ReductionincomplexitybetweentheQSM-MLandproposedm-Malgo-

rithmsforη=6b/s/Hzandη=10b/s/Hz... 48 3.4 Complexitygainwhenusingtheproposedm-MovertheSM-SDalgorithms

in[5]and[8],forη=6b/s/Hzandη=10b/s/Hz... 50 3.5 Complexitygainwhenusingtheproposedm-MovertheQSM-SDalgo-

rithmsin[5]and[8],forη=6b/s/Hzandη=10b/s/Hz... 50 3.6 BERperformancecomparisonofdifferentSMdecodersforη=6b/s/Hz

andη=10b/s/Hz. ... 51 4.1 SMtree-searchdecoderforM =2,Nt=2,andNr=3withfourbranches. ... 60 4.2 Anumericalexampleforthem-Malgorithm(3×4SM-MIMOsystemandM =2).62 4.3 AveragenumberofNoMofthem-Mwalgorithmfor8×8SM-MIMOand8-QAM.72 4.4 BERcomparisonofdeterminedSM-MIMOsystemfordifferentdecoders. .... 80 4.5 BERcomparisonofunder-determinedSM-MIMOsystemfordifferentdecoders. . 80 4.6 BERcomparisonofover-determinedSM-MIMOsystemfordifferentdecoders... 81 4.7 ComplexityofdeterminedSM-MIMOsystemfortheproposedm-Malgorithm... 82 4.8 Complexityofunder-determinedSM-MIMOsystemfortheproposedm-Malgorithm.83 4.9 Complexityofover-determinedSM-MIMOsystemfortheproposedm-Malgorithm.84 4.10ComplexityreductioncomparisonofdeterminedSM-MIMOsystemfordifferent

decoders.... 85 4.11Complexityreductioncomparisonofunder-determinedSM-MIMOsystemfor

differentdecoders. ... 86

(17)

4.12Complexityreductioncomparisonofover-determinedSM-MIMOsystemfordiffer- entdecoders.... 87 4.13Complexityreductionoftheproposedm-MalgorithmforNt= Nr=16and

variableM.... 88 4.14Complexityreductionoftheproposedm-MalgorithmforM = Nr=16and

variableNt.... 88 4.15Complexityreductionoftheproposedm-MalgorithmforNt= M =16and

variableNr.... 89 5.1 Tree-searchofSM-MIMOforM =2,Nt=4,andNr=6.... 98 5.2 AveragenumberofvisitednodesoftheproposedRSDalgorithmfor16-QAMand

8×8SM-MIMOsystem....108 5.3 AveragenumberofvisitednodesoftheproposedRSDalgorithmfor16-QAMand

16×16SM-MIMOsystem....108 5.4 BERcomparisonforthe16-QAMand8×8SM-MIMOsystem....109 5.5 BERcomparisonforthe16-QAMand16×16SM-MIMOsystem....109 5.6 Complexityreductioncomparisonforthe16-QAMand8×8SM-MIMOsystem..110 5.7 Complexityreductioncomparisonforthe16-QAMand16×16SM-MIMOsystem.110 6.1 UplinkRGSM-SCMAblockdiagramfortheu-thuser...117 6.2 BERperformancecomparison...126 6.3 ExtracomplexitycomparisonbetweenSM-SCMAandRGSM-SCMA. ..126 6.4 NtcomparisonbetweenSM-SCMAandRGSM-SCMA...127 7.1 MPAfactorgraphoftheSM-SCMAforU=6andR=4...139 7.2 Theproposedtree-searchfortheSM-SCMAsystem...146 7.3 ConvergenceoftheproposedMSUDdecoderforNr×4MIMOSM-SCMA

system. ...154

(18)

7.4 NoMofdifferentvaluesofρrforηu=3bpcu. ...159 7.5 NoMofdifferentvaluesofρrforηu=4bpcu. ...160 7.6 BERperformancecomparisonof2×4MIMOwith M =2(i.e.u=3

bpcu)...160 7.7 BERperformancecomparisonof4×4MIMOwith M =2(i.e.u=3

bpcu)...161 7.8 BERperformancecomparisonof6×4MIMOwith M =2(i.e.u=3

bpcu)...161 7.9 BERperformancecomparisonof2×4MIMOwith M =4(i.e.u=4

bpcu)...162 7.10BERperformancecomparisonof4×4MIMOwith M =4(i.e.u=4

bpcu)...162 7.11BERperformancecomparisonof6×4MIMOwith M =4(i.e.u=4

bpcu)...163 7.12RealadditionscomparisonofdifferentSM-SCMAdecodersforηu=3bpcu.163 7.13RealmultiplicationscomparisonofdifferentSM-SCMAdecodersforηu=3

bpcu...164 7.14RealadditionscomparisonofdifferentSM-SCMAdecodersforηu=4bpcu.164 7.15RealmultiplicationscomparisonofdifferentSM-SCMAdecodersforηu=4

bpcu...165

(19)

ListofAbbreviations

AWGN Additive WhiteGaussianNoise b/s/Hz Bit/Second/Hertz

BER BitErrorRate

bpcu BitsPerChannelUse BPSK BinaryPhase-Shift-Keying CDF CumulativeDistributionFunction CS CompressiveSensing

CSIR ChannelStateInformationattheReceiverSide DA Data-Aided

DSP DigitalSignalProcessor

EBCS EnhancedBayesianCompressiveSensing ED EuclideanDistance

ExCo ExtraComplexity

FCSD Fixed-ComplexitySphereDecoder

(20)

FES FullyExpandedStage flops FloatingPointOperations FN FunctionNodes

GSM GeneralizedSpatial Modulation IAS Inter-AntennaSynchronization ICI Inter-ChannelInterference

m-M Minimum-Distanceof Maximum-Length MAP MaximumaPosterioriProbability

MIMO Multiple-Input Multiple-Output ML Maximum–Likelihood

mmWave Millimeter-Wave

MPA MessagePassingAlgorithm

MSUD ModifiedSuccessiveUserDetection NoM Numberof Misses

NOMA Non-Orthogonal MultipleAccess ORE OrthogonalResourceElement PAM PulseAmplitude Modulation pdf ProbabilityDensityFunction

(21)

PSK PhaseShiftKeying

QAM QuadratureAmplitude Modulation QSM QuadratureSpatial Modulation RC Reduced-Complexity

RF RadioFrequency

RGSM RotationalGeneralizedSpatial Modulation S/P Serial-to-Parallel

SCMA SparseCode MultipleAccess SD sphereDecoder

SE SpectralEfficiency SES SingleExpandedStage SM Spatial Modulation SNR Signal-to-NoiseRatio SUD SuccessiveUserDetection

UBCR UpperBoundoftheComplexityReduction VLC VisibleLightCommunication

VN VariableNodes VN VisitedNode

(22)

Chapter1

Introduction

1.1 Background

In1874,GuglielmoMarconi,thefatherofradiofrequency(RF)signals,wasborninItaly.At anearlyage,hewasinfluencedbyHeinrichHertzwhotriedtotransmittheelectromagnetic wavesthroughtheair.Followingnumerousunsuccessfulattempts, Marconiwasfinallyable tosendawirelesssignalacrosstheAtlanticin1901,drawingtheworldsattentiontoa groundbreakingfieldoftechnology.Thesiteof Marconisexperimentisstillavenuefor touristsattheSignalHillinSt.John’s,Newfoundland,andcontinuestobeawitnesstoone oftheremarkableinventionsforhumanity.AboutthreeyearsafterMarconisexperiment, specificallyin1904,JohnFleminginventedthethermionicdiodewhichhasbecomean essentialcomponentinwirelessdevices. MarconiandFlemingneverknewthattheywere abouttoforeverchangethefaceoftheworld.Sincethen,numerousuniversities,researchlabs andindustrialcompanieshavededicatedresourcestoimprovethewirelesscommunication systems.

Currently,wirelesstechnologyisanessentialpartoflife.Peoplerelyheavilyontech- nologyformostoftheirdailylife,suchasforecastingtheweather,followingthenewsall

Références

Documents relatifs

[r]

[r]

[r]

modélise en coupe ce terril par un morceau de la parabole d'équation y =−x 2 +25 Si Alexis, même du haut de ses 1 m 80 , se place trop prés du pied du terril, il ne voit plus

Découvrir du monde GS (numération): associer le nombre à la quantité.. Consigne : Colorie la case qui indique le bon

[r]

[r]

[r]