• Aucun résultat trouvé

X-UV INTERFERENTIAL MIRRORS AND NEW POSSIBILITIES FOR PLASMA RADIATION STUDIES

N/A
N/A
Protected

Academic year: 2021

Partager "X-UV INTERFERENTIAL MIRRORS AND NEW POSSIBILITIES FOR PLASMA RADIATION STUDIES"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00225877

https://hal.archives-ouvertes.fr/jpa-00225877

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

X-UV INTERFERENTIAL MIRRORS AND NEW POSSIBILITIES FOR PLASMA RADIATION

STUDIES

P. Dhez

To cite this version:

P. Dhez. X-UV INTERFERENTIAL MIRRORS AND NEW POSSIBILITIES FOR PLASMA RADIATION STUDIES. Journal de Physique Colloques, 1986, 47 (C6), pp.C6-267-C6-275.

�10.1051/jphyscol:1986634�. �jpa-00225877�

(2)

JOURNAL D E PHYSIQUE,

Colloque C6, supplement au n o 10, Tome 47, octobre 1986

X-UV INTERFERENTIAL MIRRORS AND NEW POSSIBILITIES FOR PLASMA RADIATION STUDIES

P. DHEZ

Laboratoire d e Spectroscopie Atomique et Ionique and LURE, Universite Paris XI, F-91405 Orsay Cedex, France

RESUME

La r e a l i s a t i o n d e rniroirs i n t e r f b r e n t i e l s a d a p t & au domaine X-UV e s t une p o s s i b i l i t l a p p a r u e s e u l e m e n t d e p u i s une dizaine d'annees. Dans une premiPre p a r t i e nous r a p p e l o n s l e s c a r a c t l r i s t i q u e s p r i n c i p a l e s d e t e l s miroirs. P a r comparaison avec l e s o p t i q u e s s o u s incidence r a s a n t e s e u l e s d i s p o n i b l e s & s q u J & maintenanti n o u s indiquons e n s u i t e l e s n o u v e l l e s >voies o u v e r t e s p a r l e u r u t i l i s a t i o n . Enfin n o u s d a n n o n s q u e l q u e s e x e m p l e s de diagnoctic d e plasma t i r a n t p a r t i e de c e s nouvelles p o s s i b i l i t 8 s .

ABSTRACT

F o r a b o u t t e n y e a r s new multilayered X-UV m i r r o r s have been i n p r o g r e s s and a r e now overcoming some of t h e main d i f i c u l t i e s well Rnown with t h e grazing incidence o p t i c s u s e d up t o now. The main c h a r a c t e r i s t i c s of such m i r r o r s a r e f i r s t recalled. Next some of t h e new p o s s i b i l i t i e s i n X-UV s p e c t r o s c o p y and imaging a r e given. Finally we b r i e f l y d e s c r i b e some e x a m p l e s of new s e t u p s using s u c h X-UV i n t e r f e r e n c e m i r r o r s f o r plasma diagnostic.

INTRODUCTION.

S e v e r a l p a p e r s a t t h i s f i r s t colloquium about "X-Ray L a s e r " d e m o n s t r a t e c l e a r l y t h e importance of plasma d i a g n o s t i c s t o p r o g r e s s i n t h e understanding of t h e mecanisms leading t o t h e population i n v e r s i o n and how t h e u s e of t h e X-UV r a n g e i s well s u i t e d t o s t u d y plasma t e m p e r a t u r e , d e n s i t y and c h a r a c t e r i s t i c l i n e s of highly ionized atoms. Indeed, t h e p r o g r e s s i n such d i a g n o s t i c s using s p e c t r o s c o p y o r imaging o p t i c s a r e very d e p e n d a n t t o t h e p o s s i b i l i t i e s t o build t h e correspoding X-UV o p t i c a l s y s t e m s t o achieve them.

Until now, most of t h e s e t u p s have b e e n r e s t r i c t e d t o grazing incidence and c r i s t a l o p t i c s (L). T h i s is due t o t h e X-U\/ o p t i c a l c o n s t a n t values. Over a l l t h e X-UV range; t h e s e one f o r b i d a t t h e same t i m e t h e c l a s s i c a l normal incidence m i r r a r s w i t b s i n g l e i n t e r f a c e , which need very absorbing m a t e r i a l ? and a l s o t h e r e f r a c t i v e l e n s e s , b e c a u s e r e f r a c t i v e index i s t o o c l o s e t o t h e vaccuum one. The q u i t e r e c e n t development of multilayered m i r r o r s (2) and F r e s n e l zone p l a t e (3) had considerably enhanced t h e p o s s i b i l i t i e s t o conceive X-UV o p t i c s b e t t e r a d a p t e d t o X-UV d i a g n o s t i c s . B a s e d o n d i f f r a c t i o n p r o p e r t i e s , such i n t e r f e r e n t i a l o p t i c s a r e n o t s i m i l a r t o t h e c l a s s i c a l s i n g l e i n t e r f a c e m i r r o r s and r e f r a c t i v e l e n s e s well Known in t h e v i s i b l e range. To g e t such X-UV d i f f r a c t i n g o p t i c s , s p e c i a l microfabrication t e c h n o l o g i e s have been r e c e n t l y developed. The p r e s e n t s t a t e of a r t i n t h i s new f i e l d p e r m i t s t o overcome s e v e r a l l i m i t a t i o n s which up t o now had slowed down t h e u s e of t h e X-UV range.

I n t h i s p a p e r I will t r y f i r s t t o r e c a l l t h e b a s i c p r o p e r t i e s of t h e X-UV i n t e r f e r e n t i a l mirrors. Next I will indicate new p o s s i b i l i t i e s offered by such mirrors t o design new X-UV o p t i c s . Finally I will give some e x a m p l e s of new plasma d i a g n o s t i c s using t h e s e i n t e r f e r e n c e mirrars.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986634

(3)

C6-268 JOURNAL DE PHYSIQUE

BASIC PROPERTIES OF THE INTERFERENTIAL X-UV MIRRORS

Before t o come t o interference mirrors, l e t u s f i r s t remember how the classical single interface mirror acts.

The f i r s t figure shows how the

.Pi a b s o r p t i o n c o e f f i c i e n t o f gcld i s

u l o - Au linked t o normal incidence reflectivit:,

U a, (4).

d 5-

W ---Rl..,"",vcd*' Because, i n t h e X-UV range, a l l

a, materials have almost t h e same order

2- of magnitude f o r t h e o p t i c a l

constants, they a l l exhibit the same behaviour. Fresnel formula giving the refectivity coefficient versus t h e angle af incidence p e r m i t s t o calculate t h e efficiency of X-UV

L; mirrors by using X-UV optical indices

(5).

Figure 2 is a n example of such calculations for a hafnium dioptre a t t h r e e w a v e l e n g t h s ( 6 ) . I t d e m o n s t r a t e s how r e f l e c t i v i t y

oh&& & "$a 2b0 & ' I ~ O decrease with absorption coefficient h v !eT7) when wavelength becomes shorter and how a noticeable reflectivity regime is restricted t o grazing angle range.

Some physics text books explain t h a t

- Figure 1 - only an infinitely absorbing material

i s a perfect mirrur.

In such c a s e , a l m o s t a l l p h o t o n s a r e absorbed by the f i r s t atomic layer and immediately reemittedt s o they look like reflected.

In actual materials, phatons penetrate the medium. The penetration length usually

considered in such problem is the thicUness L -

absorbing i / e of the incident intensity, about O,3.

Along the penetration path most of photons -

a r e a b s o r b e d , converted i n h e a t or 10-0

photoelectronst and those reemitted suffer o 45 9 0

also absorption on the back way before they Incidence Angle 0 (degree)

leave t h e mirror. As a rul?, good normal

incidence mirrors are obtained only from m a t e r i a l s having a p e n e t r a t i o n length - Figure 2 -

s m a l l e r t h a n , o r comparable t o , t h e wavelength of the light t o reflect.

As indicated by curves on figure 3, no material s a t i s f y this condition in the X-UV range. Sot according t o Fresnel formula only grazing incidence worKs in t h i s range for dioptre mirrurs.

Dielectric mirrors f o r visible a r e stacUs of very transparent materials, containing alternating equal thichkness of high and low index transparent materials. I t is a f i r s t example of interferential mirrors using a penetrating wave. Such a principle looks very convenient t o the X-UV range where we cannot avoid the wave penetration. In the case of transparent materialst each interface is only slightly reflecting, due t o the weaK difference between the index of both materials.

(4)

,--.

-. A t the end, one g e t a constructive i n t e r f e r e n c e f o r t h e w a v e l e n g h t corresponding t o t h e difference o f optical path between the succesive p a r t i a l waves. By t h i s way 100%

r e f l e c t i v i t y can be obtained w i t h non absorbing media.

A n o t h e r m o d e l o f e f f i c i e n t i n t e r f e r e n t i a l m i r r o r i s the i d e a l Bragg c r y s t a l containing very t h i n l a y e r s o f a p e r f e c t l y a b s o r b i n g m a t e r i a l s e t a t a regular distance i n a perfectly transparent medium. Real c r y s t a l s are n o t l i k e that, b u t atomic planes b r i n g a periodic electronic density modulation which a l s o works c o n v e n i e n t l y . M o r e t h a n t h a t , c r y s t a l l i n e m a t e r i a l s a r e n o t a n a b s o l u t e n e c e s s i t y . I n f a c t , a s remarks very earlier, t h i n amorphous evaporated l a y e r s can i n principle leads t o a more convenient electronic Wavelength (X) density modulation, i f q u a l i t i e s o f the

- Figure 3 - i n t e r f a c e s can be controlled.

I n summary the common p o i n t t o these both kind o f interference m i r r o r s working w i t h a penetrating wave i s the need o f a periodic medium w i t h a d period matching the classical Bragg's law: 2d.sin43 =A.

L e t s t u r n now our a t t e n t i o n t o the efficiency o f such interference mirrors. Calculations show that, even w i t h s l i g h t absorbing materials, the efficiency o f such systems decrease very f a s t and by consequence are both u n e f f i c i e n t in the X-UV range. E. Spiller have been the f i r s t t o clearly p o i n t o u t t h a t w i t h absorbing materials one can s t i l l get noticeable r e f l e c t i v i t y w i t h interference m i r r o r (7). I n t h i s case, one must b u i l d evaporated periodic l a y e r s containing a f i r s t matefial w i t h the maximum absorption a t the desired wavelength a s an e f f i c i e n t s c a t t e r and a second one the more transparent a s possible used as a spacer. In a d d i t i o n one must t o adjust the r e l a t i v e thicKness o f the more absorbing material i n such a way t h a t r e f l e c t i v i t y per period is l a r g e r t h a n i t s absorption . How t o adjust t h i s r e l a t i v e thickness, called p , and how much r e f l e c t i v i t y can be obtained have been n e x t summarized o n a simple graph by A. Vinogradov (g), i n the case o f purely absorbing materials. Such an approximation i s q u i t e valuable f o r the X-UV range. F o r more precise calculations one must take i n t o account the r e f r a c t i v e p a r t o f t h e index, which leads t o a n increase o f the r e f l e c t i v i t y .

I n the case o f the W/C couple o f material, f i g u r e 4 shows the maximum o f the normal '"

incidence r e f l e c t i v i t y which can be obtained, even by optimizing the p parameter f o r each 2

w a v e l e n g t h (9). Due t o t h e q u i t e h i g h .d absorption, just before the Ck edge around 5

44A, the carbone appears clearly as a bad $

transparent material i n t h i s range. Actually, a, 0.4 such edges a r e a l s o p r e s e n t i n t h e tu r e f l e c t i v i t y curves o f any n a t u r a l o r organic 2 0.2

crystals,

t o g e t t h e f o r example most e f f i c i e n t on Ok around i n t e r f e r e n t i a l 16A. So, o,o

" " I

W/C Plultilaver

I ,

%

6 8 10 ZO (0 60 6 0 1 ~ 0 2m

m i r r o r s along a l l t h e X-UV range one needs

t o choose t h e most appropriate materials f o r Wavelength (8)

each range. Such a search have been done by

A. Rosenbluth (9) during h i s t h e s i s and t h e - Figure 4 -

computerized r e s u l t s are given in f i g u r e 5.

(5)

JOURNAL DE PHYSIQUE

- F i g u r e 5 -

" 6 8 1 0 20 40 60 100 200

W A V E L E N G T H (a].

The v e r t i c a l l i n e s i n d i c a t e where new couple of m a t e r i a l s must be u s e d t o keep t h e maximum normal incidence peak r e f l e c t i v i t y . The optimum p a r a m e t e r p and t h e n e c e s s a r y number of p e r i o d s N t o g e t such r e f l e c t i v i t y a r e given.

Conslderlng a glven wavelength and changlng s l i g h t l y t h r p p a r a m e t e r o f f e r t w o l n t e r e s t l n g p o s s ~ b l l l t i e s .

T h e f l r s t o n e 1s t o optiml:e t h e m u l t l l a y e r s f o r maxlmum p e a k o r i n t e g r a t e d reflectivity, o r f o r t h e b e s t r e s o l u t i o n fiO). The second one

C / W Multalayer 1s t o mlnlmize t h e overlapping o r d e r .

T h e f i g u r e 6 1s a n e x a m p l e of

Perlod d=35& '

calculation f o r t h e c a s e o f W/C multllayer a t % A ( i f ) . With a s m a l l d e c r e a s e of reflectivity ~t IS p o s s i b l e t o minimlse a t t h e s a m e time t h e second and t h l r d order. Around p=0.5 w e g o t t h e equivalent o f a c e n t r o s y m e t r l c c e l l well known In d l f f r a c t l n g s y s t e m a s a b l e t o cancel a l l t h e e v e n o r d e r s . An e x p e r i m e n t a l o 2 .4 6 8 check of t h e s e p o s s l b l l l t i e s have been 8=dw/d done (11) and t h e damping of any

- F i g u r e 6 - choosen o r d e r h a s b e e n observed.

I t i s n o t h e r e t h e r i g h t place t o give d e t a i l s a b o u t c a l c u l a t i o n s , e v a p o r a t i o n and t e s t i n g methods developed t o obtained good X-UV m u l t i l a y e r s mirrors. L e t u s j u s t s a y t h a t p r e s e n t l y , r e s u l t s o b t a i n e d in d i f f e r e n t c o u n t r i e s a r e very encouraging, a r e c e n t meeting s p e c i a l l y devoted t o X-Ray Multilayered O p t i c s i i 2 ) can be considered a s a good summary of t h e p r e s e n t s t a t e .

Two e x a m p l e s of r e f l e c t i v i t y curve a r e just given h e r e t o i l l u s t r a t e t h e r e s u l t s .

F i g u r e 7 i l l u s t r a t e s some p e c u l a r i t i e s of such m i r r o r s working i n f a c t with f e w p e r i o d s compared t o a c r y s t a l . The r e f l e c t i v i t y curve v e r s u s t h e incidence angle h a s b e e n g o t with t h e 1.54A Cuk line and a 12 p e r i o d s W/C m u l t i l a y e r s 2d=120A (13). One can s e e t h e t o t a l r e f l e c t i v i t y r a n g e f o r t h e most grazing incidence r a n g e and n e x t t h e Bragg p e a k s corresponding t o t h e N = 112 and 3 t h o r d e r of t h e c l a s s i c a l Bragg formula 2d.sin0 = N A .

Secondary maxima b e t w e e n t w o s u c c e s i v e Bragg p e a k s a r e s i m i l a r t o t h o s e o b s e r v e d i n t h e m u l t i s l i t e x p e r i m e n t s i n v i s i b l e with a s m a l l number of d i f f r a c t i n g objects. So, adding 2 t o t h e number of o b s e r v e d secondary maxima g i v e s t h e number of working p e r i o d s of t h e mirror.

When a f i x e d angle of incidence is u s e d and t h e band p a s s of t h e multilayer i s r e g i s t r a t e d v e r s u s wavelength, such secondary maxima can a l s o been o b s e r v e d on each s i d e of t h e r e f l e c t i v i t y peak.

(6)

INCIDENCE ANGLE BP 8 B R A G G ANGLE (Deg.)

- F i g u r e 7 - - F i g u r e 3 -

The f i g u r e 8 s h o w s t h e r e f l e c t i v i t y o b s e r v e d on t h e copper e m i s s i o n l i n e s iLa,pf a t i3.2A with a n organic c r y s t a l , l e a d s t e a r a t e in t h i s c a s e , and a 2 1 p e r i o d s W/C multilayer prepared w i t h a l m o s t t h e s a m e 2d. Such a d i r e c t comparison d e m o n s t r a t e s t h a t optimized m u l t i l a y e r s can be much more e f f i c i e n t t h a n organic c r y s t a l s (14) f o r i n t e g r a t e d and peak r e f l e c t i v i t y . Especially optimized multilayer f o r a given wavelength can be more e f f i c i e n t t h a n t h i s one.

The r e s o l u t i o n of t h e m u l t i l a y e r s is l o w e r d u e t o t h e s m a l l number o f l a y e r s .

NEW POSSIBILITIES GIVEN BY X-UV MULTILAYERS

S e v e r a l new w a y s t o d e s i g n multilayered o p t i c s have been t e s t e d . In a d d i t i o n of t h e p o s s i b i l i t i e s t a aptirnize such m i r r o r s f o r any wavelength a t any choosen incidence, including t h e normal one, we can o b t a i n e d more e f f i c i e n t and more s t a b l e l a y e r s under high flux t h a n with organic c r y s t a l s . S t a b i l i t y of m u l t i l a y e r s under high pulsed X-ray b u r s t begin t o r e c e i v e a t t e n t i o n f o r plasma d i a g n o s t i c s (15).

A s s u g g e s t e d b y s e v e r a l people, it is p o s s i b l e t o p r e p a r e m u l t i l a y e r s with a g r a d i e n t of t h e period along one direction. Keeping f i x e d t h e i n c i d e n t angle and moving such multilayer along t h e graded d i r e c t i o n i n f r o n t of a n X-UV beam will change t h e r e f l e c t e d wavelentgh. So w i t h o u t any change in t h e incidence angle, t h e e q u i v a l e n t of a double monochromator can be o b t a i n e d hy using a s i n g l e t r a n s l a t i o n and t w o p a r a l l e l m u l t i l a y e r s (16). More r e c e n t l y i t h a s b e e n proposed t o u s e such g r a d e d m u l t i l a y e r on p o i n t t o p o i n t f o c u s s i n g o p t i c s t o r o i d a l mirrors. Changing t h e period d locally a s d e s i r a t e d l e a d s t o enhance t h e r e f l e c t i v i t y o r t o r e s t r i c t t h e band p a s s of t h e focused beam 117).

F i g u r e 9 s h o w s a p r o p o s a l t o o b t a i n q u a s i n o r m a l X-UV e f f i c i e n t g r a t i n g (101.

R e f l e c t i v i t y w o u l d b e o b t a i n e d by t h e multilayer and d i s p e r s i o n by t h e g r a t i n g . Obviously f o r a choosen wavelength it IS n e c e s s a r y t o match t h e blaze a n g l e and t h e groove d i s t a n c e of t h e g r a t i n g with t h e multilayer period. I n f a d n o t only t h e e c h e l e t t e g r a t i n g b u t any Rlnd of groove s h a p e c a n b e u s e d , a s d e m o n s t r a t e d by r e c e n t electromagnetic t h e o r e t i c a l calculations on such l a y e r e d g r a t ~ n g s (18).

A n o t h e r way opened by m u l t i l a y e r s is t h e p o s s i b i l i t y t o build X-UV p o l a r i z e r s and

p o l a r i m e t e r s . LiRe in o t h e r s e l e c t r o m a g n e t i c - F i g u r e 9 -

r a n g e , t h e u s e of t h e B r e s w t e r angle permit

(7)

JOURNAL DE PHYSIQUE

t o r e f l e c t only one o f t h e component o f l i g t h and s o t o polarize a beam by reflection. That happens f o r the incidence angle such t h a t the refracted and the r e f l e c t e d d i r e c t i o n o f the wave are a t 9 0 ' . Because r e f r a c t i v e index i s almost the u n i t y over a l l the X-UV range, the 45' incidence provide always a very good polarization r a t e a s appears on t h e f i g u r e 2.

Unfortunatly, such a p o s s i b i l i t y i s forbidden w i t h classical single i n t e r f a c e m i r r o r s because f o r such large angles the r e f l e c t i v i t y efficiency i s t o o low. On t h e contrary, a multilayer optimized f o r such incidence can have good r e f l e c t i v i t y and so t o be an e f f e c t i v e polarizers.

P o s s i b i l i t i e s o f X-UV polarizers and polarimeters have been demonstrated recently (6, 19).

Multilayered o p t i c s being able t o work a t the normal incidence, i s i n principle possible t o r e t u r n t o the w e l l known o p t i c a l system using normal incidence mirror f o r telescope or microscope. Such p o s s i b i l i t y have been f i r s t t e s t e d a t 44.4A w i t h a spherically bended s i l i c o n wafer previously coated w i t h a m u l t i l a y e r s (20). Schwarzchild microscope w i t h t w o spherical confocal m i r r o r s have been n e x t designed f o r synchrotron source (21). Another example o f imaging multilayered optics i s the telescope b u i l t a t the I n s t i t u t d'optique d'Orsay f o r the french astrophysicists (22). I t i s a Ritchey-Chretien type system where aspherization o f the f i r s t mirror have been achieved by a graded single l a y e r evaporated on the spherical blank before t h e m u l t i l a y e r coating (23).

X-ray Fabry-Perot, first demonstrated by T. Barbee, i s an other major advance which must b e underligned (24,25).

EXAMPLES OF THE USE OF MULTILAYERS FOR PLASMA DIAGNOSTICS

Figure 10 shows the principle o f t h e system designed by t h e L ~ v e r m o r e group t o receive simultaneously on the same streak camera photocathod several small band pass o f the spectrum e m i t t e d by a l a s e r plasma (26). I t i s certainly the f i r s t system t a k n g advantage of t h e m u l t i l a y e r possibilities, i n t h i s case t o choose f r e e l y the 2d spacing. By t h i s way they can work a t the Bragg condition f o r d i f f e r e n t choosen wavelengths, b u t w i t h the same Q Bragg angle.

L- irradiated Drgt L- irradiated Drgt

- F i g u r e 10 -

Imaging o f plasma w i t h grazing incidence KirKpatrick's m i r r o r s o r pinhole camera optics have always been l i m i t e d by the d i f f i c u l t y t o select a small band pass o f the spectrum passing through these optics. M e t a l l i c f i l t e r s are very u n e f f i c i e n t i n t h e X-UV and m u l t i l a y e r s appear a s a good s o l u t i o n f o r such f i l t e r i n g . Such a band pass selection f o r X-UV pinhole camera had been used a t the PM1 Laboratory f o r l a s e r plasma imaging. A metallic f i l t e r is j l s t added t o p r o t e c t t h e m u l t i l a y e r s from the plasma b u r s t b u t a l s o t o block the v i s i b l e and U V which would be r e f l e c t e d by the multilayers. With such a system, images o f aluminum i o n s emitted a t i 5 4 A have permitted t o compare the l a t e r a l expansion o f t h e plasma f o r t h e W and 2w frequency o f the l a s e r (27).

(8)

Combining a f l a t and a focussing m u l t i l a y e r s with matched p e r i o d s , t h e s a m e group of t h e PM1 l a b o r a t o r y a l s o achieved t h e f i r s t d e m o n s t r a t i o n of t h e p o s s i b i l i t y t o experimentally e v a l u a t e i n X-UV t h e r e f r a c t i v e index of l a s e r produced plasma (28). The scheme of t h e s e t up is given on f i g u r e 11.

Laser

AI F i l t e r Beam 1

Knife Spherical

--I---

M u l t i l a y e r e Mirror

- F i g u r e 11 -

Beam 2

One p a r t of t h e l a s e r beam produces t h e X-IJV probed plasma. The 45" f l a t multllayered mirror w a s optlmlzed t o r e f l e c t only t h e 154A f o r whlch t h e y wlsh t o t e s t t h e r e f r a c t i v e index. No s t r o n g line of t h l s wavelength 1s e m l t t e d by t h e probed plasma. A p a r a l l e l beam of t h e d e s i r a t e d wavelentgh, a s t r o n g 154A l i n e e m i t t e d b y a Cu t a r g e t , 1s s e l e c t e d and r e f l e c t e d In a p a r a l l e l beam ny u s i n g a n o t h e r spherical multilayered mirror. Only t h i s p a r a l l e l beam a f t e r refraction through t h e plasma pruduces a s p o t on t h e photographic plate, and t h e measured deflection h a s been u s e d t o e v a l u a t e t h e refractive ~ n d e x .

D i r e c t imaging of plasma by l a r g e angle collecting o p t i c s is a n o t h e r p o s s i b i l i t y open by normal incidence s p h e r i c a l o p t i c s , with t h e a d d i t i o n a l a d v a n t a g e of magification. A Schwarzschild microscope have been r e c e n t l y b u i l t a t t h e I n s t i t u t d'Optique d t O r s a y f o r t h e PM1 Lab t o o b t a i n X-UV image a t t h e r e a r s u r f a c e of a f o i l i n view t o s t u d y t h e h e a t t r a n s f e r t i n s i d e t h e t a r g e t during t h ~ . plasma formation. R e s u l t s o b t a i n e d a t 304A with a 6p s p a t i a l r e s o l u t i o n during t h e f i r s t t r i a l s look very promising ( 2 9 ) .

X ray l a s e r r e s e a r c h , which began i n t h e s e v e n t i e s (30) is a n o t h e r f i e l d where m u l t i l a y e r s can be hepful, e v e n if a complete r e s o n a t o r is n o t y e t working. A s proposed i n 1982 by o u r group (31) and d e m o n s t r a t e d l a s t y e a r a t Princeton 132), a s i n g l e normal incidence multilayer mirror set i n normal incidence can r e f l e c t enough i n t e n s i t y through t h e plasma column t o praduce a n o t i c e a b l e i n t e n s i t y change o n t h e t e s t e d line.

0 1 l ' ! " ' l ! 1

1 0 5 1 1 0

W A V E L E N G T H C A )

- F i g u r e 12 - - 1 0

Z 3 m C 4

>

t 5

V) Z Y l-

?

The f i g u r e 12 s h g w s t h e predicted e f f e c t w i t h a n a c h i e v a b l e m i r r o r r e f l e c t i v i t y and o b s e r v e d g a i n plasma amplification i n o u r experiment 130).

Because n o change i n t h e spectrum can a p p e a r o u t s i d e t h e r e f l e c t e d band p a s s of t h e mirror, a comparison b e t w e e n s h o t s , w i t h a n d w i t h o u t m i r r o r , is s t r a i g t h f o r w a r d . I n addition, t h e r e l a t i v e l i n e i n t e n s i t i e s o v e n t h e unchanged r a n g e give good information a b o u t t h e l a s e r s h o o t and h e l p s f o r s t a t i c t i c a l e r r o r s e v a l u a t i o n s .

-

"with mirror R = 0 . 1 5 ,

-

-

-

+without mirror

A1 Plasma Length 2Gm. ,

(9)

C6-274 JOURNAL DE PHYSIQUE

Obviously the realisation of the second multilayer worUng i n t h e semi transparent mode a s an exit window of an X-UV l a s e r is a very exciting problem. Another talks in t h i s meeting will review t h e questions and the s t a t e of a r t on t h i s field (32,33).

CONCLUSIONS

Limitations brought by the obligation t o build only X-UV grazing incidence optics a r e now removed a f t e r a long sixty years hlstory. The quite recent X-UV mult~layer mirrors bring completely new possibilities for X-UV optical systems. Some examples of uses, summarized here a r e just a f i r s t blooming of applications. As when a new tool arrives, we are just presently solving the f i r s t class of problems which a r e the most stringent in our work and which look the easiest. No doubt t h a t t h i s new allowance t o conceive X-UV optics, with large collecting apertu* and worKing a t the same time a s a n efficient band p a s s f l l t e r over all the ranget will lead t o a large diversity of s y s t e m s helping t h e plasma diagnostics. We have not yet a l l the equivalent optical systems of t h e visible range, but t h i s s t e p ahead with interference mirrors have reduced the gap which s e p a r a t e s t h e X-UV optics of t h e numerous possibilities available in other ranges.

REFERENCES

l- Low Energy X-Ray Diagnostics, AIP Conf. Proc. Ne.75, Edit. by D.T. Atwood and B.L.

Henke. USA (1981).

2- T.W. BARBEE. Multilayers for X-Rays Optics, pp.2-28 in ref.12.

3- X Ray Microscopy, Springer Series in Optical Sciences Vo1.43, Edit. G. Schmahl and D.

Rudolph. 11984).

4- H.J. HAGEMAMN e t al. Optical Constants from the Far 1.R t o the X-Ray Region: Mgt AL,Cu; Ag, Au, Bi; C and Al,03. Internal Report DESY SR 7417 May 1971.

5- B.L. HENKE e t al. Low ~nergy-X- ay Interaction Coefficients. Atomic Data and Nuclear Data Table 27, N'1 11982)

6- A. KHANDAR e t al. Study of Multilayered X-UV Polarizers in SPIE Proceedings:

Multilayers Structures and Laboratory X-Ray Laser Research. Vo1.688 (1986)

7- E. SPILLER, Multilayer Interference Coating for the Vacuum Ultraviolet. Space Optics ICO I X , pp.581 (1974) and Appl. Phys. Lett. 20,365 (1972).

8- A.V. WNOGRADOV and B. Ya. ZELDOWCHt X-Ray and Far UV Multilayer Mirrors:

principles and possibilities. Appl. Opt. 16, 83 (1977).

9- A. ROSENBLUTH. Thesis "Reflecting Properties of X-Ray Multilayer Devices".

Rochester University, Rochester N.Y, USA (1982).

10- E. SPILLER, Evaporated Multilayer Dispersion Elements f o r Soft X-Rays, pp.124-130 in ref.1

11- R. MARMORET Thesis 1982, Universite PARIS V1 (France).

12- Applications of Thin-Film Multilayered Structures t o Figured Optics, Proceedings SPIE Vol. 563 11985).

13- P. DHEZ, Metallic ~ u l t i l a y e r s : New possibilties i n X-UV optics. Adv. Space. Res. V01.2, Ne4, pp.!99-206 (1983).

14- M. ARBAOUI e t al. SPIE Proceeding ,Thin Film Technologies, Vo1.652 11986).

15- R.H. DAY and T.W. BARBEE, Applications of Layered Synthetic Microstructures t o High-Temperature Plasma Diagnostics. Rev. Sci. Instrum. 56,5, pp.791-795 (1985).

16- T.W. BARBEE. Multilayers f o r X-Ray Optical Applications, pp.144-162 in ref .3.

17- G.F. MARSHALL, A Unified Geometrical Insight f o r the Design of Toroidal Reflectors with Multilayered Optical Coating. pp.114-134 in Ref.i2.

18- B. VIDAL e t al. Thin Film and Grating Theories Used t o Optimize the High Reflectivity of Mirrors and Gratings f o r X-Ray Optics. pp.142-149 in Ref.12.-

19- A. KHANDAR and P. DHEZ, Multilayers X-Ray Polarizers. pp.158-163 in Ref.2

20- J.H. UNDERWOOD and T.W. BARBEE, Soft X-Ray Imaging with a Normal Incidence Mirror.

Nature 294,5840, pp. 429-431 1198 l).

21- E. SPILLER, A Scanning Soft X-Ray Microscope Using Normal Incidence Mirrors, pp.

226-231 in ref.3.

22- J. P. DELABOULINIERE, Space Q.ualification of Multilayered Optics, pp.44-48 in Ref.12 23- J.P. CHAUVINEAU e t al. Aspherization and Multilayer Coating of a Ritchey Chretien

Telescope f o r 30.4 nm. pp.275-279 in ref.12.

(10)

24- T.W. BARBEE e t al. Solid Fabry-Perot Etalons for X-Rays. Opt. Comm.4'3,3,161 (1983).

25- Y. LEPETRE e t al. Fabry-Perot Etalons for X-Rays: Construction and Characteristics.

Opt. Comm.S1,3,i27 (1984).

26- G.L. STRADLING e t al. Strealred Spectrometry using Multilayer X-Ray Interference Mirrors t o Investigate Energy Transport in Laser Plasma Applications. pp.292- 296.

in ref. l.

27- R. BENATTAR and J. GODART, Characterization of the Thermal Front ~ n s i d e a 2w Laser Produced Plasma by it Emission in the X-UV Range. Opt. Comm. 51, 4; pp.260 (1984).

28- R. BENATTAR and J. GODART, Evidence of Soft X-Ray Refraction Induced by a Laser Produced Plasma. Opt. Comm. 56, 6, pp. 418-424 (1986).

29- R. BENATTAR e t al. A Schwarzschild Microscope t o Study the Preheat of Laser Heated Targets. in SPIE Proceedings "Multilayers Structures and Laboratory X-Ray Laser Research". Vo1.688 (1986)

30- P. JAEGLE e t al. Experimental Evidence for t h e possible Existence of a Stimulated Emission in the Extreme U.V Range. Phys. Lett. Vo1.36At PP.167-168 (197 11.

31- P. DHEZ e t al. X-UV Gain Amplification Studies in Laser Plasma Using Normal Incidence Multilayers Mirror, AIP Conf. Proceedings N'119. Am. Inst. of Phys. "Laser Techniques in the Extreme Ultraviolet" pp.199-206 (1984).

32- S. SUCKEWER e t al. Amplification of Stimulated Soft X-Ray Emission i n a Confined Plasma Column, Phys. Rev. Lett. Vo1.55, pp.i753-1756 (1985).

33- J. TREBES, X-Ray Laser Cavities. This colloquium.

34- A.V. VINOGRADOV, The Optics for Pumping and Cavities of X-UV Laser. Thls colloquium.

Références

Documents relatifs

2014 A furnace for diffraction studies using synchrotron X-ray radiation is described.. The furnace can

A new formulation of the Bragg conditions is obtained on the basis of the « Hill method » to solve the wave propagation equation in a periodically stratified medium..

2014 The development of multilayered mirrors for the soft X-ray range allows us to bulld diagnostics capable of imaging dense plasmas at radiation energies less than

can determine the laser characteristics needed as an efficient X-ray lithography source taking the resist. sensitivity as a parameter

Three groups have achieved significant gain in the 3-2 transition of hydrogenic carbon ions at 182 A , using recombination in a rapidly cooling plasma.. In

l/he presence of large easily observable chemical effects in soft X-ray spectra means that such spectra can be used [6] in chemical speciation and because of their nanometer range,

The possibility of obtaining multilayers in the X-U.V range have been demonstrated in 1972 (8) using well developed matricial calculations for the visible regions by including

Coherence is not important and the current power levels (1 MW) may be sufficient. In the field of contact microscopy, x-ray lasers will probably not be able to compete with