• Aucun résultat trouvé

Sub-pixel detection in hyperspectral imaging with elliptically contoured t-distributed background

N/A
N/A
Protected

Academic year: 2021

Partager "Sub-pixel detection in hyperspectral imaging with elliptically contoured t-distributed background"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02798974

https://hal.archives-ouvertes.fr/hal-02798974

Submitted on 5 Jun 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sub-pixel detection in hyperspectral imaging with elliptically contoured t-distributed background

Olivier Besson, François Vincent

To cite this version:

Olivier Besson, François Vincent. Sub-pixel detection in hyperspectral imaging with elliptically contoured t-distributed background. Signal Processing, Elsevier, 2020, 175, pp.107662-107667.

�10.1016/j.sigpro.2020.107662�. �hal-02798974�

(2)

an author's https://oatao.univ-toulouse.fr/26072

https://doi.org/10.1016/j.sigpro.2020.107662

Besson, Olivier and Vincent, François Sub-pixel detection in hyperspectral imaging with elliptically contoured t- distributed background. (2020) Signal Processing, 175. 107662-107667. ISSN 0165-1684

(3)

Shortcommunication

Sub-pixel detection in hyperspectral imaging with elliptically contoure d t -distribute d background

Olivier Bessona,,François Vincenta

University of Toulouse, ISAE-SUPAERO, 10 Avenue Edouard Belin, 31055 Toulouse, France

Keywords:

Detection

Generalized likelihood ratio test Hyperspectral imaging Replacement model Student distribution

a b s t r a c t

Detectionofatargetwithknownspectralsignaturewhenthistargetmayoccupyonlyafractionofthe pixelisanimportantissueinhyperspectralimaging.Werecentlyderivedthegeneralizedlikelihoodratio test(GLRT)forsuchsub-pixeltargets,eitherfortheso-calledreplacementmodelwherethepresenceof atargetinducesadecreaseofthebackground power,duetothesum ofabundancesequaltoone,or foramixedmodelwhichalleviatessomeofthelimitationsofthereplacementmodel.Inbothcases,the backgroundwasassumedtobeGaussiandistributed.Theaimofthisshortcommunicationistoextend thesedetectorstothebroaderclassofellipticallycontoureddistributions,morepreciselymatrix-variate t-distributionswithunknownmeanandcovariancematrix.Weshowthatthegeneralizedlikelihoodra- tiotestsinthet-distributedcasecoincidewiththeirGaussiancounterparts,whichconfersthelatteran increased generalityfor application.The performanceas wellas the robustnessofthesedetectors are evaluatedthroughnumericalsimulations.

1. Problemstatement

Hyperspectralimaginghasbecomeanincreasinglypopulartool for remote sensing and scene information retrieval, whether for civil ormilitaryneeds andin a largenumber ofapplications,in- cludinganalysisofthespectralcontentofsoils,vegetationormin- erals,detectionofman-madematerials orvehicles,tonameafew [1,2].Oneofthechallengesofhyperspectralimagingistodetecta target-whosespectralsignatureisassumedtobeknown-withina backgroundwhosestatisticalpropertiesarenotfullyknown[3–5]. Depending onthe spatialresolution ofhyperspectral sensors and thesizeofthetarget,thelattermayoccupythetotalityoronlya fractionofthepixelundertest(PUT),inwhichcaseonespeaksof sub-pixeltargets.Inthelattercase,thetargetreplacespartofthe backgroundinthePUT,leadingtotheso-calledreplacementmodel [6,7].

Whateverthe case,full-pixel orsub-pixel targets,the problem can be formulated asa conventional composite hypothesis prob- lem[3–9]:givena vectoryRp-wherepdenotesthenumberof spectral bandsused-whichrepresentsthereflectance inthePUT, is there a component along t-the signature of interest (SoI)-in addition to the background? Since the background statistics de- pend onunknown parameters (for instancemeanandcovariance

Corresponding author.

E-mail addresses: olivier.besson@isae-supaero.fr (O. Besson), francois.vincent@isae-supaero.fr (F. Vincent).

matrix) a set of trainingsamples ZRp×n, hopefully free of the SoIt,is observedwhosestatisticsare assumedtomatchthoseof thebackgroundinthePUT.Thesetrainingsamplesaregatheredin thevicinityofthePUT(localdetection)oralongthewholeimage (globaldetection).

Recentlyin[10]weaddressedsub-pixeldetectionusingthere- placement model under a Gaussian background, and we derived the plain generalized likelihood ratio test (GLRT) by maximizing thejointdistributionof(y,Z)withrespecttoallunknownparam- eters.Moreover,motivatedbysomelimitationsofthereplacement model,especiallythefact thatthefillingfactorofasub-pixeltar- getmay not be inpracticeas largeas expected, we alsoderived theGLRT fora mixedmodel where presence ofa target induces a partial replacement of the background [11]. These two detec- tors assume a Gaussian background. However, evidence of non- Gaussianity of hyperspectral data has been brought [12,13] and thereforeitisofinteresttoextenddetectorsoriginallydevisedfor Gaussianbackgroundtothebroaderclassofellipticallycontoured (EC)distributions[14,15].Theaimofthiscommunicationisthusto extendourrecentGLRTsfromtheGaussiancasetothematrixvari- atet-distributedcase.Wewillshowthat theGLRTscoincidewith theirGaussian counterparts. Thepaperisorganizedasfollows.In Section 2, we consider each of the three models andderive the correspondingGLRTs.ThelatterareevaluatedinSection3onsim- ulateddatabutwherethetarget spectralsignature,themeanand covariancematrixofthebackgroundareobtainedfromrealhyper- spectralimages.

https://doi.org/10.1016/j.sigpro.2020.107662

(4)

2. GLRTformatrixvariatet-distributedbackground

Asstatedbefore,letusassumethatwewishtodecidewhether agivenvector ycontainsasignatureofinteresttinthe presence of disturbance z whose mean value μ and covariance matrix areunknown,andletusassume thatasetoftrainingsampleszi, i=1,...,n are available which share the same distribution as z. ThesesamplescanbecollectedaroundthePUToralongthewhole image. We simply assume herethat n> p. Therefore, we would liketosolvethefollowingproblem:

H0:y=z; zi=d z,i=1,...,n

H1:y=αt+βz; zi=d z,i=1,...,n (1)

where =d means “has the same distribution as”. In (1), t corre- spondstotheassumedspectralsignatureofthetarget andα de-

notesits unknown amplitude. When β=1 one obtains the con- ventionaladditivemodel.Whenβ=1αthereplacementmodel isrecovered,andthemixedmodelcorrespondstoanarbitraryβ.

In orderto derive theGLRT,we need to specifythejoint dis- tributionofyandZwhereZ=

z1 z2 ... zn

.Assaidinthe introduction,we assume that

y Z

follows a matrix-variate t- distributionwithν degreesoffreedom so that we need tosolve

thefollowingcompositehypothesistestingproblem:

H0:

y Z d

=Tp,n+1,M0,2),In+1) H1:

y Z d

=Tp,n+1

ν,M1,2),

β2 0T

0 In

(2) where M0=

μ μ1Tn

, M1=

αt+βμ μ1Tn

, 1n is a n × 1 vectorwithallelementsequaltoone,μstandsforthemeanvalue

ofthe backgroundwhile denotes its covariance matrix.In (2), T()standsforthematrixvariatet-distribution[16,17]sothat the probabilitydensityfunction(p.d.f.)oftheobservationsundereach hypothesisisgivenby

p0(y,Z)=C||n+12

Ip+ν12

yμ Zμ1Tn

×

yμ Zμ1Tn

T

ν+n+p 2

p1(y,Z)=Cβ−p||n+12

Ip+ν−12

y˜μ Zμ1Tn

×

˜

yμ Zμ1Tn

T

ν+n+p

2 (3)

with y˜=β1(yαt) andC= πp(n+1p)((ν/2+pn((ν+p+)p/2)1)/2). It should be observed that the columns of

y Z

are only uncorrelated but not independent, as p(y,z1,...,zn) cannot be factored as p(y)ni=1p(zi).

WenowderivetheGLRTfortheproblemin(2).Letusstartby consideringthe following function f() where S issome positive definitematrix:

f()=||n+12 Ip+2)11Sν+n2+p

=||ν+p−12 +(ν2)1Sν+n2+p (4) Differentiationoflogf()yields

logf()

=ν+p1

2 1ν+n+p

2 (+2)1S)1. (5)

Settingthisderivativeoftozero,wecanseethatf()achievesits maximumat

= +p1)S

2)(n+1) =γS (6)

Itfollowsthat max p0(y,Z)=C

yμ Zμ1Tn

(yμ)T (Zμ1Tn)T

n+1 2

max p1(y,Z)=Cβp

˜

yμ Zμ1Tn

(y˜μ)T (Zμ1Tn)T

n+1 2

(7)

withC=Cγp(n+1)/2[1+2)1γ1]p+n+p)/2.SinceCisthe

sameunderH0andH1 itwillcanceloutintheGLRandtherefore theGLRdoesnotdependonν.Thismeansthatνdoesnotneedto

beknownsinceitsestimationisnotactuallyrequiredtoobtainthe GLR.

Now,foranyvectorx, M(μ)=

xμ Zμ1Tn

xμ Zμ1Tn

T

=(xμ)(xμ)T+(Zμ1Tn)(Zμ1Tn)T

=xxTμxTxμT+μμT

+ZZTμ1TnZTZ1nμT+nμμT

=(n+1)μμTμ(x+Z1n)T(x+Z1n)μT

+xxT+ZZT

=(n+1)

μx+Z1n

n+1

μx+Z1n

n+1

T

+xxT+ZZT(x+Z1n)(x+Z1n)T n+1

=(n+1)

μx+Z1n

n+1

μx+Z1n

n+1

T

+

x Z

In+11n+11Tn+1 n+1

x ZT

(8)

Consequently, minμ |M(μ)|=

x Z

Pn+1

x ZT (9)

with Pn+1 the orthogonal projector on the null space of 1n+1. Hence,wearriveat

maxμ, p0(y,Z)=C

y Z

Pn+1

y ZT

n+1 2

maxμ, p1(y,Z)=Cβ−p

˜ y Z

Pn+1

˜ y ZT

n+1

2 (10)

Next,foranyvectorxandmatrixQ(notnecessarilyPn+1),

x Z

Q

x ZT

=

x ZQ11 Q12

Q21 Q22 x ZT

=Q11xxT+ZQ21xT+xQ12ZT+ZQ22ZT

=Q11

x+Q111ZQ21

x+Q111ZQ21

T

+ZQ2.1ZT (11) whereQ2.1=Q22Q21Q111Q12.Therefore,

x Z

Q

x ZT=ZQ2.1ZT×

1+Q11

x+Q111ZQ21

T

ZQ2.1ZT−1

x+Q111ZQ21

(12)

Comingback tothecaseQ=Pn+1=In+1(n+1)11n+11Tn+1,we have

Q=

1 0T 0 In

(n+1)1

1 1Tn 1n 1n1Tn

(13) sothat

(5)

Q11=1(n+1)1=n(n+1)1 Q21=(n+1)−11n

Q22=In(n+1)11n1Tn

Q2.1=Inn−11n1Tn=Pn (14) It follows that Q111ZQ21=n1Z1n=z¯ and ZQ2.1ZT=ZPnZT= ZZTnz¯z¯T=S.Hence,theGLRisgivenby

GLR=

1+Q11(yz¯)TS1(yz¯)(n+1)/2

minα,ββp[1+Q11(y˜z¯)TS−1(y˜z¯)](n+1)/2

= [1+n+n1(yz¯)TS1(yz¯)](n+1)/2

minα,ββp[1+n+1n (yβαtz¯)TS1(yβαtz¯)](n+1)/2 (15)

A few important observationscan be maderegarding thisre- sult. First,forallthreemodels,theGLRs in(15)coincide withtheir Gaussian counterparts. Forthe additive modela proof is givenin AppendixA.Amoreintuitive waytofigureoutthisequivalenceis torealizethat theexpressionoftheGLRin(15)doesnotdepend on ν andthat, letting ν grow to infinity, one should recoverthe

GLRforGaussiandistributeddata.Asforthereplacementandthe mixedmodels,theexpressionin(15)isexactlythatoftheACUTE andSPADEdetectorsof[10]and[11]respectively,wheretheGLRTs forthereplacementmodelandthemixedmodelarederivedunder theGaussianassumption.Therefore,thelatterarestillGLRTsfora muchbroaderclassofdistributionsthaninitiallyexpected.

LetusalsobrieflycommentontheimplementationoftheGLRT.

For the additive model β=1, and the minimization problemin (15) isa simple linearleast-squares problem forwhicha closed- formsolutioncanbeobtained.Thisyields

GLR2AM/(n+1)= 1+nn+1(yz¯)TS1(yz¯) minα1+n+1n (yz¯αt)TS−1(yz¯αt)

= 1+n+n1(yz¯)TS1(yz¯) 1+n+1n (yz¯)TS1(yz¯)n+1n [(ytzT¯)STS1−1tt]2

n

n+1[(yz¯)TS1t]2

[1+n+n1(yz¯)TS1(yz¯)][tTS1t] (16)

The GLRin(16)generalizesKelly’s detectortothe caseof anon- centered Student distributed background. Note that (16) differs fromKelly’sdetectorbythe n+1n factor.

Asforthereplacementmodel,β=1αandtheminimization shouldbeconductedwithrespecttoαonly,i.e.,

GLRRM=

1+n+n1S1/2(yz¯)2(n+1)/2

minα(1α)p

1+n+n1S−1/2(y(1αtα)(12α)z¯)2

(n+1)/2 (17)

Asshownin[10],thissimplyamountstofindingthe(unique)pos- itiverootofa2nd-orderpolynomial.Finally,forthemixedmodel whereβ isarbitrary,one hasa2-D minimization problem. How- ever,minimizationoverα canbedoneanalytically, leavingonlya minimizationoverβ:

GLRMM=

1+n+n1S1/2(yz¯)2(n+1)/2

minββp

1+n+1n

PS−1/2tS−1/2(yβz¯)2 β2

(n+1)/2 (18)

Again the solution is obtained as the unique positive root of a second-order polynomialequation [11].Thereforeforboththere- placement modeland themixedmodel, all unknown parameters canbeobtainedinclosed-form.

3. Numericalsimulations

In the present section, we will compare the detectors devel- oped above.The additive model GLRAM in(16)will be referred to as mKELLY in the sequel as it consists in a slight modification of Kelly’s original GLRT [18]. The replacement model GLRRM in

10-4 10-3 10-2 10-1 100

Probability of false alarm 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probabilityofdetection

Student background (ν=5), replacement model,α= 0.05

GLRAM(mKELLY) GLRRM(ACUTE) GLRMM(SPADE)

10-4 10-3 10-2 10-1 100

Probability of false alarm 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probabilityofdetection

Student background (ν=20), replacement model,α= 0.05

GLRAM(mKELLY) GLRRM(ACUTE) GLRMM(SPADE)

10-4 10-3 10-2 10-1 100

Probability of false alarm 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probabilityofdetection

Student background (ν=10000), replacement model,α= 0.05

GLRAM(mKELLY) GLRRM(ACUTE) GLRMM(SPADE)

Fig. 1. ROC for the replacement model β= (1 α).

Références

Documents relatifs

• l a notion de durée chronologique (l'archevêque J. Remontons ensemble le temps afin de découvrir le terreau qui fertilisa l'esprit de Charles Darwin au milieu

Figure 7 Comparison between the proposed detector (c) and the state-of-the-art detector (b) for one GRD image with linear structures highlighted by red

Par une méthode de criblage génique (g e n e arra y ) nous avons démontré, en premier lieu , que la répression de MTl-MMP provoque une inhibition dans l'

Il constitue une représentativité théorique forte et un potentiel de découverte réel (Hlady-Rispal, 2002).. Lorsque nous avons commencé nos investigations sur le terrain, le

Enfin, le null astrophysique et la phase rms semblent être des paramètres indépendants (en bas). Cette coupe correspond à 20 répétitions de la méthode dans le cas d’un histogramme

Given that SBS is swollen by the saturates and aromatics fractions from bitumen [12] it is likely that the maltenes portion that blends with PB is rich in alkanes and

Crem azie Bélang er Du P arc Lege ndre Rosem ont Saint-J oseph Sa int- De nis La Petite Patrie Villeray Parc Extension Du Plateau Mont- Royal Nord de l'île Ahuntsic Saint-

Vous devez savoir comment les périphériques sont physiquement connectés pour pouvoir résoudre des problèmes au niveau de la couche physique, notamment les problèmes de câblage ou