• Aucun résultat trouvé

Zero-inflated Poisson regression with right-censored data

N/A
N/A
Protected

Academic year: 2021

Partager "Zero-inflated Poisson regression with right-censored data"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: hal-01811949

https://hal.archives-ouvertes.fr/hal-01811949

Preprint submitted on 11 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zero-inflated Poisson regression with right-censored data

van Trinh Nguyen, Jean-François Dupuy

To cite this version:

van Trinh Nguyen, Jean-François Dupuy. Zero-inflated Poisson regression with right-censored data.

2018. �hal-01811949�

(2)

Zero-inated Poisson regression with right-censored data

Nguyen Van Trinha, Jean-François Dupuya

aUniv Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Abstract

The zero-inated Poisson regression model is often used to analyse count data with an ex- cess of zeros. This paper extends the model to randomly right-censored count data. Right- censoring occurs when one only knows that the true count value is higher than the observed one. In this setting, maximum likelihood estimators (MLE) are constructed and their prop- erties are investigated. In particular, MLE are shown to be consistent and asymptotically normal. A simulation study is conducted to assess nite-sample behaviour of the MLE.

Finally, an application in health economics is described.

Keywords: Count data, excess of zeros, health-care utilization, large-sample properties, simulations

1. Introduction

Statistical modeling of count data is an important issue in various elds, including agricul- ture, econometrics, epidemiology, industrial applications, public health. . . Generalized linear models (McCullagh and Nelder, 1989) provide a powerful framework for analysing such data.

In many applications however, count data show an excess of zeros, that is, a number of zeros that cannot be explained by models based on standard distributional assumptions. A large number of statistical tools have been developed to tackle this issue, such as zero-inated regression models which mix a degenerate distribution with point mass of one at zero with a standard count regression model.

For example, zero-inated Poisson (ZIP) regression model was proposed by Lambert (1992) and further developed by Dietz and Böhning (2000), Lim et al. (2014) and Monod (2014), among many others. Recent variants of ZIP regression include random-eects ZIP models (Hall, 2000; Min and Agresti, 2005) and semiparametric ZIP models (Lam et al., 2006;

Feng and Zhu, 2011). Zero-inated negative binomial (ZINB) regression model was proposed by Ridout et al. (2001), see also Moghimbeigi et al. (2008) and Mwalili et al. (2008). When counts have an upper bound, ZIP and ZINB regression models are no longer appropriate. Hall (2000) thus introduced the zero-inated binomial (ZIB) model, see also Hall and Berenhaut (2002), Diop et al. (2011), Diop et al. (2016) and Diallo et al. (2017). Statistical modeling of bounded count data containing both extra zeros and extra right-endpoints has recently

Email addresses: van-trinh.nguyen@insa-rennes.fr (Nguyen Van Trinh),

(3)

attracted attention. Deng and Zhang (2015) proposed a zero-one inated binomial regression model for such data, see also Tian et al. (2015) and Dupuy (2017). In Diallo et al. (2018), authors propose a zero-inated regression model for multinomial counts with joint zero- ination.

In this paper, we investigate estimation in zero-inated Poisson regression when the count response is subject to right-censoring. Right-censoring occurs when only a lower bound of the count of interest is observed, or, equivalently, when we know that the true count value is higher than the observed one. For example, in a study investigating demand for medical care, patients number of visits to a physician is right-censored at C if we only know that the true number of visits is greater than C. Ignoring censoring can yield biased estimates and incorrect statistical inference. Terza (1985) considers estimation in Poisson regression when the response is right-censored at a constant threshold. Famoye and Wang (2004) and Karlis et al. (2016) investigate random right-censoring in generalized Poisson regression model and in mixtures of Poisson regressions respectively. Estimation in zero- inated Poisson regression model with censoring is less documented. Saari and Adnan (2001) propose maximum likelihood estimation (MLE) in a ZIP model with censoring at a constant threshold. However, no asymptotic results are proved for the MLE (in particular, distributional properties of the MLE are not discussed). In the current paper, we undertake a comprehensive theoretical and numerical analysis of MLE in ZIP regression with random censoring.

The remainder of the paper is organized as follows. In Section 2, we recall the denition of ZIP regression model, we describe maximum likelihood estimation under random right- censoring and we introduce some useful notations. In Section 3, we establish consistency and asymptotic normality of the MLE. Section 4 reports results of a comprehensive simulation study. Saari and Adnan (2001) already conducted a simulation study in censored ZIP model. But censoring was xed at a constant threshold and their model had only one predictor for zero ination and two predictors for Poisson mean. In our paper, we consider random censoring and a larger number of predictors. Moreover, Saari and Adnan (2001) did not investigate the eect of the proportion of zero on the performance of the MLE, nor the nite-sample distribution of the MLE. These issues are discussed in our simulation study.

An application to a health-care utilization dataset is described in Section 5. A discussion and some perspectives are provided in Section 6.

2. Notations and likelihood calculation

In this section, we briey recall the denition of the ZIP model and we describe maximum likelihood estimation when the count response is randomly right censored.

2.1. Maximum likelihood estimation in ZIP regression with right-censoring

The ZIP model assumes that the response variableZi (where the lower indicei indicates the individual) is such that

Zi

0 with probabilityωi,

P(λi) with probability1−ωi, (2.1)

(4)

where P(λi)denotes Poisson distribution with parameter λi >0. Obviously, the ZIP model reduces to a standard Poisson distribution ifωi = 0. In ZIP regression, the mixing probability ωi and parameterλi are usually modeled by logistic and log-linear models respectively, that is:

logit(ωi(γ)) =γ>Wi, (2.2)

and

log(λi(β)) = β>Xi, (2.3)

whereXi = (1, Xi2, . . . , Xip)>and Wi = (1, Wi2, . . . , Wiq)>are random vectors of predictors or covariates (both categorical and continuous covariates are allowed), β ∈ Rp and γ ∈ Rq are unknown parameters and > denotes the transpose operator.

Assume that we observe n independent vectors(Z1,X1,W1), . . . ,(Zn,Xn,Wn) from the model (2.1)-(2.2)-(2.3), all dened on the probability space (Ω,C,P). The log-likelihood of (β, γ)based on these observations is (see Dupuy, 2018):

n

X

i=1

n

1{Zi=0}log

eγ>Wi+eexp(β>Xi)

+ 1{Zi>0}

Ziβ>Xi−eβ>Xi −log(Zi!)

−log

1 +eγ>Wi o

. The maximum likelihood estimator of (β, γ) is obtained by maximizing this function. This

estimator is consistent and asymptotically normally distributed (see Czado et al., 2007).

Assume now that the count response Zi can be right-censored, that is, for some individ- uals, we only observe a lower bound on Zi. This can be modeled by introducing a censoring random variable Ci and by dening the observation for the i-th individual as the vector (Zi, δi,Xi,Wi), where Zi = min(Zi, Ci) and δi = 1{Zi<Ci} (if Zi = Ci, we let Zi = Ci and δi = 0). Let Ji = 1{Zi=0}. The likelihood of ψ := (β>, γ>)> based on observations (Zi, δi,Xi,Wi),i= 1, . . . , n is calculated as:

Ln(ψ) =

n

Y

i=1

P(Zi =Zi|Xi,Wi)δiP(Zi ≥Zi|Xi,Wi)1−δi,

=

n

Y

i=1

P(Zi =Zi|Xi,Wi)1−JiP(Zi = 0|Xi,Wi)Jiδi

P(Zi ≥Zi|Xi,Wi)(1−δi)(1−Ji),

=

n

Y

i=1

 e−λiλZii

Zi!(1−ωi)

!1−Ji

ωi+ (1−ωi)e−λiJi

δi

×

1−

Zi−1

X

k=0

e−λiλki

k!(1−ωi)−ωi

(1−δi)(1−Ji)

,

from which we easily obtain the loglikelihood . If and are given by

(5)

(2.2) and (2.3), straightforward algebra yields:

`n(ψ) =

n

X

i=1

n δih

Jilog

eγ>Wi+eexp(β>Xi)

+ (1−Ji)

Ziβ>Xi−eβ>Xi−log(Zi!)i

+(1−δi)(1−Ji) ln

1−

Zi−1

X

k=0

eexp(β>Xi)+kβ>Xi k!

−log

1 +eγ>Wi

 . Note that `n(ψ) reduces to the log-likelihood given above when there is no censoring (that is, whenδi = 1 for all i= 1, . . . , n).

The maximum likelihood estimator ψˆn := ( ˆβn>,γˆn>)> ofψ is solution of the k-dimensional score equation

∂`n(ψ)

∂ψ = 0, (2.4)

where k = p+q. In the next section, we establish existence, consistency and asymptotic normality of ψˆn. First, we need to introduce some further notations.

2.2. Some additional notations

In what follows, we note ki(γ) = eγ>Wi and Li(β) = eexp(β>Xi), i = 1, . . . , n. Let also Sλi(β)(u) = P(P(λi(β)) ≥ u), u = 0,1, . . . denote the survival function of P(λi(β)) distribution. We have:

∂`n(ψ)

∂β` =

n

X

i=1

Xi`

−δiJi λi(β)Li(β)

ki(γ) +Li(β) +δi(1−Ji) (Zi−λi(β)) (2.5)

−(1−δi)(1−Ji)

Zi−1

X

k=0

Li(β)λki(β)(k−λi(β)) k!Sλi(β)(Zi)

, ` = 1, . . . , p, and

∂`n(ψ)

∂γ` =

n

X

i=1

Wi`

δiJiki(γ)

ki(γ) +Li(β) − ki(γ) ki(γ) + 1

, ` = 1, . . . , q. (2.6) Let

ui(ψ) = λi(β)Li(β)

(ki(γ) +Li(β))2[ki(γ) +Li(β)−λi(β)ki(γ)], i= 1, . . . , n, and for Zi ≥1, let

vi(ψ) =

Zi−1

X

k=0

Li(β)λki(β) k!Sλ2

i(β)(Zi)

Sλi(β)(Zi) (λi(β)−k)2−λi(β)

−λi(β)(k−λi(β))P(P(λi(β)) =Zi−1)}, i= 1, . . . , n.

(6)

Then, some tedious albeit not dicult algebra shows that

2`n(ψ)

∂β`∂βm =

n

X

i=1

Xi`Xim{−δiJiui(ψ)−δi(1−Jii(β)−(1−δi)(1−Ji)vi(ψ)}, `, m= 1, . . . , p

2`n(ψ)

∂β`∂γm =

n

X

i=1

Xi`Wim

δiJiki(γ)λi(β)Li(β)

(ki(γ) +Li(β))2 , `= 1, . . . , p and m= 1, . . . , q

2`n(ψ)

∂γ`∂γm =

n

X

i=1

Wi`Wimki(γ)

δiJiLi(β)

(ki(γ) +Li(β))2 − 1 (ki(γ) + 1)2

, `, m= 1, . . . , q.

We note Sn(ψ) = ∂`n(ψ)/∂ψ, Hn(ψ) = −∂2`n(ψ)/∂ψ∂ψ>, Fn(ψ) = E(Hn(ψ)) and Ik the identity matrix of order k. Hn(ψ) is assumed positive denite.

3. Asymptotic results

In this section, we establish consistency and asymptotic normality ofψˆn. In what follows, the spaceRkofk-dimensional vectors is provided with the Euclidean normk·k2 and the space of (k×k) real matrices is provided with the norm |||A|||2 := supkxk2=1kAxk2 (for notations simplicity, we use k · k for both norms). Recall that for a symmetric real (k×k)-matrix A with eigenvalues λ1, . . . , λk, kAk= maxii|(from now on, λmin(A)and λmax(A) will denote the smallest and largest eigenvalues of A respectively).

We rst state some regularity conditions:

C1 Covariates are bounded, that is, there exist compact sets X ⊂ Rp and W ⊂ Rq such that Xi ∈ X and Wi ∈ W for every i= 1,2, . . .

C2 The true parameter value ψ0 = (β0>, γ0>)> lies in the interior of some known compact and convex set C =B × G ⊂Rk (where B ⊂ Rp and G ⊂Rq are the parameter spaces of β and γ respectively).

C3 There exists a positive constantc1 such thatn/λmin(Fn0))≤c1 for every n= 1,2, . . . C4 Censoring random variables Ci, i = 1,2, . . . are strictly positive and bounded by some constant M <∞ (for example, M can be the end of the study period, at which every individual still under study is censored).

Conditions C1-C3 are classical in generalized linear regression and zero-inated regression models (see Fahrmeir and Kaufmann, 1985; Czado et al., 2007). Condition C4 is required in the censored setting.

For each n = 1,2, . . . and ε > 0, dene the neighbourhood Nn(ε) = {ψ ∈ C : (ψ − ψ0)>Fn(ψ−ψ0)≤ε2} of ψ0, where Fn is a short notation forFn0). Our rst result states that the solution of (2.4) exists, lies in the neighbourhoodNn(ε)ofψ0 when n is suciently large and is consistent for ψ0.

(7)

Theorem 3.1 (Existence and consistency). Assume conditions C1-C4 hold. Then the probability that ψˆn exists and lies in Nn(ε) for some ε tends to 1 as n → ∞. Furthermore, ψˆn converges in probability to ψ0 as n→ ∞.

Proof of Theorem 3.1. Our proof follows the lines of Fahrmeir and Kaufmann (1985) but technical details are dierent. Moreover, we rely on dierent arguments in several parts, leading to more direct proofs. A technical lemma is proved in an Appendix.

i) We rst prove asymptotic existence of ψˆn. We show that for every η > 0, there exists ε >0and n1 ∈N such that

P(`n(ψ)−`n0)<0 for all ψ ∈∂Nn(ε))≥1−η, for n ≥n1, (3.7) where∂Nn(ε)is the boundary{ψ ∈ C : (ψ−ψ0)>Fn(ψ−ψ0) = ε2}ofNn(ε). This will imply the existence of a local maximum of `n in Nn(ε). Positive-deniteness of Hn and convexity of C will ensure that this maximum is global and unique.

In fact, equivalently to (3.7), we show that for every η >0, there existsε >0and n1 ∈N such that

P(`n(ψ)−`n0)≥0for some ψ ∈∂Nn(ε))≤η, for n≥n1. To see this, we use Taylor's expansion to write

`n(ψ)−`n0) = (ψ −ψ0)TSn0)− 1

2(ψ−ψ0)THn( ˜ψ)(ψ−ψ0), := (ψ −ψ0)TSn0)−Qn(ψ),

where ψ˜=aψ+ (1−a)ψ0 (for some 0≤a ≤1) lies between ψ and ψ0. Let 0< c < 12 and write f.s. for "for some". Then we have:

P(`n(ψ)−`n0)≥0, f.s. ψ ∈∂Nn(ε))

=P (ψ−ψ0)TSn0)≥Qn(ψ) and Qn(ψ)> cε2, f.s. ψ ∈∂Nn(ε)

+P (ψ−ψ0)TSn0)≥Qn(ψ) and Qn(ψ)≤cε2, f.s. ψ ∈∂Nn(ε) ,

≤P(A) +P(B),

where A and B denote events A = {(ψ −ψ0)TSn0) > cε2, f.s. ψ ∈ ∂Nn(ε)} and B = {Qn(ψ)≤cε2, f.s. ψ ∈∂Nn(ε)} respectively. Letun(ψ) = 1εF

1

n2(ψ −ψ0). Then A = {un(ψ)>F

1

n 2Sn0)> cε, f.s. ψ ∈∂Nn(ε)},

⊆ { sup

ψ∈∂Nn(ε)

|un(ψ)>F

1

n 2Sn0)|> cε},

⊆ { sup

kun(ψ)k=1

|un(ψ)>F

1

n 2Sn0)|> cε},

= {kF

1

n 2Sn0)k> cε}.

(8)

where the second to third line comes from the fact that ψ ∈ ∂Nn(ε) implies kun(ψ)k = 1. It follows that P(A) ≤ P(kF

1

n 2Sn0)k > cε). By Theorem 1.5 of Seber and Lee (2012), EkF

1

n 2Sn0)k2 =k and Chebyshev's inequality implies P(A)≤ k

c2ε2. Finally, letting ε=q

2k

ηc2 implies that P(A)≤η/2. Now,

B =

1

2(ψ−ψ0)THn( ˜ψ)(ψ −ψ0)≤cε2, f.s. ψ ∈∂Nn(ε)

,

= 1

2un(ψ)>F

1

n 2Hn( ˜ψ)F

1

n 2un(ψ)≤c, f.s. ψ ∈∂Nn(ε)

,

⊆ 1

min F

1

n 2Hn( ˜ψ)F

1

n 2

un(ψ)>un(ψ)≤c, f.s. ψ ∈∂Nn(ε)

,

= 1

min F

1

n 2Hn( ˜ψ)F

1

n 2

≤c, f.s. ψ ∈∂Nn(ε)

. Thus,P(B)≤P(there exists ψ ∈∂Nn(ε)such that λmin(F

1

n 2Hn( ˜ψ)F

1

n 2)≤ 2c). By Lemma 6.1 in Appendix, F

1

n 2Hn(ψ)F

1

n 2 converges in probability to Ik uniformly in ψ ∈ Nn(ε), as n → ∞. Thus, by Maller (2003), λmin(F

1

n 2Hn(ψ)F

1

n 2) converges in probability to 1 uniformly inψ ∈Nn(ε), as n → ∞.

If ψ˜=aψ+ (1−a)ψ0 for some 0≤a≤1and ψ ∈Nn(ε), then kF

1

n2( ˜ψ−ψ0)k = kF

1

n2(aψ+ (1−a)ψ0−ψ0)k,

= akF

1

n2(ψ−ψ0)k,

≤ kF

1

n2(ψ−ψ0)k,

≤ , and thusψ˜∈Nn(ε). If follows thatλmin(F

1

n 2Hn( ˜ψ)F

1

n 2)converges in probability to1asn→

∞, since|λmin(F

1

n 2Hn( ˜ψ)F

1

n 2)−1| ≤supψ∈Nn(ε)min(F

1

n 2Hn(ψ)F

1

n 2)−1|. Therefore, forn suciently large (say,n ≥n1),P(there exists ψ ∈∂Nn(ε) such that λmin(F

1

n 2Hn( ˜ψ)F

1

n 2)≤ 2c)≤η/2, since 2c < 1. This implies that P(B)≤η/2. Finally,

P(`n(ψ)−`n0)≥0, f.s. ψ ∈∂Nn(ε))≤P(A) +P(B)≤η,

which proves (3.7) and in turn, the existence of a unique global maximum of `n on Nn(ε), which coincides withψˆn.

(9)

ii) We turn to the consistency of ψˆn. We have:

λmin(Fn)kψˆn−ψ0k2 = ( ˆψn−ψ0)>λmin(Fn)Ik( ˆψn−ψ0),

≤ ( ˆψn−ψ0)>Fn( ˆψn−ψ0),

= kFn12( ˆψn−ψ0)k2,

≤ ε2,

with probability tending to 1 as n → ∞, by i). By condition C3, λmin(Fn) tends to ∞ as n→ ∞. Therefore kψˆn−ψ0k converges to 0 with probability tending to 1 asn→ ∞, which

concludes the proof.

Our second result is:

Theorem 3.2 (Asymptotic normality). Assume conditions C1-C4 hold. Then F

1

n2( ˆψn− ψ0) converges in distribution to the Gaussian vector N(0, Ik), as n → ∞.

Proof of Theorem 3.2. Our proof proceeds along the same lines as the proof of asymptotic normality of MLE in uncensored zero-inated generalized Poisson regression (Czado and Min, 2005). However, Czado and Min (2005) use a central limit theorem with Lyapunov condition.

Here, we rely on the weaker Lindeberg condition, which yields a much shorter proof.

We rst prove asymptotic normality of the normalized score vectorF

1

n 2Sn, whereSnis a short notation for Sn0). Let u be any vector in Rk. We show thatu>F

1

n 2Sn converges in distribution toN(0, u>u)(without loss of generality, we set kuk= 1). From (2.5) and (2.6), we remark that Sn can be written as a sum Sn = Pn

i=1Sn,i of independent k-dimensional random vectors Sn,i = (Sn,i,1, . . . , Sn,i,k)>. It is not dicult to see that under conditions C1, C2 and C4, components of Sn,i are bounded by some nite positive constant c2 that is,

|Sn,i,`|< c2, `= 1, . . . , k. Therefore, kSn,ik2 < c3 :=kc22. Let

u>F

1

n 2Sn =u>F

1

n 2

n

X

i=1

Sn,i:=

n

X

i=1

Sn,i . Then E(Sn,i ) = 0 and var(Pn

i=1Sn,i ) = 1. We now verify Lindeberg condition, namely:

for every ε >0,

n

X

i=1

E

Sn,i∗21{|Sn,i |>ε}

→0 asn → ∞.

Letε >0. We have:

n

X

i=1

E

Sn,i∗21{|S

n,i|>ε}

n

X

i=1

E

kuk2kFn12k2kSn,ik21{|S

n,i|>ε}

,

≤ c1c3 n

n

X

i=1

E(1{|Sn,i |>ε}),

(10)

by condition C3. Now, {|Sn,i | > ε} implies that {λmin(Fn) < c32}, therefore, 1{|S

n,i|>ε} ≤ 1min(Fn)<c32} and thus,

n

X

i=1

E

Sn,i∗21{|Sn,i|>ε}

≤ c1c3 n

n

X

i=1

1min(Fn)<c32} =c1c31min(Fn)<c32}. Under C3, λmin(Fn) → ∞ as n → ∞. Therefore, Pn

i=1E(Sn,i∗21{|Sn,i|>ε}) → 0 as n → ∞. It follows that for every u ∈ Rk, u>F

1

n 2Sn converges in distribution to N(0,1) and by Cramer-Wold device, F

1

n 2Sn converges in distribution to N(0, Ik). Weak convergence of F

1

n2( ˆψn−ψ0) is now obtained as usual, by expanding Sn:=Sn0) about ψˆn. The rest of the proof is similar to proof of Theorem 3 of Fahrmeir and Kaufmann

(1985) and is thus omitted.

In order to construct asymptotic condence intervals and tests of hypothesis for the com- ponents ofψ, one needs to estimateFn1/2 (by Fn1/2( ˆψn) for example). Asymptotic normality of Fn1/2( ˆψn)( ˆψn−ψ0) still holds if one assumes that there exists a nite constant c4 such that λmax(Fn)/λmin(Fn)≤c4 forn suciently large. This can be proved as in Fahrmeir and Kaufmann (1985) and is omitted.

4. Simulation study

In this section, we investigate nite-samples properties of the MLE under various scenar- ios obtained by varying the censoring and zero-ination proportions and the sample size.

4.1. Simulation design

We simulate the data according to the ZIP model (2.1)-(2.2)-(2.3) dened by:

log(λi(β)) =β1Xi12Xi23Xi34Xi45Xi56Xi6, and

logit(ωi(γ)) =γ1Wi12Wi23Wi34Wi4,+γ5Wi5,

where Xi1 = Wi1 = 1 and the Xi2, . . . , Xi6, Wi4, Wi5 are independently drawn from nor- mal N(0,1), Bernoulli B(0.3), normal N(1,2.25), exponentialE(1), uniform U(2,5), normal N(−1,1) and Bernoulli B(0.5) distributions respectively. Linear predictors in log(λi(β)) and logit(ωi(γ)) are allowed to share common terms by letting Wi2 = Xi2 and Wi3 = Xi3. We consider the following sample sizes: n = 500,1000,2500. The regression parameter β is chosen as β = (0.7,0.1,0.4,0.85,−0.5,0)>. The regression parameterγ is chosen as:

ˆ case 1: γ = (−0.9,−0.65,−0.2,0.65,0)>,

ˆ case 2: γ = (0.25,−0.7,−0.2,0.65,0)>.

(11)

Using these values, in case 1 (respectively case 2), the average percentage of zero-ination in the simulated data sets is 20% (respectively 40%). Censoring values are simulated from a zero-truncated Poisson model with parameter µ, where µis chosen to yield various average censoring proportions c in the simulated samples, namely c = 0.1,0.2,0.4. For purpose of comparison, we also provide results that would be obtained if there were no censoring (that is, when c= 0) since these results will constitute a benchmark for assessing performance of the MLE when censoring is present.

For each combination of the simulation design parameters (sample size, proportions of censoring and zero-ination), we simulate N = 1000 samples and we calculate the MLE ψˆn. Simulations are carried out using the statistical software R. To solve the likelihood equation, we use the package maxLik (Henningsen and Toomet, 2011) which implements various Newton-Raphson-like algorithms. We obtain starting values by estimating a ZIP model without taking censoring into account (this step is carried out using the function zeroinfl of the R package pscl, see Zeileis et al. (2008) and Jackman (2017)).

4.2. Results

For each conguration [sample size×censoring proportion×zero-inflation pro- portion] of the simulation parameters, we calculate the average bias and average relative bias (expressed as a percentage) of the estimatesβˆj,n and ˆγk,n over theN simulated samples.

For example, the relative bias of βˆj,n is obtained as 1

N

N

X

t=1

βˆj,n(t)−βj

βj ×100,

where βˆj,n(t) denotes the MLE ofβj in the t-th simulated sample. We also obtain the average standard error (SE), empirical standard deviation (SD) and root mean square error (RMSE) for each βˆj,n (j = 1, . . . ,6) and γˆk,n (k = 1, . . . ,5). Finally, we provide the empirical coverage probability (CP) and average length of 95%-level condence intervals for the βj and γk. Results are given in Table 1 (case 1, n = 500), Table 2 (case 2, n = 500), Table 3 (case 1, n= 1000), Table 4 (case 2, n= 1000), Table 5 (case 1,n = 2500) and Table 6 (case 2, n= 2500).

From these results, we observe, as expected, that accuracy of MLEs of both βj and γk decreases as sample size decreases. Accuracy of βjs estimates also decreases as censoring increases (note that the relative bias stays moderate though, even when censoring is high).

On the contrary, estimates of the γk are rather insensitive to censoring, which can be ex- plained by the fact that censoring does not aect zero counts. For bothβj and γk, empirical coverage probabilities are close to the nominal condence level in every case. As may also be expected, for a given censoring proportion, we observe that MLEs of theβj (respectively γk) perform better when the zero-ination proportion decreases (respectively increases).

Finally, in order to assess quality of the Gaussian approximation stated in Theorem 3.2, we obtain normal Q-Q plots of the estimates and histograms of the normalized estimates (βbj,n−βj)/standard error(βbj,n),j = 1, . . . ,6and(bγk,n−γk)/standard error(bγk,n),j = 1, . . . ,5.

(12)

We provide these graphs for n = 500 with a proportion of zero-ination equal to 0.4 and 40% of censoring (see gures 1 to 4). Plots for the other (and more favorable) simulated scenarios yield similar observations and are thus not given. From these gures, it appears that the Gaussian approximation of the distribution of the MLE is reasonably satised, even when the sample size is moderate and the proportions of zero-ination and censoring are as high as 0.4.

(13)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n γb3,n4,n5,n 0 bias 0.0029 -0.0013 0.0008 0.0005 -0.0011 -0.0014 -0.0241 -0.0191 0.0060 0.0180 -0.0077

rel. bias 0.4189 -1.3293 0.2094 0.0598 0.2221 - 2.6778 2.9395 -3.0042 2.7756 - SD 0.0921 0.0196 0.0376 0.0136 0.0277 0.0215 0.2707 0.1615 0.3426 0.1586 0.3005 SE 0.0878 0.0189 0.0374 0.0132 0.0276 0.0211 0.2571 0.1613 0.3258 0.1609 0.2973 RMSE 0.1273 0.0273 0.0530 0.0189 0.0391 0.0301 0.3740 0.2290 0.4727 0.2266 0.4227 CP 0.9500 0.9430 0.9480 0.9380 0.9510 0.9540 0.9400 0.9440 0.9400 0.9520 0.9540

` 0.3433 0.0740 0.1463 0.0512 0.1076 0.0824 1.0048 0.6298 1.2729 0.6285 1.1633 0.1 bias -0.0049 -0.0009 0.0025 0.0041 -0.0015 -0.0009 -0.0278 -0.0198 0.0069 0.0192 -0.0073

rel. bias -0.7045 -0.9439 0.6349 0.4850 0.2904 - 3.0882 3.0520 -3.4358 2.9562 - SD 0.1263 0.0273 0.0548 0.0266 0.0347 0.0297 0.2725 0.1621 0.3448 0.1587 0.3014 SE 0.1207 0.0266 0.0549 0.0273 0.0352 0.0296 0.2585 0.1619 0.3272 0.1613 0.2979 RMSE 0.1747 0.0381 0.0776 0.0384 0.0494 0.0419 0.3765 0.2300 0.4753 0.2271 0.4237 CP 0.9430 0.9390 0.9440 0.9590 0.9490 0.9530 0.9400 0.9490 0.9380 0.9540 0.9530

` 0.4725 0.1042 0.2149 0.1070 0.1377 0.1157 1.0101 0.6323 1.2781 0.6299 1.1654 0.2 bias -0.0098 -0.0008 0.0024 0.0069 -0.0031 0.0002 -0.0292 -0.0203 0.0069 0.0198 -0.0077

rel. bias -1.4064 -0.8357 0.5971 0.8076 0.6201 - 3.2453 3.1206 -3.4564 3.0470 - SD 0.1500 0.0330 0.0697 0.0349 0.0419 0.0361 0.2731 0.1631 0.3475 0.1587 0.3013 SE 0.1439 0.0327 0.0683 0.0355 0.0413 0.0361 0.2589 0.1624 0.3281 0.1614 0.2981 RMSE 0.2081 0.0464 0.0976 0.0502 0.0589 0.0511 0.3773 0.2310 0.4778 0.2272 0.4238 CP 0.9440 0.9420 0.9540 0.9460 0.9570 0.9520 0.9400 0.9500 0.9380 0.9540 0.9540

` 0.5635 0.1279 0.2676 0.1390 0.1615 0.1415 1.0118 0.6341 1.2815 0.6303 1.1661 0.4 bias 0.0016 0.0005 0.0050 0.0143 -0.0053 -0.0032 -0.0310 -0.0201 0.0062 0.0205 -0.0071

rel. bias 0.2347 0.4716 1.2491 1.6786 1.0591 - 3.4448 3.0875 -3.0980 3.1517 - SD 0.2018 0.0503 0.0997 0.0534 0.0570 0.0522 0.2741 0.1652 0.3503 0.1593 0.3020 SE 0.2063 0.0491 0.1042 0.0535 0.0567 0.0537 0.2601 0.1638 0.3312 0.1617 0.2984 RMSE 0.2885 0.0703 0.1443 0.0769 0.0805 0.0749 0.3790 0.2335 0.4820 0.2278 0.4245 CP 0.9520 0.9540 0.9610 0.9430 0.9540 0.9490 0.9450 0.9460 0.9370 0.9530 0.9500

` 0.8074 0.1922 0.4079 0.2092 0.2216 0.2101 1.0163 0.6395 1.2935 0.6312 1.1673

Table 1: Simulation results (n= 500, ZI proportion = 20%). SD: empirical standard deviation. SE: average standard error. RMSE: empirical

12

(14)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n γb3,n4,n5,n 0 bias 0.0021 -0.0006 0.0014 0.0001 0.0009 -0.0012 0.0051 -0.0166 -0.0089 0.0118 -0.0033

rel. bias 0.3032 -0.5554 0.3613 0.0162 -0.1714 - 2.0303 2.3779 4.4416 1.8185 - SD 0.1045 0.0231 0.0442 0.0156 0.0334 0.0246 0.2234 0.1358 0.2535 0.1306 0.2442 SE 0.1038 0.0226 0.0437 0.0158 0.0323 0.0247 0.2155 0.1315 0.2546 0.1294 0.2349 RMSE 0.1473 0.0323 0.0621 0.0222 0.0465 0.0349 0.3103 0.1897 0.3593 0.1841 0.3388 CP 0.9530 0.9500 0.9480 0.9530 0.9390 0.9520 0.9460 0.9530 0.9540 0.9460 0.9450

` 0.4056 0.0883 0.1708 0.0614 0.1260 0.0967 0.8438 0.5144 0.9973 0.5061 0.9205 0.1 bias -0.0039 -0.0002 0.0014 0.0049 -0.0012 -0.0008 0.0030 -0.0172 -0.0094 0.0125 -0.0034

rel. bias -0.5502 -0.1754 0.3451 0.5726 0.2389 - 1.1946 2.4539 4.6880 1.9284 - SD 0.1496 0.0340 0.0699 0.0348 0.0458 0.0370 0.2237 0.1361 0.2540 0.1308 0.2443 SE 0.1506 0.0341 0.0689 0.0357 0.0438 0.0370 0.2164 0.1320 0.2556 0.1296 0.2352 RMSE 0.2123 0.0482 0.0981 0.0501 0.0634 0.0523 0.3112 0.1904 0.3604 0.1845 0.3391 CP 0.9440 0.9490 0.9430 0.9560 0.9440 0.9440 0.9470 0.9540 0.9520 0.9470 0.9470

` 0.5894 0.1334 0.2698 0.1399 0.1709 0.1450 0.8475 0.5165 1.0012 0.5069 0.9216 0.2 bias -0.0068 0.0016 0.0071 0.0095 -0.0041 -0.0004 0.0015 -0.0169 -0.0079 0.0130 -0.0036

rel. bias -0.9652 1.6303 1.7772 1.1197 0.8294 - 0.5822 2.4105 3.9740 1.9938 - SD 0.1915 0.0452 0.0887 0.0485 0.0556 0.0484 0.2240 0.1378 0.2549 0.1309 0.2443 SE 0.1906 0.0448 0.0915 0.0489 0.0542 0.0483 0.2170 0.1326 0.2565 0.1297 0.2354 RMSE 0.2702 0.0636 0.1276 0.0695 0.0777 0.0683 0.3118 0.1919 0.3616 0.1847 0.3392 CP 0.9470 0.9490 0.9600 0.9530 0.9460 0.9480 0.9430 0.9550 0.9550 0.9460 0.9480

` 0.7457 0.1750 0.3579 0.1912 0.2117 0.1889 0.8496 0.5186 1.0047 0.5074 0.9222 0.4 bias -0.0110 0.0078 0.0254 0.0305 -0.0154 0.0015 -0.0028 -0.0160 -0.0059 0.0147 -0.0039

rel. bias -1.5772 7.8277 6.3481 3.5830 3.0722 - -1.1201 2.2840 2.9409 2.2563 - SD 0.3577 0.0937 0.1880 0.0926 0.0944 0.0944 0.2264 0.1408 0.2632 0.1316 0.2452 SE 0.3550 0.0887 0.1850 0.0912 0.0924 0.0932 0.2191 0.1361 0.2627 0.1302 0.2359 RMSE 0.5040 0.1293 0.2649 0.1335 0.1330 0.1327 0.3149 0.1964 0.3719 0.1857 0.3402 CP 0.9520 0.9410 0.9490 0.9430 0.9480 0.9450 0.9490 0.9490 0.9530 0.9510 0.9470

` 1.3864 0.3456 0.7212 0.3555 0.3601 0.3643 0.8578 0.5321 1.0287 0.5092 0.9241

13

(15)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n γb3,n4,n γb5,n 0 bias 0.0008 0.0005 0.0006 0.0001 -0.0001 -0.0002 -0.0135 -0.0059 -0.0003 0.0032 0.0041

rel. bias 0.1106 0.4539 0.1535 0.0141 0.0298 - 1.4961 0.9068 0.1458 0.4936 - SD 0.0605 0.0134 0.0253 0.0090 0.0198 0.0145 0.1719 0.1124 0.2299 0.1127 0.2031 SE 0.0612 0.0131 0.0260 0.0090 0.0192 0.0147 0.1786 0.1116 0.2257 0.1118 0.2065 RMSE 0.0860 0.0187 0.0362 0.0128 0.0276 0.0206 0.2482 0.1584 0.3221 0.1587 0.2896 CP 0.9590 0.9470 0.9550 0.9540 0.9400 0.9540 0.9650 0.9500 0.9480 0.9510 0.9510

` 0.2394 0.0512 0.1018 0.0352 0.0752 0.0575 0.6994 0.4365 0.8834 0.4376 0.8090 0.1 bias -0.0006 0.0005 0.0021 0.0012 -0.0003 -0.0004 -0.0149 -0.0063 0.0004 0.0036 0.0043

rel. bias -0.0901 0.4610 0.5329 0.1424 0.0544 - 1.6521 0.9691 -0.2008 0.5582 - SD 0.0854 0.0189 0.0374 0.0191 0.0245 0.0207 0.1721 0.1128 0.2295 0.1129 0.2032 SE 0.0846 0.0186 0.0384 0.0191 0.0246 0.0207 0.1794 0.1119 0.2263 0.1120 0.2067 RMSE 0.1202 0.0266 0.0536 0.0270 0.0347 0.0293 0.2490 0.1589 0.3222 0.1590 0.2898 CP 0.9450 0.9420 0.9560 0.9550 0.9470 0.9570 0.9670 0.9510 0.9530 0.9490 0.9500

` 0.3315 0.0730 0.1504 0.0750 0.0965 0.0812 0.7024 0.4379 0.8859 0.4382 0.8096 0.2 bias -0.0007 0.0006 0.0045 0.0025 -0.0016 -0.0006 -0.0158 -0.0064 0.0014 0.0038 0.0041

rel. bias -0.0965 0.5551 1.1235 0.2900 0.3190 - 1.7530 0.9864 -0.6932 0.5904 - SD 0.1013 0.0227 0.0473 0.0248 0.0286 0.0254 0.1718 0.1132 0.2292 0.1131 0.2032 SE 0.1007 0.0229 0.0478 0.0248 0.0289 0.0253 0.1797 0.1122 0.2268 0.1120 0.2068 RMSE 0.1429 0.0322 0.0673 0.0351 0.0406 0.0358 0.2490 0.1595 0.3224 0.1592 0.2899 CP 0.9490 0.9570 0.9490 0.9520 0.9570 0.9440 0.9680 0.9500 0.9530 0.9470 0.9510

` 0.3947 0.0895 0.1871 0.0971 0.1131 0.0991 0.7035 0.4389 0.8878 0.4383 0.8099 0.4 bias 0.0004 0.0014 0.0074 0.0067 -0.0042 -0.0007 -0.0171 -0.0063 0.0020 0.0041 0.0041

rel. bias 0.0544 1.4001 1.8431 0.7844 0.8493 - 1.8998 0.9736 -0.9913 0.6250 - SD 0.1442 0.0339 0.0721 0.0370 0.0398 0.0371 0.1724 0.1144 0.2307 0.1132 0.2034 SE 0.1444 0.0342 0.0726 0.0372 0.0396 0.0375 0.1804 0.1131 0.2286 0.1121 0.2068 RMSE 0.2040 .0482 0.1026 0.0529 0.0563 0.0528 0.2501 0.1609 0.3247 0.1594 0.2901 CP 0.9580 0.9600 0.9570 0.9610 0.9560 0.9560 0.9690 0.9490 0.9540 0.9490 0.9490

` 0.5655 0.1338 0.2845 0.1458 0.1549 0.1469 0.7062 0.4424 0.8947 0.4387 0.8102

Table 3: Simulation results (n= 1000, ZI proportion = 20%). SD: empirical standard deviation. SE: average standard error. RMSE: empirical

14

(16)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n3,n4,n γb5,n 0 bias -0.0011 0.0002 -0.0002 0.0003 0.0000 -0.0001 0.0087 -0.0069 -0.0010 0.0116 -0.0016

rel. bias -0.1638 0.2100 -0.0606 0.0405 0.0012 - 3.4745 0.9848 0.5148 1.7888 - SD 0.0702 0.0159 0.0310 0.0106 0.0226 0.0167 0.1518 0.0938 0.1808 0.0900 0.1625 SE 0.0712 0.0155 0.0301 0.0106 0.0224 0.0170 0.1514 0.0916 0.1781 0.0906 0.1647 RMSE 0.1000 0.0222 0.0432 0.0150 0.0318 0.0238 0.2145 0.1312 0.2538 0.1282 0.2313 CP 0.9530 0.9400 0.9480 0.9460 0.9510 0.9540 0.9590 0.9480 0.9550 0.9550 0.9500

` 0.2785 0.0607 0.1177 0.0412 0.0874 0.0667 0.5932 0.3586 0.6980 0.3547 0.6456 0.1 bias -0.0031 0.0011 -0.0001 0.0028 -0.0025 -0.0001 0.0072 -0.0071 -0.0011 0.0122 -0.0015

rel. bias -0.4410 1.1269 -0.0181 0.3284 0.4976 - 2.8914 1.0083 0.5361 1.8699 - SD 0.1063 0.0245 0.0476 0.0254 0.0317 0.0258 0.1528 0.0942 0.1811 0.0904 0.1626 SE 0.1054 0.0237 0.0480 0.0250 0.0306 0.0259 0.1521 0.0919 0.1788 0.0907 0.1649 RMSE 0.1496 0.0341 0.0676 0.0357 0.0441 0.0366 0.2156 0.1318 0.2544 0.1286 0.2315 CP 0.9520 0.9470 0.9520 0.9540 0.9430 0.9510 0.9580 0.9500 0.9540 0.9560 0.9500

` 0.4128 0.0927 0.1881 0.0980 0.1198 0.1015 0.5957 0.3599 0.7004 0.3552 0.6461 0.2 bias -0.0041 0.0009 0.0034 0.0050 -0.0038 -0.0001 0.0065 -0.0073 -0.0002 0.0124 -0.0018

rel. bias -0.5830 0.8778 0.8493 0.5876 0.7598 - 2.5978 1.0495 0.0864 1.9000 - SD 0.1364 0.0318 0.0616 0.0336 0.0389 0.0338 0.1530 0.0946 0.1822 0.0904 0.1626 SE 0.1329 0.0310 0.0636 0.0341 0.0379 0.0337 0.1524 0.0922 0.1793 0.0908 0.1649 RMSE 0.1905 0.0444 0.0886 0.0481 0.0544 0.0477 0.2159 0.1323 0.2556 0.1287 0.2316 CP 0.9480 0.9440 0.9560 0.9580 0.9460 0.9550 0.9610 0.9490 0.9510 0.9580 0.9490

` 0.5205 0.1212 0.2493 0.1334 0.1482 0.1319 0.5969 0.3611 0.7027 0.3554 0.6462 0.4 bias 0.0012 0.0026 0.0103 0.0139 -0.0106 -0.0003 0.0048 -0.0075 0.0005 0.0129 -0.0018

rel. bias 0.1656 2.6138 2.5854 1.6307 2.1250 - 1.9197 1.0707 -0.2254 1.9869 - SD 0.2476 0.0638 0.1291 0.0613 0.0660 0.0646 0.1544 0.0976 0.1857 0.0905 0.1631 SE 0.2439 0.0603 0.1266 0.0625 0.0637 0.0641 0.1537 0.0943 0.1832 0.0909 0.1651 RMSE 0.3475 0.0878 0.1810 0.0886 0.0923 0.0910 0.2178 0.1359 0.2608 0.1289 0.2320 CP 0.9390 0.9350 0.9480 0.9530 0.9390 0.9470 0.9560 0.9480 0.9500 0.9570 0.9490

` 0.9544 0.2358 0.4951 0.2443 0.2488 0.2508 0.6021 0.3692 0.7178 0.3561 0.6468

15

(17)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n γb3,n4,n γb5,n 0 bias -0.0007 0.0001 0.0007 0.0000 0.0000 0.0000 -0.0034 -0.0050 0.0011 0.0032 0.0005

rel. bias -0.0961 0.0764 0.1761 -0.0012 -0.0030 - 0.3731 0.7663 -0.5449 0.4927 - SD 0.0386 0.0081 0.0165 0.0055 0.0118 0.0093 0.1116 0.0687 0.1454 0.0688 0.1311 SE 0.0381 0.0082 0.0162 0.0055 0.0120 0.0092 0.1120 0.0698 0.1415 0.0700 0.1296 RMSE 0.0542 0.0115 0.0232 0.0078 0.0168 0.0130 0.1581 0.0981 0.2028 0.0982 0.1843 CP 0.9490 0.9430 0.9440 0.9460 0.9540 0.9520 0.9550 0.9510 0.9440 0.9560 0.9490

` 0.1493 0.0320 0.0636 0.0216 0.0469 0.0359 0.4389 0.2735 0.5544 0.2742 0.5080 0.1 bias -0.0020 0.0002 0.0010 0.0003 0.0002 0.0002 -0.0037 -0.0049 0.0012 0.0033 0.0006

rel. bias -0.2881 0.2330 0.2396 0.0314 -0.0352 - 0.4082 0.7615 -0.5971 0.5113 - SD 0.0518 0.0116 0.0242 0.0120 0.0158 0.0130 0.1120 0.0689 0.1457 0.0688 0.1312 SE 0.0532 0.0117 0.0241 0.0120 0.0155 0.0130 0.1125 0.0700 0.1418 0.0700 0.1297 RMSE 0.0743 0.0165 0.0342 0.0170 0.0221 0.0184 0.1587 0.0983 0.2033 0.0982 0.1844 CP 0.9570 0.9510 0.9470 0.9530 0.9390 0.9580 0.9570 0.9520 0.9470 0.9550 0.9500

` 0.2086 0.0459 0.0946 0.0472 0.0606 0.0511 0.4406 0.2741 0.5557 0.2744 0.5081 0.2 bias -0.0028 0.0003 0.0012 0.0010 -0.0002 0.0002 -0.0041 -0.0050 0.0012 0.0035 0.0006

rel. bias -0.3938 0.3476 0.3096 0.1209 0.0307 - 0.4547 0.7720 -0.5901 0.5350 - SD 0.0625 0.0142 0.0286 0.0157 0.0183 0.0162 0.1120 0.0689 0.1459 0.0689 0.1312 SE 0.0633 0.0143 0.0300 0.0156 0.0181 0.0159 0.1126 0.0701 0.1422 0.0701 0.1297 RMSE 0.0890 0.0202 0.0415 0.0221 0.0257 0.0227 0.1588 0.0984 0.2037 0.0983 0.1845 CP 0.9520 0.9550 0.9540 0.9510 0.9460 0.9440 0.9610 0.9520 0.9480 0.9560 0.9510

` 0.2482 0.0562 0.1175 0.0610 0.0710 0.0623 0.4412 0.2747 0.5570 0.2745 0.5081 0.4 bias -0.0035 0.0005 0.0036 0.0025 -0.0010 0.0004 -0.0048 -0.0051 0.0021 0.0035 0.0005

rel. bias -0.4957 0.4867 0.8944 0.2962 0.2082 - 0.5302 0.7835 -1.0522 0.5447 - SD 0.0914 0.0212 0.0447 0.0231 0.0249 0.0241 0.1123 0.0697 0.1473 0.0689 0.1313 SE 0.0905 0.0214 0.0455 0.0234 0.0248 0.0235 0.1130 0.0707 0.1432 0.0701 0.1297 RMSE 0.1286 0.0301 0.0639 0.0330 0.0351 0.0337 0.1594 0.0993 0.2054 0.0983 0.1845 CP 0.9440 0.9530 0.9630 0.9480 0.9570 0.9440 0.9610 0.9510 0.9470 0.9560 0.9490

` 0.3548 0.0838 0.1784 0.0916 0.0972 0.0922 0.4428 0.2768 0.5611 0.2747 0.5082

Table 5: Simulation results (n= 2500, ZI proportion = 20%). SD: empirical standard deviation. SE: average standard error. RMSE: empirical

16

(18)

βbnn

average proportion

of censoring βb1,n βb2,n βb3,n βb4,n βb5,n βb6,n1,n2,n γb3,n4,n5,n 0 bias -0.0025 0.0002 -0.0006 0.0004 0.0003 0.0003 0.0033 -0.0049 0.0031 0.0050 -0.0019

rel. bias -0.3542 0.2225 -0.1422 0.0482 -0.0621 - 1.3244 0.7032 -1.5480 0.7756 - SD 0.0449 0.0098 0.0188 0.0066 0.0140 0.0110 0.0964 0.0558 0.1125 0.0555 0.1024 SE 0.0444 0.0096 0.0187 0.0065 0.0139 0.0106 0.0952 0.0576 0.1121 0.0569 0.1037 RMSE 0.0631 0.0137 0.0266 0.0092 0.0197 0.0152 0.1355 0.0803 0.1588 0.0797 0.1457 CP 0.9440 0.9430 0.9450 0.9500 0.9540 0.9360 0.9480 0.9580 0.9500 0.9620 0.9630

` 0.1738 0.0376 0.0733 0.0253 0.0545 0.0415 0.3732 0.2256 0.4395 0.2230 0.4064 0.1 bias -0.0085 0.0010 0.0011 0.0024 -0.0003 0.0011 0.0021 -0.0049 0.0037 0.0054 -0.0018

rel. bias -1.2165 1.0182 0.2811 0.2875 0.0544 - 0.8532 0.7070 -1.8262 0.8257 - SD 0.0666 0.0145 0.0299 0.0159 0.0195 0.0166 0.0970 0.0559 0.1128 0.0556 0.1025 SE 0.0661 0.0148 0.0302 0.0157 0.0191 0.0162 0.0956 0.0578 0.1125 0.0570 0.1037 RMSE 0.0942 0.0208 0.0425 0.0225 0.0273 0.0232 0.1362 0.0805 0.1593 0.0798 0.1458 CP 0.9480 0.9430 0.9480 0.9450 0.9410 0.9440 0.9510 0.9580 0.9530 0.9600 0.9630

` 0.2592 0.0581 0.1182 0.0617 0.0749 0.0637 0.3747 0.2264 0.4408 0.2232 0.4066 0.2 bias -0.0070 0.0015 0.0023 0.0031 -0.0008 0.0007 0.0019 -0.0048 0.0039 0.0054 -0.0019

rel. bias -1.0047 1.5341 0.5652 0.3633 0.1684 - 0.7405 0.6910 -1.9621 0.8347

SD 0.0839 0.0192 0.0395 0.0219 0.0239 0.0212 0.0973 0.0562 0.1135 0.0557 0.1025 SE 0.0833 0.0194 0.0399 0.0214 0.0236 0.0211 0.0958 0.0580 0.1128 0.0570 0.1038 RMSE 0.1184 0.0273 0.0562 0.0307 0.0336 0.0299 0.1365 0.0808 0.1600 0.0798 0.1458 CP 0.9420 0.9490 0.9520 0.9370 0.9570 0.9370 0.9490 0.9600 0.9480 0.9600 0.9620

` 0.3264 0.0759 0.1564 0.0837 0.0924 0.0827 0.3755 0.2271 0.4422 0.2233 0.4067 0.4 bias -0.0077 0.0006 0.0033 0.0076 -0.0027 0.0013 0.0014 -0.0054 0.0034 0.0056 -0.0017

rel. bias -1.0942 0.6360 0.8313 0.8989 0.5363 - 0.5751 0.7733 -1.7103 0.8606 - SD 0.1592 0.0354 0.0767 0.0405 0.0418 0.0415 0.0977 0.0571 0.1138 0.0557 0.1025 SE 0.1520 0.0375 0.0786 0.0388 0.0394 0.0399 0.0966 0.0592 0.1151 0.0571 0.1038 RMSE 0.2202 0.0515 0.1099 0.0566 0.0575 0.0576 0.1373 0.0824 0.1619 0.0799 0.1459 CP 0.9410 0.9600 0.9450 0.9430 0.9400 0.9370 0.9540 0.9580 0.9530 0.9620 0.9610

` 0.5953 0.1467 0.3080 0.1519 0.1544 0.1564 0.3785 0.2319 0.4512 0.2236 0.4068

17

Références

Documents relatifs

A maximum likelihood and regenerative bootstrap approach for estimation and forecasting of INAR(p) processes with zero-inated innovations.1. a UPL, Université Paris Nanterre,

A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep....

Hence studying the asymptotic normality of our estimates reduces to study asymptotic properties of estimators in a parametric censored nonlinear regression model, such as those

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Keywords: Asymptotic normality, Consistency, Missing data, Nonparametric maximum likeli- hood, Right-censored failure time data, Stratified proportional intensity model, Variance

Notice that the emission densities do not depend on t, as introducing periodic emission distributions is not necessary to generate realalistic time series of precipitations. It

Key words : Asymptotic normality, Ballistic random walk, Confidence regions, Cramér-Rao efficiency, Maximum likelihood estimation, Random walk in ran- dom environment.. MSC 2000

Instead of modeling the Poisson and negative binomial means in the susceptible latent class, these models directly relate the marginal mean to the covariates (by using a log link)..