• Aucun résultat trouvé

A method for detecting pollution in dissipative systems with incomplete data

N/A
N/A
Protected

Academic year: 2021

Partager "A method for detecting pollution in dissipative systems with incomplete data"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-00720818

https://hal.univ-antilles.fr/hal-00720818

Submitted on 27 Jul 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

with incomplete data

Yamina Miloudi, Ousseynou Nakoulima, Abdennebi Omrane

To cite this version:

Yamina Miloudi, Ousseynou Nakoulima, Abdennebi Omrane. A method for detecting pollution in dissipative systems with incomplete data. ESAIM: Proceedings, EDP Sciences, 2007, 17, pp.67-79.

�hal-00720818�

(2)

Alain Pi´etrus & Michel H. Geoffroy, Editors

A METHOD FOR DETECTING POLLUTION IN DISSIPATIVE SYSTEMS WITH INCOMPLETE DATA.

Y. Miloudi

1

, O. Nakoulima

2

and A. Omrane

3

Abstract. Modelling environmental problems leads to mathematical systems with missing data. For instance, weather problems have generally missing initial conditions. The paper is concerned with identifying pollution terms arising in the state equation of some dissipative system with incomplete initial condition.

To this aim the so-called sentinel method is used. Here, the problem of determining a sentinel is equivalent to a null-controllability problem for which Carleman inequalities are revisited.

R´ esum´ e. La mod´elisation des probl`emes environmentaux conduit `a des syst`emes math´ematiques `a donn´ees manquantes. C’est le cas par exemple des probl`emes de m´et´eorologie o` u l’on ne connaˆıt jamais la donn´ee initiale. Nous sommes concern´es dans cet article, par l’identification des termes de pollution pr´esents dans l’´equation d’´etat d’un syst`eme dissipatif `a donn´ee initiale incompl`ete.

Dans ce but, la m´ethode des sentinelles de Lions est utilis´ee. Ici, le probl`eme de d´etermination d’une sentinelle est ´equivalent `a un probl`eme de contrˆolabilit´e `a z´ero pour lequel on donne des estimations de type Carleman.

Introduction

Let be T > 0, and Ω an open subset of R

d

of smooth boundary ∂Ω, and denote by Q = Ω×]0, T [ the space-time cylinder. We are intersted with systems partially known; we consider here the state equation :

 

 

 

 

y

0

∆y + f (y) = ξ + λ ξ ˆ in Q, y(0) = y

0

+ τ y ˆ

0

in Ω,

y = 0 on Σ

1

,

∂y

∂ν = 0 on Σ

2

,

(1)

where y = y(x, t; λ, τ), and where Σ

1

is a piece of the boundary Σ = ∂Ω×]0, T [ and Σ

2

= Σ\Σ

1

. We assume here that f : R R is of class C

1

, the functions ξ and y

0

are known with ξ L

2

(Q) and y

0

L

2

(Ω). But, the terms : λ ξ ˆ (so-called pollution term) and τ y ˆ

0

(so-called perturbation term) are unknown, ˆ ξ and ˆ y

0

are renormalized and represent the size of pollution and perturbation

k ξk ˆ

L2(Q)

1, y

0

k

L2(Ω)

1, so that the reals λ, τ are small enough.

1 D´epartement de Math´ematiques, Universit´e d’Oran Es-S´enia, BP No 1524 El M’Naouer, 31000 Oran (Alg´erie), email : miloudi@univ-oran.dz

2 D´epartement de Math´ematiques et Informatique, Universit´e des Antilles et de La Guyane, Campus Fouillole 97159 Pointe `a Pitre, Guadeloupe (FWI), email :onakouli@univ-ag.fr

3 email : aomrane@univ-ag.fr

°c EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/proc

(3)

Some non empty open subset O Ω, is called observatory set. The observation is y on O, for the time T . We denote by y

obs

this observation

y

obs

= m

o

L

2

(O × (0, T )). (2)

We suppose that (1) has a unique solution denoted by y(λ, τ ) := y(x, t; λ, τ) in some relevant space. The question is

¯ ¯

¯ ¯

¯ ¯

how to calculate the pollution term λ ξ ˆ in the state equation, independently from the variation τ y ˆ

0

around the initial data ?

(3) Least squares. Question (3) is natural and leds to some developments; some answer is given by the least squares method. The method consists in considering the unknowns ξ, τ ˆ y ˆ

0

} = {v, w} as control variables, then the state y(x, t; v, w) has to be driven as close as possible to m

o

.

This comes to some optimal control problem. By this way we look for the pair (v, w), there is then no real possibility to find v or w independently.

Sentinels. The sentinel method of Lions [12] is a particular least squares method which is adapted to the identification of parameters in ecosystems with incomplete data; many models can be found in litterature. The sentinel concept relies on the following three objects : some state equation (for instance (1)), some observation function (2), and some control function w to be determined.

Many papers use the definition of Lions in the theoretical aspect (see for example Bodart [1], Bodart-Fabre [3]

[4]), as well as in the numerical one (see Bodart-Demeestere [2], Demeestere [6] and Kernevez [9]).

We now consider the sentinel method of Lions which is an other attempt and brings better answer to question (3), as we will explain now :

Let h

0

be some function in L

2

(O × (0, T )). Let on the other hand ω be some open and non empty subset of Ω.

For a control function w L

2

× (0, T )), we define the functional S(λ, τ) =

Z

T

0

Z

O

h

0

y(λ, τ ) dxdt + Z

T

0

Z

ω

w y(λ, τ ) dxdt. (4)

We say that S defines a sentinel for the problem (1) if there exists w such that S is insensitive (at first order) with respect the to missing terms τ y ˆ

0

, which means

∂S

∂τ (0, 0) = 0 (5)

for any ˆ y

0

where here (0, 0) corresponds to λ = τ = 0, and if w minimizes the norm kvk

L2(ω×(0,T))

.

Remark. The Lions sentinels S assume ω = O. In this case, the observation and the control share the same support, and the solution w = −h

0

is trivial.

The definition (4) extends the one by Lions to the case where the observation and the control have different supports. This point of view (where ω 6= O) has been considered for the first time by Nakoulima in [15]. Here we avoid the trivial solution.

Informations given by the sentinel. Because of (5) we can write S(λ, τ) ' S(0, 0) + λ ∂S

∂λ (0, 0), for λ, τ small.

(4)

In (4), S(λ, τ ) is observed and using (2), S(λ, τ ) =

Z

Q

(h

0

χ

O

+ wχ

ω

)m

o

dxdt so that (5) becomes

λ ∂S

∂λ (0, 0) ' Z

Q

(h

0

χ

O

+ wχ

ω

)(m

o

y

0

) dxdt, (6)

with ∂S

∂λ (0, 0) = Z

Q

(h

0

χ

O

+ wχ

ω

)y

λ

dxdt,

where here χ

O

and χ

ω

denote the characteristic functions of O and ω respectively.

The derivative y

λ

= (∂y/∂λ) (0, 0) only depends on ˆ ξ and other known data. Consequently, the estimates (6) contains the informations on λ ξ ˆ (see for details remark 1.1 below).

1. Equivalent controllability problem

We shall show in this section that the existence of a sentinel comes to null controllability property. We begin by transforming the insensibility condition (5).

Set

y

τ

= d y(λ, τ )

¯ ¯

¯

λ=τ=0

. Then the function y

τ

is solution of

 

 

 

 

y

0τ

∆y

τ

+ f

0

(y

0

)y

τ

= 0 in Q, y

τ

(0) = y ˆ

0

in Ω,

y

τ

= 0 on Σ

1

,

∂y

τ

∂ν = 0 on Σ

2

,

(7)

where y

0

= y(0, 0). Problem (7) is linear and has a unique solution y

τ

under mild assumptions on f . The insensibility condition (5) holds if and only if

Z

Q

³

h

0

χ

O

+ wχ

ω

´

y

τ

dxdt = 0. (8)

We can transform (8) by introducing the classical adjoint state. More precisely, we define the function q = q(x, t) as the solution of the backward problem :

 

 

 

 

−q

0

∆q + f

0

(y

0

)q = h

0

χ

O

+ wχ

ω

in Q,

q(T ) = 0 in Ω,

q = 0 on Σ

1

,

∂q

∂ν = 0 on Σ

2

.

(9)

As for the problem (7), the problem (9) has a unique solution q (under mild assumptions on f

0

(y

0

)). The

function q depends on the control w that we shall determine :

(5)

Indeed, if we multiply the first equation in (9) by y

τ

, and we integrate by parts over Q, we obtain Z

Q

³

h

0

χ

O

+ wχ

ω

´

y

τ

dxdt = Z

q(0)ˆ y

0

dx ∀ˆ y

0

, y

0

k

L2(Ω)

1.

So, the condition (5) (or (8)) is equivalent to

q(0) = 0. (10)

This is a null-controllability problem.

Remark 1.1. The knowledge of the optimal control w provides informations about the pollution term λ ξ. ˆ Indeed, denote by

L =

∂t ∆ + f

0

(y

0

) I

d

(11)

and let y

λ

= ∂y

∂λ (0, 0) be the solution of

 

 

 

 

L y

λ

= ξ ˆ in Q, y

λ

(0) = 0 in Ω, y

λ

= 0 on Σ

1

,

∂y

λ

∂ν = 0 on Σ

2

.

(12)

Integrating by parts, we then obtain Z

Q

y

λ

L

q dxdt = Z

Q

q ξ dxdt ˆ with

L

=

∂t ∆ + f

0

(y

0

) I

d

. (13)

So that from (9) and (6) we deduce Z

Q

λ ξ dxdt ˆ = Z

Q

(h

0

χ

O

+ wχ

ω

)(m

o

y

0

) dxdt.

2. Existence of a sentinel

We begin with some observability inequality, which will be proved in detail in the last section. Denote by V =

n

v ∈ C

(Q) such that : v

|Σ1

= ∂v

∂t ¯

¯

Σ1

= 0 and ∂v

∂ν ¯

¯

Σ2

= 0 o

. (14)

Then we have :

Theorem 2.1. Let be u ∈ V , then there exists a positive constant C = C(Ω, ω, O, T, f

0

(y

o

)) such that Z

Q

1

θ

2

|u|

2

dxdt C h Z

Q

|L u|

2

dxdt + Z

T

0

Z

ω

|u|

2

dxdt i

, (15)

where θ ∈ C

2

(Q) positive with 1

θ bounded.

(6)

According to the RHS of (15), we consider the space V endowed with the bilinear form a(., .) defined by : a(u, v) =

Z

Q

Lu Lv dxdt + Z

T

0

Z

ω

u v dxdt. (16)

Let V be the completion of V with respect to the norm v 7→ kvk

V

= p

a(v, v), (17)

then, V is a Hilbert space for the scalar product a(v, ˆ v) and the associated norm.

Remark 2.2. We can precise the structure of the elements of V . Indeed, let H

θ

(Q) be the weigthed Hilbert space defined by

H

θ

(Q) = n

v L

2

(Q) such that : Z

Q

1

θ

2

|v|

2

dxdt < o , endowed with the natural norm kvk

θ

= ( R

Q 1

θ2

|v|

2

dxdt)

12

. This shows that V is imbedded continuously kvk

θ

C kvk

V

.

Now if h

0

L

2

(Q) and θh

0

L

2

(Q) (i.e. : h

0

L

2θ

(Q)), then from (15) and the Cauchy-Schwartz inequality, we deduce that the linear form defined on V by

v 7→

Z

Q

h

0

χ

O

v dxdt

is continuous. Therefore, from the Lax-Milgram theorem there exits a unique u in V solution of the variational equation :

a(u, v) = Z

Q

h

0

χ

O

v dxdt ∀v V. (18)

Theorem 2.3. Assume that h

0

L

2θ

(Q), and let u be the unique solution of (18). We set

w = −uχ

ω

(19)

and

q = Lu. (20)

Then, the pair (w, q) is such that (9)-(10) hold (i.e there is some insensitive sentinel defined by (4)-(5)).

3. Proof of theorem 2.1

The proof for the observability inequality in theorem 2.1 will hold from Carleman estimates that we carefully show in the following results.

Lemma 3.1. Let be ω

0

an open set such that ω

0

ω. Then there is ψ C

2

(Ω) such that

 

ψ(x) > 0 x Ω, ψ(x) = 0 x Γ,

|∇ψ(x)| 6= 0 x ω

0

.

(7)

Proof. See Imanuvilov [8]

We now use a function ψ as given by the previous lemma, to define convenient weight functions. For λ > 0, we set

ϕ(x, t) = e

λψ(x)

t(T t) , (21)

and

η(x, t) = e

2λ|ψ|

e

λψ(x)

t(T t) . (22)

Then

∇ϕ = λϕ∇ψ, ∇η = −λϕ∇ψ. (23)

We also notice the following properties :

¯ ¯

¯ ¯ ∂ϕ

∂t

¯ ¯

¯ ¯ T ϕ

2

,

¯ ¯

¯ ¯

2

ϕ

∂t

2

¯ ¯

¯ ¯ T

2

ϕ

3

, (24)

¯ ¯

¯ ¯ ∂η

∂t

¯ ¯

¯ ¯ T ϕ

2

,

¯ ¯

¯ ¯

2

η

∂t

2

¯ ¯

¯ ¯ T

2

ϕ

3

. (25)

Remark 3.2. Note that η increases to +∞ when t T or t 0, but η is uniformly bounded on Ω × [δ, T δ]

for any δ > 0.

On the other hand, for fixed s > 0 the function e

−sη(x,t)

goes to 0 when t T or t 0.

The following theorem states the Carleman inequalities concerning (14) :

Proposition 3.3. There exist constants s

0

> 0, λ

0

> 0 and C > 0 depending on Ω, ω, ψ, and T , such that for all s s

0

, λ λ

0

, and for any function u ∈ V given by (14), we have

2s

3

λ

4

Z

Q

ϕ

3

e

−2sη

|u|

2

dxdt + 4s

2

λ Z

Σ2

ϕ ∂η

∂t

∂ψ

∂ν e

−2sη

|u|

2

dγdt

−4s

3

λ

3

Z

Σ2

ϕ

3

|∇ψ|

2

∂ψ

∂ν e

−2sη

|u|

2

dγdt 4s

2

λ

3

Z

Σ2

ϕ

2

|∇ψ|

2

∂ψ

∂ν e

−2sη

|u|

2

dγdt

−2sλ Z

Σ2

ϕ ∂ψ

∂ν e

−2sη

∂u

∂t u dγdt 4sλ Z

Σ1

ϕ∇ψe

−2sη

∇u ∂u

∂ν dγdt +2sλ

Z

Σ

ϕ ∂ψ

∂ν e

−2sη

|∇u|

2

dγdt

C

³ Z

Q

e

−2sη

¯ ¯

¯ ¯ ∂u

∂t ∆u

¯ ¯

¯ ¯

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

ϕ

3

e

−2sη

|u|

2

dxdt

´ .

(26)

Proof. We use the method by Fursikov and Imanuvilov [7], Imanuvilov [8], Lebeau and Robbiano [10], and Puel [16] [17] (case Σ

2

= and Σ

1

= Σ).

For s s

0

and λ λ

0

, we define

w (x, t) = e

−sη(x,t)

u (x, t) . (27)

We easily notice that

w (x, 0) = w (x, T ) = 0. (28)

Calculating g = (∂

t

∆)(e

w), with notation (27), we get

P

1

w + P

2

w = g

s

, (29)

(8)

where

P

1

w = ∂w

∂t + 2sλϕ ∇ψ ∇w + 2sλ

2

ϕ|∇ψ|

2

w, (30)

P

2

w = −∆w s

2

λ

2

ϕ

2

|∇ψ|

2

w + s ∂η

∂t w, (31)

g

s

= e

−sη

g +

2

ϕ|∇ψ|

2

w sλϕ ∆ψ w. (32) Taking the L

2

norm we get :

Z

Q

|P

1

w|

2

dxdt + Z

Q

|P

2

w|

2

dxdt + 2 Z

Q

P

1

wP

2

w dxdt = Z

Q

|g

s

|

2

dxdt. (33)

We shall now calculate Z

Q

P

1

wP

2

w dxdt. This will give 9 terms I

k,l

.

In order to organize our calculus, we denote by A and B the quantities such that A contains all the terms which can be upper bounded by

c ¡

+ λ

2

¢ Z

Q

ϕ |∇w|

2

dxdt, and by B all those which can be bounded by

c ¡

s

2

λ

4

+ s

3

λ

3

¢ Z

Q

ϕ

3

|w|

2

dxdt.

We denote by ν the outer normal on Γ. Note down that ψ cancels on Γ. We then have the following results : I

1,1

=

Z

Q

∂w

∂t ∆w dxdt

=

Z

Σ

∂w

∂t

∂w

∂ν dγdt + 0, (34)

I

1,2

= −s

2

λ

2

Z

Q

∂w

∂t ϕ

2

|∇ψ|

2

w dxdt = B, (35)

I

1,3

= s Z

Q

∂w

∂t

∂η

∂t w dxdt = s 2 Z

Q

∂η

∂t

∂t

¡ |w|

2

¢ dxdt

= s 2

Z

Q

2

η

∂t

2

|w|

2

dxdt = B. (36)

And,

I

2,1

= −2sλ Z

Q

ϕ∇ψ∇w∆w dxdt

= −2sλ Z

Σ

ϕ∇ψ.∇w ∂w

∂ν dγdt + 2sλ

2

Z

Q

ϕ|∇ψ.∇w|

2

dxdt +sλ

Z

Σ

ϕ ∂ψ

∂ν |∇w|

2

dγdt

2

Z

Q

ϕ|∇ψ|

2

|∇w|

2

dxdt + A,

(9)

I

2,2

= −2s

3

λ

3

Z

Q

ϕ

3

|∇ψ|

2

∇ψ∇w.w = −s

3

λ

3

Z

Q

ϕ

3

|∇ψ|

2

∇ψ∇|w|

2

= −s

3

λ

3

Z

Σ

ϕ

3

|∇ψ|

2

∂ψ

∂ν |w|

2

+ 3s

3

λ

4

Z

Q

ϕ

3

|∇ψ|

4

|w|

2

+ B,

(37) I

2,3

= 2s

2

λ

Z

Q

ϕ∇ψ ∇w ∂η

∂t w dxdt

= s

2

λ Z

Σ

ϕ ∂η

∂t

∂ψ

∂ν |w|

2

dxdt + B. (38)

Finally :

I

3,1

= −2sλ

2

Z

Q

ϕ|∇ψ|

2

∆w.w dxdt

= −2sλ

2

Z

Σ

ϕ |∇ψ|

2

∂w

∂ν .w + 2sλ

2

Z

Q

ϕ|∇ψ|

2

|∇w|

2

+ A + B,

(39) I

3,2

= −2s

3

λ

4

Z

Q

ϕ

3

|∇ψ|

4

|w|

2

dxdt, (40)

I

3,3

= 2s

2

λ

2

Z

Q

ϕ ∂η

∂t |∇ψ|

2

|w|

2

dxdt = B. (41)

Summing all the terms, it follows :

2 Z

Q

P

1

wP

2

w dxdt = A + B + 2sλ

2

Z

Q

ϕ|∇ψ|

2

|∇w|

2

dxdt +2s

3

λ

4

Z

Q

ϕ

3

|∇ψ|

4

|w|

2

dxdt + 4sλ

2

Z

Q

ϕ|∇ψ.∇w|

2

dxdt

−2 Z

Σ

∂w

∂t

∂w

∂ν dγdt 4sλ Z

Σ

ϕ∇ψ.∇w ∂w

∂ν dγdt +2sλ

Z

Σ

ϕ ∂ψ

∂ν |∇w|

2

dγdt 2s

3

λ

3

Z

Σ

ϕ

3

|∇ψ|

2

∂ψ

∂ν |w|

2

dγdt +2s

2

λ

Z

Σ

ϕ ∂η

∂t

∂ψ

∂ν |w|

2

dγdt 4sλ

2

Z

Σ

ϕ |∇ψ|

2

∂w

∂ν .w dγdt.

(42)

But |∇ψ| 6= 0 on Ω ω

0

, hence there is δ > 0 such that

|∇ψ| ≥ δ on Ω ω

0

. (43)

On the other hand

Z

Q

|g

s

|

2

dxdt Z

Q

e

−2sη

|g|

2

dxdt + B,

(10)

so that

Z

Q

|P

1

w|

2

dxdt + Z

Q

|P

2

w|

2

dxdt + 2 Z

Q

P

1

wP

2

w dxdt

Z

Q

e

−2sη

|g|

2

dxdt + B.

Consequently :

Z

Q

|P

1

w|

2

dxdt + Z

Q

|P

2

w|

2

dxdt + 2sλ

2

δ

2

Z

Q

ϕ |∇w|

2

dxdt +2s

3

λ

4

δ

4

Z

Q

ϕ

3

|w|

2

dxdt 2 Z

Σ

∂w

∂t

∂w

∂ν dγdt 4sλ Z

Σ

ϕ∇ψ.∇w ∂w

∂ν dγdt +2sλ

Z

Σ

ϕ ∂ψ

∂ν |∇w|

2

dγdt 2s

3

λ

3

Z

Σ

ϕ

3

|∇ψ|

2

∂ψ

∂ν |w|

2

dγdt +2s

2

λ

Z

Σ

ϕ ∂η

∂t

∂ψ

∂ν |w|

2

dγdt 4sλ

2

Z

Σ

ϕ|∇ψ|

2

∂w

∂ν .w dγdt + A + B

Z

Q

e

−2sη

|g|

2

dxdt + B + 2sλ

2

δ

2

Z

T

0

Z

ω0

ϕ |∇w|

2

dxdt + 2s

3

λ

4

δ

4

Z

T

0

Z

ω0

ϕ

3

|w|

2

dxdt.

We can eliminate A and B by choosing s and λ large enough. And we observe that :

Z

T

0

Z

ω

ϕθ

2

|∇w|

2

dxdt

C ÃZ

Q

ϕP

2

2

wdxdt + Z

T

0

Z

ω

ϕ

12

θ

2

|∇w| ϕ

12

w dxdt + s

2

λ

2

Z

T

0

Z

ω

ϕ

3

w

2

dxdt

! ,

for θ ∈ D(ω) such that 0 θ 1 and θ(x) = 1 on ω

0

gives

2sλ

2

δ

2

Z

T

0

Z

ω0

ϕ |∇w|

2

dxdt 1 2

Z

T

0

Z

|P

2

w|

2

dxdt + cs

3

λ

4

Z

T

0

Z

ω

ϕ

3

|w|

2

dxdt, (44)

Now, we should write the inequality below in terms of the solution u, since

|w|

2

= e

−2sη

|u|

2

.

(11)

So,

1 2 Z

Q

|P

1

w|

2

dxdt + 1 2

Z

Q

|P

2

w|

2

dxdt +2sλ

2

Z

Q

ϕ |∇w|

2

dxdt + 2s

3

λ

4

Z

Q

ϕ

3

e

−2sη

|u|

2

dxdt +2s

2

λ

Z

Σ

ϕ ∂η

∂t

∂ψ

∂ν e

−2sη

|u|

2

dγdt 2s

3

λ

3

Z

Σ

ϕ

3

|∇ψ|

2

∂ψ

∂ν e

−2sη

|u|

2

dγdt

−2 Z

Σ

∂w

∂t

∂w

∂ν dγdt 4sλ Z

Σ

ϕ∇ψ.∇w ∂w

∂ν dγdt +2sλ

Z

Σ

ϕ ∂ψ

∂ν |∇w|

2

dγdt 4sλ

2

Z

Σ

ϕ|∇ψ|

2

∂w

∂ν .w dγdt

C ÃZ

Q

e

−2sη

|g|

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

ϕ

3

e

−2sη

|u|

2

dxdt

! .

Now from

∇u = e

(∇w sλϕ∇ψw) ,

we deduce Z

Q

ϕe

−2sη

|∇u|

2

dxdt C µZ

Q

ϕ |∇w|

2

dxdt + s

2

λ

2

Z

Q

ϕ

3

|w|

2

dxdt

.

We then use the explicit form of P

1

w and P

2

w, and get 1

s Z

Q

1 ϕ

¯ ¯

¯ ¯ ∂w

∂t

¯ ¯

¯ ¯

2

dxdt C ÃZ

Q

e

−2sη

|g|

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

ϕ

3

|w|

2

dxdt

! ,

and

1 s

Z

Q

1

ϕ |∆w|

2

dxdt C ÃZ

Q

e

−2sη

|g|

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

ϕ

3

|w|

2

dxdt

! .

We sum up to finally have

2s

3

λ

4

Z

Q

ϕ

3

e

−2sη

|u|

2

dxdt + 4s

2

λ Z

Σ

ϕ ∂η

∂t

∂ψ

∂ν e

−2sη

|u|

2

dγdt

−4s

3

λ

3

Z

Σ

ϕ

3

|∇ψ|

2

∂ψ

∂ν e

−2sη

|u|

2

dγdt 4s

2

λ

3

Z

Σ

ϕ

2

|∇ψ|

2

∂ψ

∂ν e

−2sη

|u|

2

dγdt +

Z

Σ

µ 2s ∂η

∂t 4sλ

2

ϕ|∇ψ|

2

4s

2

λ

2

ϕ

2

|∇ψ|

2

e

−2sη

∂u

∂ν u

−2sλ Z

Σ

ϕ ∂ψ

∂ν e

−2sη

∂u

∂t u dγdt 4sλ Z

Σ

ϕ∇ψe

−2sη

∇u ∂u

∂ν dγdt +2sλ

Z

Σ

ϕ ∂ψ

∂ν e

−2sη

|∇u|

2

dγdt 2 Z

Σ

e

−2sη

∂u

∂t

∂u

∂ν dγdt

C ÃZ

Q

e

−2sη

|g|

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

ϕ

3

e

−2sη

|u|

2

dxdt

! .

Using the fact that u = ∂u

∂t

¯ ¯

¯

Σ1

= 0, and ∂u

∂ν

¯ ¯

¯

Σ2

= 0, we obtain (26).

(12)

Now we proceed as the following. We define e

ϕ(x, t) = e

−λψ(x)

t(T t) , (45)

and

e

η(x, t) = e

2λ|ψ|

e

−λψ(x)

t(T t) . (46)

Then

ϕ e = −λ ϕ∇ψ, e ∇e η = λ ϕ∇ψ; e (47) we still have the properties (24) and (25).

For s s

0

and λ λ

0

, we define

e

w (x, t) = e

−seη(x,t)

u (x, t) . (48)

We easily notice that

e

w (x, 0) = w e (x, T ) = 0. (49)

Calculating P e w e = e

−seη

g = e

−sηe

£

(∂

t

∆)(e

sηe

w) e ¤

, using notation (48), we set

P e

1

w e + P e

2

w e = g e

s

, (50) where this time

P e

1

w e = w e

∂t 2sλe ϕ ∇ψ w e + 2sλ

2

ϕ|∇ψ| e

2

w, e (51) P e

2

w e = −∆ w e s

2

λ

2

ϕ e

2

|∇ψ|

2

w e + s η e

∂t w, e (52)

e

g

s

= e

−sηe

g +

2

ϕ|∇ψ| e

2

w e + ϕ e ∆ψ w. e (53) We easily deduce the following result :

Proposition 3.4. There exists s

0

> 0, λ

0

> 0 and C a positive constant depending on Ω, ω, ψ, and T , such that for all s s

0

, λ λ

0

, and for any fuction u of (14), we have

2s

3

λ

4

Z

Q

e

ϕ

3

e

−2seη

|u|

2

dxdt 4s

2

λ Z

Σ2

e ϕ η e

∂t

∂ψ

∂ν e

−2sηe

|u|

2

dγdt +4s

3

λ

3

Z

Σ2

e

ϕ

3

|∇ψ|

2

∂ψ

∂ν e

−2sηe

|u|

2

dγdt + 4s

2

λ

3

Z

Σ2

e

ϕ

2

|∇ψ|

2

∂ψ

∂ν e

−2sηe

|u|

2

dγdt +2sλ

Z

Σ2

e ϕ ∂ψ

∂ν e

−2seη

∂u

∂t u dγdt + 4sλ Z

Σ1

e

ϕ∇ψe

−2sηe

∇u ∂u

∂ν dγdt

−2sλ Z

Σ

e ϕ ∂ψ

∂ν e

−2seη

|∇u|

2

dγdt

C ÃZ

Q

e

−2seη

¯ ¯

¯ ¯ ∂u

∂t ∆u

¯ ¯

¯ ¯

2

dxdt + s

3

λ

4

Z

T

0

Z

ω

e

ϕ

3

e

−2sη

|u|

2

dxdt

! .

(54)

Proof. The proof is similar to the one of Proposition 3.3, so we let it to the reader.

Finally, we give below the conclusion to theorem 2.1.

(13)

We obtain from Proposition 3.3 and Proposition 3.4 the following observability inequality : Corollary 3.5. There is a positive constant C = C(Ω, ω, ψ, T) such that we have

Z

Q

1

θ

2

|u|

2

dxdt C h Z

Q

¯ ¯

¯ ¯ ∂u

∂t ∆u

¯ ¯

¯ ¯

2

dxdt + Z

T

0

Z

ω

|u|

2

dxdt i

, (55)

where 1

θ

2

= ϕ

3

e

−2sη

+ ϕ e

3

e

−2sηe

is a bounded weight function.

Proof. Summing the terms in (26) and (54) we get the following : 2s

3

λ

4

Z

Q

³

ϕ

3

e

−2sη

+ ϕ e

3

e

−2sηe

´

|u|

2

dxdt

−4s

2

λ Z

Σ2

µ ϕ ∂η

∂t e

−2sη

ϕ e ∂e η

∂t e

−2sηe

∂ψ

∂ν |u|

2

dγdt

−4s

3

λ

3

Z

Σ2

³

ϕ

3

e

−2sη

ϕ e

3

e

−2seη

´

|∇ψ|

2

∂ψ

∂ν |u|

2

dγdt

−4s

2

λ

3

Z

Σ2

³

ϕ

2

e

−2sη

ϕ e

2

e

−2seη

´

|∇ψ|

2

∂ψ

∂ν |u|

2

dγdt +2sλ

Z

Σ2

³

ϕe

−2sη

ϕe e

−2sηe

´ ∂ψ

∂ν

∂u

∂t u dγdt

−4sλ Z

Σ1

³

ϕe

−2sη

ϕe e

−2seη

´

∇ψ∇u ∂u

∂ν dγdt +2sλ

Z

Σ

³

ϕe

−2sη

ϕe e

−2seη

´ ∂ψ

∂ν |∇u|

2

dγdt

C h Z

Q

³

e

−2sη

+ e

−2seη

´ ¯¯

¯ ¯ ∂u

∂t ∆u

¯ ¯

¯ ¯

2

dxdt +s

3

λ

4

Z

T

0

Z

ω

³

ϕ

3

e

−2sη

+ ϕ e

3

e

−2seη

´

|u|

2

dxdt i .

Now, it suffices to notice that ϕ = ϕ e and η = η e on Σ.

References

[1] Bodart O., Application de la m´ethode des sentinelles `a l’identification de sources de pollution dans un syst`eme distribu´e.

Th`ese de Doctorat, Universit´e de Technologie de Compi`egne, 1994.

[2] Bodart O., Demeestere P., Contrˆole fronti`ere de l’explosion en temps fini de la solution d’une ´equation de combustion.

C.R. Acad. Sci., S´erie I, 325(8), 1997, pp 841845.

[3] Bodart O., Fabre C., Contrˆole insensibilisant la norme de la solution d’une ´equation de la chaleur semi-lin´eaire. C.R. Acad.

Sci., S´erie I, 316(8), 1993, pp 789794.

[4] Bodart O., Fabre C., Controls insensitizing the norm of a semilinear heat equation. Journ. of Math. Analysis and Applications, 195, 1995, pp 658683.

[5] Brezis H., Analyse fonctionnelle, Collection math´ematiques appliqu´ees pour la maˆıtrise, Masson, 1984.

[6] Demeestere P.,M´ethode des sentinelles : ´etude comparative et application `a l’identification d’une fronti`ere Contrˆole du temps d’explosion d’une ´equation de combustion. Th`ese de Doctorat, Universit´e de Technologie de Compi`egne, 1997.

[7] A. Fursikov, O. Yu. Imanuvilov, Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea (1996).

[8] O. Yu. Imanuvilov Controllability of parabolic equations. Sbornik Mathematics 186 : 6, 1995, pp 879900.

[9] Kernevez J.-P., The Sentinel Method and its Application to Environmental Pollution Problems, CRC. Press, Boca Raton, FL, 1997.

[10] Lebeau G., Robbiano L., Contrˆole exacte de l’´equation de la chaleur, Comm. P.D.E., 20, 1995, pp 335356.

[11] Lions J.-L., Contrˆole optimal de syst`emes gouvern´es par des ´equations aux d´eriv´ees partielles. Dunod, gauthier-Villars, Paris 1968.

(14)

[12] Lions J.-L. Sentinelles pour les syst`emes distribu´es `a donn´ees incompl`etes. Masson, Paris, 1992.

[13] Miloudi Y., Th`ese d’Etat de l’Universit´e d’Oran (to appear).

[14] Miloudi Y., Nakoulima O., Omrane A., Sentinels for dissipative systems of incomplete data (to appear).

[15] Nakoulima O., Contrˆolabilit´e `a z´ero avec contraintes sur le contrˆole. C. R. Acad. Sci. Paris, Ser. I 339, 2004, pp 405410.

[16] Puel J.-P., Contrˆolablit´e approch´ee et contrˆolabilit´e exacte. Notes de cours de D.E.A. Universit´e Pierre et Marie Curie, Paris, 2001.

[17] Puel J.-P., Applications of global Carleman inequalities to controllability and inverse problems (to appear).

Références

Documents relatifs

Abstract— A Model Predictive Control scheme is applied to track the solution of a Fokker-Planck equation over a fixed time horizon.. We analyse the dependence of the total

What Davisson and Germer found was that, although the electrons are scattered in all directions from the crystal, the intensity was a minimum at A 35i 10 In classical physics

The aim of this paper is to give better answers to the problem mentioned above - construction of explicit control laws guaranteeing simultaneously individual stability and the

Dans une tude prospective, le nombre de grossesses avec un enfant vivant était plus important pour la grossesse consécutive ( 67 %) en comparaison aux

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Abnormal minimizers are responsible for a phenomenon of non-properness (Proposition 5.3), which geometrically implies the following property : under certain assumptions the level

, X N are independent and identically distributed (i.i.d.) continuous random variables and N is a discrete random variable having a power series distributions (including