• Aucun résultat trouvé

Variance reduction in stochastic homogenization : proof of concept, using antithetic variables

N/A
N/A
Protected

Academic year: 2021

Partager "Variance reduction in stochastic homogenization : proof of concept, using antithetic variables"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: inria-00457946

https://hal.inria.fr/inria-00457946

Submitted on 19 Feb 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non,

of concept, using antithetic variables

Ronan Costaouec, Claude Le Bris, Frédéric Legoll

To cite this version:

Ronan Costaouec, Claude Le Bris, Frédéric Legoll. Variance reduction in stochastic homogenization : proof of concept, using antithetic variables. [Research Report] RR-7207, Inria. 2010, pp.1-21. �inria- 00457946�

(2)

a p p o r t

d e r e c h e r c h e

Thème NUM

Variance reduction in stochastic homogenization:

proof of concept, using antithetic variables

Ronan Costaouec — Claude Le Bris — Frédéric Legoll

N° 7207

February 2010

(3)
(4)

RonanCostaoue

∗†

, ClaudeLe Bris

∗†

, FrédériLegoll

‡†

ThèmeNUMSystèmesnumériques

ProjetMICMAC

Rapportdereherhe 7207February201021pages

Abstrat: We showthat we an redue the variane in asimple problem of stohasti

homogenization using the lassialtehniqueof antitheti variables. The setting, and the

presentation, aredeliberately kept elementary. Wepointout the main issues, show some

illustrative results, and demonstrate, both theoretially and numerially, the eieny of

theapproahonsimpleases.

Key-words: stohastihomogenization,varianeredution,antithetivariables

CERMICS,EoleNationaledesPontsetChaussées,6et8avenueBlaisePasal,CitéDesartes,77455

Marne-la-ValléeCedex2,Frane. Contat: {ostaour,lebris}ermis.enp.fr

INRIA Roquenourt, MICMAC team-projet, Domaine de Volueau, B.P.105, 78153 LeChesnay

Cedex,Frane.

Institut Navier, LAMI, EoleNationale desPonts et Chaussées, 6 et 8 avenue Blaise Pasal, Cité

Desartes,77455Marne-la-ValléeCedex2,Frane.Contat: legolllami.enp.fr

(5)

Résumé: Dansetravail,nousmettonsenoeuvreunetehniquederédutiondevariane

dans le adre de l'homogénéisation stohastique. Plus préisément, nous montrons qu'il

est possiblede réduirelavarianedela matriehomogénéiséealuléenumériquement,en

utilisantlatehniquedesvariablesantithétiques. Nousavonsvolontairementhoisidenous

plaer dans un adre de travail simple, an d'identier les prinipales diultés. Nous

démontrons,àlafoisthéoriquementet numériquement,l'eaitéde l'approhe, dansdes

assimples.

Mots-lés : homogénéisationstohastique,rédutiondevariane,variablesantithétiques

(6)

1 Introdution

Several settingsin homogenizationrequirethesolutionoforretorproblemsposedonthe

entirespaeRd. Inpratie,trunationsofthese problemsoverboundeddomains areon- sidered and the homogenizedoeients are obtained in the limit of largedomains. The

questionarisestoaeleratesuhomputations. Inthedeterministiase,aelerationteh-

niquesreminisentfromsignallteringhavebeenintroduedin[5℄. Theworkhassinethen

beensigniantlyimprovedin[12℄. In[5℄,itwasshownthataelerationtehniqueseient

fordeterministiproblems donotneessarilyperformwellin thestohastiframework. In

thelatterase,themaindiultyisrelatedtotheintrinsinoisepresentin thesimulation.

Thehallenge is onsequentlynotthat muh to improvethe rateof onvergene,whih is

intrinsiallythat of the entral limit theorem, but rather to redue the variane, thereby

improvingthe prefator of the onvergene givenby the entral limit theorem. Although

very well investigated in other appliation elds suh as nanial mathematis, variane

redutiontehniques seemto havenot beenapplied to the ontext of stohasti homoge-

nization. Thepurpose ofthepresentontributionis topresentarstattempt inreduing

thevarianeinstohastihomogenization.Forthispurpose,weonsiderasimplesituation,

and a simple variane redution tehnique. The probability theoreti arguments we will

makeuseofareelementary. Theequationunder onsiderationisasimpleelliptiequation

in divergeneform, withasalaroeient. The oeientisassumed to onsistof inde-

pendent,identiallydistributedrandomvariablessetonasimplemesh(see(2)below). The

tehniqueusedforvarianeredutionisthatofantithetivariables. Oursettingisaademi

innature,somewhatfarfromphysiallyrelevantases,andelementary. Manymorediult

situations ouldbeaddressed: othertypesof stationaryergodi oeients,matrixrather

than salaroeients, other typesof equations, other tehniques for varianeredution,

...The present ontribution is aproof of onept: variane redutionan be ahieved in

stohastihomogenization. Futureworks[3,4,11℄willprovidemoredetailsonthenumeris

andthetheory,andalsoaddresssomeofthemanypossibleextensionsmentionedabove.

2 Stohasti homogenization theory

Althoughwewish to keepthe mathematialformalismaslimitedaspossiblein ourexpo-

sition, weneed to introdue the basisetting of stohasti homogenization (see[16℄ for a

similarpresentationand relatedissues). Throughoutthis artile,(Ω,F,P)is aprobability spaeandwedenotebyE(X) =R

X(ω)dP(ω)theexpetationvalueofanyrandomvariable X L1(Ω, dP). WenextxdN (theambientphysialdimension),andassumethatthe group(Zd,+)atson. Wedenotebyk)k∈Zdthisation,andassumethatitpreservesthe

measureP,thatis,forallkZd andallA∈ F,PkA) =P(A). Weassumethattheation τ isergodi,that is,ifA∈ F is suhthat τkA=AforanykZd, thenP(A) = 0or1. In

addition, wedene thefollowingnotionof stationarity(see [7℄): any F L1loc Rd, L1(Ω)

issaidtobestationary if,forallkZd,

F(x+k, ω) =F(x, τkω), (1)

(7)

almosteverywhereinxandalmostsurely. Inthissetting,theergoditheorem[15, 17℄ an

bestatedasfollows: LetF L Rd, L1(Ω)

beastationary randomvariable inthe above

sense. Fork= (k1, k2, . . . kd)Zd,weset |k|= sup

1≤i≤d|ki|. Then 1

(2N+ 1)d X

|k|≤N

F(x, τkω)N→∞−→ E(F(x,·)) inL(Rd), almost surely.

Thisimpliesthat (denoting byQthe unitubeinRd)

Fx ε, ω

ε→0

E Z

Q

F(x,·)dx

in L(Rd), almost surely.

Besides tehnialities, the purpose of the above setting is simply to formalizethat, even

thoughrealizationsmayvary, thefuntion F atpointxRd andthefuntion F at point x+k, k Zd, share thesame law. In thehomogenization ontext wenow turn to, this meansthattheloal,mirosopienvironment(enoded intheoeienta,see(3)below)

is everywhere the sameon average. From this, homogenized, marosopi properties will

follow.

We now x an open, regular, bounded subset D of Rd, an L2 funtion f onD, and a

randomfuntiona assumedstationaryinthesense (1)dened above. Wealsoassumeais

bounded, positive andalmost surelybounded awayfrom zero. Forsimpliity,wetakea a

randompieewiseonstantfuntionoftheform:

a(x, ω) = X

k∈Zd

1Q+k(x)ak(ω), (2)

where Q is the unit ube of Rd and (ak(ω))k∈Zd denotes a family of i.i.d. random vari-

ables. The standard results of stohasti homogenization [2, 14℄ apply to the boundary

valueproblem

div ax

ε, ω

uε

= f in D, uε = 0 on D.

(3)

These resultsstate that,in thelimitε−→0,thehomogenized problemobtainedfrom (3)

reads: (

div(Au) = f in D,

u = 0 on D. (4)

ThehomogenizedmatrixA isdenedas [A]ij =E

Z

Q

(ei+wei(y,·))Ta(y,·) ej+wej(y,·) dy

, (5)

(8)

where,foranypRd,wpisthesolution(uniqueuptotheadditionofa(random)onstant)

in

wL2loc(Rd, L2(Ω)), wL2unif(Rd, L2(Ω)) to

div[a(y, ω) (p+wp(y, ω))] = 0 a.s. onRd,

wp isstationaryin thesense of(1), E

Z

Qwp(y,·)dy

= 0,

(6)

wherewehaveusedthenotationL2unif fortheuniformL2spae,thatisthespaeoffuntions

forwhih, say,theL2 normonaballofunit sizeisboundedaboveindependentlyfromthe enteroftheball.

Thesolutionuεto(3)isknowntoonvergetothesolutionuto(4)invariousappropriate senses. The tensor and funtion A and u are deterministi quantities, although they originatefrom a series of random problems. This is a onsequeneof the ergodi setting

desribedabove,whihallowsrandommirosopiquantitiestoaverageoutindeterministi

marosopiquantities. NotehoweverthattheomputationofArequirestheomputation

oftheso-alledorretorfuntions wp, whiharerandom.

Theaboveresultgeneralizesthatofthelassialperiodisetting(seee.g. [2,9℄) where,

insteadof being stationary ergodi, the funtion a in (3) is periodi. Then, although the

homogenizedproblem anbeexpressed similarly, the ruial diereneis that (at least in

this simplelinearase)the orretorprobleman, in theperiodiase, bereduedto the

equation div[a(y) (p+wp(y))] = 0 set onthe periodi ellQ = [0,1]d, andnot onthe

entirespaeRd asin (6). Correspondingly,thetermsofthehomogenizedtensorin (5)are simple deterministi integralson Q. In the random ase, equation (6) is intrinsially set on the entire spae and the numerial approximation of the solution wp to the orretor

problem(6)isthemainomputationalhallenge. Problem(6)isinpratietrunatedona

boundeddomainQN = [N, N]d andusuallysuppliedwithperiodi boundaryonditions:

( div a(·, ω) p+wpN(·, ω)

= 0 on QN,

wpN isQN-periodi. (7)

Correspondingly,weset:

[AN]ij(ω) = 1

|QN| Z

QN

ei+wNei(y, ω)T

a(y, ω)

ej+weNj(y, ω)

dy. (8)

In the limit of large domains QN, the homogenized tensor (5) is reovered. In addition, therate of onvergene withwhih the trunated valuesapproahthe exathomogenized

value A an be assessed theoretially. We refer to [8, 18℄ for the proof of all the above statements. As will be seenbelow, the varianeof the random variables involvedplays a

roleintheapproximationproedure. Reduingthisvarianeistheproblemwenowonsider.

(9)

3 Variane redution

3.1 Classial Monte Carlo method

Asmentionedabove,thelargesize (largeN)limitoftheoeient(8)obtainedusingthe

solutionofthetrunatedorretorproblem(7)givesthevalueofthehomogenizedoeient

(5). Formally,thisisaonvergeneofthetypeAN(ω)−→A asN −→+almostsurely

in. ThepratialapproahtothisproblemistheMonte-Carloapproah. Wenowbriey investigatetheroleofthevarianein theproblem.

Tostartwith, webriey onsidertheone-dimensionalsetting. Althoughthis settingis

verypartiular(andsometimesmisleadingbeauseoversimplied),italsoallowstoalready

understandthebasifeaturesoftheproblemandthebottomlineoftheapproah,withthe

eonomyofmanyunneessarytehnialities.

Intheone-dimensionalsetting, thedenition (2)reads

a(x, ω) =X

k∈Z

1[k,k+1[(x)ak(ω) (9)

with (ak(ω))k∈Z a family of i.i.d. random variables. It is easily seen that the trunated

orretorproblem(7)an beexpliitlysolvedandleadstothevalue

aN(ω) = 1 2N

NX−1 k=−N

1 ak(ω)

!−1

(10)

oftheapproximationforthehomogenizedtensor(here,asalaroeientofourse). Inthe

limitoflargeN,italmostsurelyonvergestothevalueoftheexat homogenizedoeient

a=E 1

a0

−1

. (11)

This exat value is readily obtained expliitly solving (5)-(6). The simplest possible ar-

gument onsists now in onsidering (aN(ω))−1 = 1 2N

NX−1 k=−N

1

ak(ω) and remark that the

rateof onvergeneof this quantityto (a)−1 is evidentlygiven by theentrallimit theo-

rem, where the variane of the randomvariable (ak(ω))−1 playsa ruial role. Although

orret, this argument exploits toomuh the verypeuliar nature of theone-dimensional

setting (we havetaken the inverse of the oeient and reasted it asa sum, afat that

is not possible otherwise than in one dimension). An argument with slightly more gen-

erality onsists in onsidering aN(ω) itself and not its inverse, and, using elementary

alulus, showingthat it also onverges to a with a rate of onvergene where the vari-

ane of a0(ω) again plays the ruial role. Indeed, one may for instane remark that

(10)

E 1

2N

PN−1 k=−N 1

ak

−1

E

1 a0

−1

2!

may be bounded from above (using a simple al-

mostsureupperboundofak(ω))byE

1 2N

PN−1 k=−N

1 ak

E

1 a0

2

uptoanirrelevant

multipliative onstantand that the latterquantity, one easily omputed, is of the form

1 2N Var

1 a0

. Again,thevarianeoftherandomoeientplaysarole.

Indimensionshigherthanone,thesituationisonsiderablymoreintriateandtherate

ofonvergenewithwhihtheoeientarisingfromthetrunatedomputationonverges

toits limitisnotsosimpleto evaluate. Thisis thepurpose, under appropriateonditions

(alledmixingonditions andwhihareindeedmetinourpresentsetting),ofthework[8℄.

Thenumerialpratieisasfollows. AsetofM independentrealizationsoftherandom oeientaare onsidered. The orrespondingtrunated problems(7) aresolved, andan empirialmeanofthetrunatedoeients(8)isinferred. Thisempirialmeanonlyagrees

withthetheoretialvalueofthetrunatedoeientwithinamarginoferrorwhihisgiven

bytheentrallimittheorem(intermsofM). Thevarianeoftheoeientsthereforeagain

playsarole, asaprefator. Forasuiently largetrunation size N, thistrunatedvalue

is admitted to be the exatvalue of the oeients. The error made is ontroled by the

estimationsofthetheoretialwork[8℄. Of ourse,theoverallomputation desribedabove

isexpensive,beauseeahrealizationrequiresanewsolutiontothed-dimensionalboundary valueproblem(7)ofpresumablylargeasizesineN istakenlarge. Thereisthereforeahuge

interestin reduingtheostof theomputation, or,otherwisestated, in reahing abetter

auray ata givenomputational ost. Sine thevarianeof thetrunated homogenized

tensorisanimportantingredient,reduingthevarianebeomesahallengingandsensitive

issue.

Moreexpliitly,let(am(x, ω))1≤m≤M denoteM independentandidentiallydistributed underlyingrandomelds. Wedeneafamily A⋆,mN

1≤m≤M ofi.i.d. homogenizedmatries by,forany1i, jd,

A⋆,mN

ij(ω) = 1

|QN| Z

QN

ei+wN,mei (·, ω)T

am(·, ω)

ej+wN,mej (·, ω) ,

wherewN,mej is thesolutionofthe orretorproblem assoiatedto am. Thenwedenefor

eah omponentofAN theempirialmeanandvariane µM

[AN]ij

= 1

M XM m=1

A⋆,mN

ij,

σM

[AN]ij

= 1

M1 XM m=1

A⋆,mN

ijµM

[AN]ij2

.

(12)

SinethematriesA⋆,mN arei.i.d.,thestronglawoflargenumbersapplies:

µM

[AN]ij

(ω)M→+∞−→ E [AN]ij

almostsurely.

(11)

Theentrallimittheoremthenyields

M µM

[AN]ij

E

[AN]ij L

M−→→+∞

r Var

[AN]ij

N(0,1), (13)

wheretheonvergeneholdsin law,andN(0,1)denotesthestandardgaussian law. Intro-

duing its 95 perent quantile,it is standard to onsider that the exat meanE [AN]ij

isequalto µM

[AN]ij

within amarginof error1.96 r

Var

[AN]ij

M

. Theexatvariane

Var

[AN]ij

beingunknowninpratie,itisustomarytoreplaeitbytheempirialvari-

anegivenin (12)above. Itis thereforeonsideredthat theexpetation E [AN]ij

liesin

theinterval

µM

[AN]ij

1.96 r

σM

[AN]ij

M , µM

[AN]ij + 1.96

r σM

[AN]ij

M

. (14)

ThevalueµM

[AN]ij

isthus,forbothM andN suientlylarge,adoptedastheapprox-

imationoftheexatvalue[A]ij.

Of ourse, atensorialargumentouldbeapplied here, notonsidering separately eah

entry of the matrix but treating the matrix as a whole. The approah developed above,

omponentbyomponent,issuientforthesimpleasesonsideredinthepresentwork.

3.2 Antithetivariable for stohasti homogenization

WeknowfromtheprevioussetionthatonstrutingempirialmeansapproximatingE(AN)

withasmallervarianeatthesameomputationalostisofhighinterest. Wenowdesribe

apossibleapproahtoahievethisgoal.

Ingenerality,x M = 2M. Supposethat wehaveMi.i.d. opies(am(x, ω))1≤m≤M of a(x, ω). ConstrutnextMi.i.d. antitheti randomelds

bm(x, ω) =T(am(x, ω)), 1m≤ M,

from the(am(x, ω))1≤m≤M. Themap T transformstherandomeld am intoanother, so-

alled antitheti, eld bm. Expliit examples of suh T are given in the sequel (see (20)

andSetion4below). Thetransformationisperformedinsuh awaythat,foreahm,bm

should have the samelawas am, namely the law of the oeient a. Somewhat vaguely

stated,iftheoeientawasobtainedin aointossinggame(usingafairoin),then bm

wouldbeheadeahtimeamistailandvieversa. WereferthereadertoFigure1belowfor

Références

Documents relatifs

convergence of the perturbation calculation is better in the ENC method than in the standard method, a potential determined from the experimental vibrational energy levels using

induces a quadratic overhead of the substitution process. Turning to practical values and embracing the second approach, instead, speeds up the substitution process, inducing a

If a minimum experimentation design was required to validate the hypothesis (proof of the known), additional design activity had to be performed to enable the proof of the

We have proposed two application examples of the method in non-linear problems, one concerning the homogenization of the harmonic maps equation while the other deals with

On commence par gérer le triangle inférieur, non plus à partir de la situation initiale car elle ne se re- trouve plus dans le triangle supérieur mais à partir de la troisième ligne

Magnetic interaction with devices: A pilot study on

We also describe the results of a systematic calculation of phase separation diagrams using the CVM. We study in particular the dependence of the phase diagrams on the lengths of

Axiomatization implies an important change of perspective: a change in concept and role of contradiction: in ancient Greek mathematics the contradiction intervened