• Aucun résultat trouvé

On some p-adic power series attached to the arithmetic of $\mathbb Q(\zeta_p).$

N/A
N/A
Protected

Academic year: 2021

Partager "On some p-adic power series attached to the arithmetic of $\mathbb Q(\zeta_p).$"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-00011266

https://hal.archives-ouvertes.fr/hal-00011266

Preprint submitted on 14 Oct 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

On some p-adic power series attached to the arithmetic of Q(ζ _p).

Bruno Angles

To cite this version:

Bruno Angles. On some p-adic power series attached to the arithmetic of Q(ζ_p).. 2005. �hal-

00011266�

(2)

ccsd-00011266, version 1 - 14 Oct 2005

On some p-adic power series attached to the arithmetic of Q (ζ p )

Bruno Angl`es Universit´e de Caen,

Laboratoire Nicolas Oresme, CNRS UMR 6139, Campus II, Boulevard Mar´echal Juin,

BP 5186, 14032 Caen Cedex, France.

E-mail: angles@math.unicaen.fr October 11 2005

Let p be a prime number, p ≥ 5. Let θ be an even and non-trivial character of Gal(Q(µ

p

)/Q). Let f (T, θ) ∈ Z

p

[[T ]] be the Iwasawa power series associated to the p-adic L-function L

p

(s, θ) (see [12]), i.e.:

∀n ≥ 1, n ≡ 0 (mod p − 1), f ((1 + p)

1−n

− 1, θ) = L(1 − n, θ), where L(s, θ) is the usual Dirichlet L-series. In 1979, in their celebrated article [4], Ferrero and Washington have proved that (see also [1]):

f (T, θ) 6≡ 0 (mod p).

Thus we can write:

f(T, θ) ≡ T

λ(θ)

U ¯ (T ) (mod p),

where ¯ U(T ) ∈ F

p

[[T ]]

. The Iwasawa lambda-invariant λ(θ) is not well- understood. By a heuristic argument due to Ferrero and Washington, one could expect that for sufficiently large p (see [5]):

X

θeven,θ6=1

λ(θ) ≤ Log(p)

Log(Log(p)) .

(3)

Furthermore, if p < 4000000, we have λ(θ) ≤ 1, and one would reasonably expect (see [8] ):

λ(θ) < p.

The only known result is due to Ferrero and Washington ([4]): for sufficiently large p we have:

λ(θ) ≤ p

Log(p)4ϕ(p1)4

. Now observe that:

f

(T, θ) ≡ λ(θ)T

λ(θ)−1

U ¯ (T ) + T

λ(θ)

U ¯

(T ) (mod p).

Thus if λ(θ) ≥ 1 and λ(θ) 6≡ 0 (mod p), we have that f

(T, θ) 6≡ 0 (mod p).

The aim of this paper is to prove that for all θ even, θ 6= 1, we have (Corollary 4.4):

f

(T, θ) 6≡ 0 (mod p).

This fact comes from properties of some power series that are connected to polynomials introduced by Mirimanoff at the beginning of the XXth century.

1 Notations

Let p be a prime number, p ≥ 5. Let Q

p

be an algebraic closure of Q

p

. All the extensions of Q

p

considered in this paper are contained in Q

p

. Let v

p

be the p-adic valuation on Q

p

such that v

p

(p) = 1. We denote the Iwasawa p-adic logarithm on Q

p

by Log

p

.

If A is a commutative ring, we denote the set of invertible elements of A by A

.

For every integer d, d ≥ 1, set µ

d

= {z ∈ Q

p

| z

d

= 1}. If ρ ∈ ∪

d≥1

µ

d

, we denote the order of ρ by o(ρ). Set µ

p

= ∪

n≥0

µ

pn+1

. For all n ≥ 0, let ζ

pn+1

∈ µ

pn+1

such that: ζ

p

6= 1 and ∀n ≥ 0, ζ

ppn+2

= ζ

pn+1

.

Let:

- K

n

= Q

p

pn+1

),

- O

n

= Z

p

pn+1

],

(4)

- π

n

= ζ

pn+1

− 1, - U

n

= 1 + π

n

O

n

, - Γ

n

= Gal(K

n

/K

0

), - ∆ = Gal(K

0

/Q

p

), - K

= Q

p

p

), - Γ = Gal(K

/K

0

).

Let γ

0

∈ Γ be such that ∀ζ ∈ µ

p

, ζ

γ0

= ζ

1+p

. For a ∈ Z

p

, we write:

a = ω(a) < a >,

where ω is the Teichm¨ uller character (i.e. ω(a) = lim

n

a

pn

∈ µ

p−1

) and

< a >≡ 1 (mod p).

Let n ≥ 0. For a ∈ Z

p

, let σ

n

(a) ∈ Gal(K

n

/Q

p

) be such that:

ζ

pσn+1n(a)

= ζ

pan+1

.

We have σ

n

(a) = δ(a)γ

n

(a), where δ(a) ∈ ∆ and γ

n

(a) ∈ Γ

n

. Observe that:

ζ

pγn+1n(a)

= ζ

p<a>n+1

. For a ∈ Z

p

, let σ(a) ∈ Γ × ∆ be such that:

∀ζ ∈ µ

p

, ζ

σ(a)

= ζ

a

.

Note that ∆ = {σ(ω(a)) | a = 1, · · · , p − 1}. For θ ∈ ∆ = Hom(∆, µ b

p−1

), we set:

e

θ

= 1 p − 1

X

δ∈∆

θ

−1

(δ) δ ∈ Z

p

[∆].

Let T be an indeterminate over Q

p

. Let L be a finite extension of Q

p

. Let O

L

be the valuation ring of L. The restriction maps Res

n+1,n

: Γ

n+1

→ Γ

n

induce maps Res

n+1,n

: O

L

n+1

] → O

L

n

]. Thus we can take the inverse limit of the group rings O

L

n

] with respect to these maps, and by [12], Theorem 7.1,we have:

O

L

[[T ]] ≃ lim

O

L

n

],

where T corresponds to γ

0

− 1. We set Λ

L

= O

L

[[T ]] and Λ = Λ

Qp

. For all n ≥ 0, we set ω

n

(T ) = (1 + T )

pn

− 1. Recall that:

∀n ≥ 0, Λ

L

ω

n

(T )Λ

L

≃ O

L

n

].

(5)

Note that forl all n ≥ 0, N

Kn+1/Kn

(U

n+1

) ⊂ U

n

, where N

Kn+1/Kn

is the norm map from K

n+1

to K

n

. We denote the inverse limit of the principal units U

n

with respect to the norm maps by U

. Note that U

is a Λ[∆]- module.

2 Logarithmic derivatives

Let u = (u

n

)

n≥0

be an element in U

, recall that:

∀n ≥ 0, N

Kn+1/Kn

(u

n+1

) = u

n

.

There exists an unique element f

u

(T ) ∈ Λ such that ([12], Theorem 13.38, see also [3]):

∀n ≥ 0, f

u

n

) = u

n

. Furthermore, if x = P

b

a

σ(a) ∈ Z

p

[Γ × ∆] and if u ∈ U

, then we have ([12], Lemma 13.48):

f

ux

(T ) = Y

f

u

((1 + T )

a

− 1)

ba

. For u ∈ U

and for n ≥ 0, we set:

D

n

(u) = ζ

pn+1

f

u

n

)

f

u

n

) ∈ O

n

.

We call the map D

n

: U

→ O

n

the nth logarithmic derivative of Coleman.

Lemma 2.1

i) Let u ∈ U

, ∀n ≥ 0, D

n

(u

ωn(T)

) ≡ 0 (mod p

n+1

).

ii) ∀θ ∈ ∆, b ∀u ∈ U

, ∀n ≥ 0, D

n

(u

eθ

) = e

θω1

D

n

(u).

Proof i) We have:

f

uωn(T)

(T ) = f

u

((1 + T )

(1+p)pn

− 1) f

u

(T ) . Thus:

(1+T ) f

uωn(T)

(T )

f

uωn(T)

(T ) = (1+p)

pn

(1+T )

(1+p)pn

f

u

((1 + T )

(1+p)pn

− 1)

f

u

((1 + T )

(1+p)pn

− 1) −(1+T ) f

u

(T )

f

u

(T ) .

(6)

Note that:

(1 + π

n

)

(1+p)pn

− 1 = π

n

. Therefore:

D

n

(u

ωn(T)

) = ζ

pn+1

((1 + p)

pn

− 1) f

u

n

)

f

u

n

) ≡ 0 (mod p

n+1

).

ii) Let a ∈ Z

p

and let u ∈ U

. Observe that:

D

n

(u

σ(a)

) = aσ

n

(a)(D

n

(u)).

Let u ∈ U

, we get:

D

n

(u

eθ

) = 1 p − 1

X

p−1

a=1

θ

−1

(a)D

n

(u

σ(ω(a))

).

We have:

D

n

(u

eθ

) = 1 p − 1

X

p−1

a=1

θ

−1

(a) ω(a) σ

n

(ω(a))(D

n

(u)).

The Lemma follows. ♦

Proposition 2.2 Let θ ∈ ∆, θ b 6= 1, ω. The map D

n

gives rise to a mor- phism of Z

p

n

]-modules:

φ

θn

: U

neθ

U

npn+1eθ

→ e

θω1

O

n

p

n+1

e

θω1

O

n

,

where T acts on the right via (1 + p)(1 + T ) − 1.

Proof We have ([12], Theorem 13.54):

U

neθ

≃ U

eθ

U

ωn(T)eθ

.

Let v ∈ U

neθ

, then there exists u = (u

n

)

n≥0

∈ U

eθ

such that v = u

n

. We set:

φ

θn

(v) ≡ D

n

(u) (mod p

n+1

).

(7)

By Lemma 2.1, we get a morphism of Z

p

-modules:

φ

θn

: U

neθ

U

npn+1eθ

→ e

θω1

O

n

p

n+1

e

θω1

O

n

.

Let v ∈ U

neθ

, and let u = (u

n

)

n≥0

∈ U

eθ

such that v = u

n

. We have:

φ

θn

(u

T

) ≡ D

n

(u

γ0−1

) (mod p

n+1

).

But:

D

n

(u

γ0−1

) ≡ ((1 + p)γ

0

− 1)(D

n

(u)) (mod p

n+1

).

The Proposition follows. ♦

Theorem 2.3 For all n ≥ 0, set T

n

= P

n

d=0

ζ

pd+1

. Let θ ∈ ∆, θ b 6= 1, ω.

Then:

∀n ≥ 0, Im(φ

θn

) = Z

p

n

]e

θω1

T

n

p

n+1

e

θω1

O

n

.

Proof Let Λ

n

be the maximal order of Q

p

n

]. Then ([6], see also [7]):

O

n

= Λ

n

[∆] T

n

. Now observe that p

n+1

Λ

n

⊂ pZ

p

n

]. Thus:

p

n+1

e

θω1

O

n

⊂ p Z

p

n

]e

θω1

T

n

.

Recall that there exists α ∈ µ

p−1

\ {1} such that ([12], Corollary 13.37):

∀n ≥ 0, U

neθ

= ( α − ζ

pn+1

ω(α − 1) )

Zpn]eθ

. For α ∈ µ

p−1

\ {1}, set:

ρ

(α) = ( α − ζ

pn+1

ω(α − 1) )

n≥0

∈ U

. We have:

D

n

(α)) = −ζ

pn+1

α − ζ

pn+1

.

(8)

Thus Im(φ

θn

) is the Z

p

n

]-module generated by the e

θω1α−ζ−ζpn+1

pn+1

, α ∈ µ

p−1

\ {1}. For α ∈ µ

p−1

\ {1}, for all n ≥ 0, set:

u

n

(α) =

pn+1

X

−1

k=1, k6≡0 (modp)

α

k

σ

n

(k) ∈ Z

p

n

× ∆].

We have:

Res

n+1,n

(u

n+1

(α)) =

pn+2

X

−1

k=1, k6≡0 (modp)

α

k

σ

n

(k).

Thus :

Res

n+1,n

(u

n+1

(α)) =

pn+1

X

−1

k=1, k6≡0 (modp)

σ

n

(k) ( X

p−1

ℓ=0

α

k+pn+1

).

Finally, we get:

Res

n+1,n

(u

n+1

(α)) = u

n

(α).

Now, we have:

α − 1

αζ

pn+1

− 1 − 1 = (αζ

pn+1

)

pn+1

− 1 αζ

pn+1

− 1 − 1.

Thus:

α − 1

αζ

pn+1

− 1 − 1 =

pn+1−1

X

k=1

α

k

ζ

pkn+1

.

Therefore:

α − 1

αζ

pn+1

− 1 − 1 =

pn+1

X

−1

k=1,k6≡0 (modp)

α

k

σ

n

(k)(ζ

pn+1

) +

p

X

n−1

k=1

α

k

ζ

pkn

. Finally, we get:

α − 1

αζ

pn+1

− 1 − 1 = u

n

(α)(T

n

).

Now set:

u

n

(θ, α) =

pn+1

X

−1

k=1, k6≡0 (modp)

θ(k)ω

−1

(k)α

k

γ

n

(k).

(9)

We have:

(u

n

(θ, α))

n≥0

∈ Λ.

Furthermore, we have:

e

θω1

−ζ

pn+1

α − ζ

pn+1

= e

θω1

1 α

−1

ζ

pn+1

− 1 . Thus:

e

θω1

−ζ

pn+1

α − ζ

pn+1

= 1

α

−1

− 1 u

n

(θ, α

−1

)(e

θω1

T

n

).

Now: X

α∈µp1\{1}

u

0

(θ, α) = (p − 1)θ(−1)ω

−1

(−1) ∈ Z

p

.

Thus there exists α ∈ µ

p−1

\ {1} such that for all n ≥ 0, u

n

(θ, α) ∈ Z

p

n

]

. The theorem follows. ♦

We will also need the following Lemma:

Lemma 2.4 Let Λ

n

be the maximal order of Q

p

n

]. Under the isomorphism Λ/ω

n

(T )Λ ≃ Z

p

n

], p

n+1

Λ

n

corresponds to an ideal U

n

of Λ such that ω

n

(T )Λ ⊂ U

n

⊂ (p, ω

n

(T )) and lim

n

U

n

= {0}.

Proof Set:

e

0

= 1 p

n

X

γ∈Γn

γ, and for 1 ≤ d ≤ n, set:

e

d

= X

χ∈Γcn, fχ=pd+1

e

χ

,

where the sum is over all the characaters of Γ

n

of conductors p

d+1

and : e

χ

= 1

p

n

X

γ∈Γn

χ

−1

(γ)γ.

We have:

p

n+1

Λ

n

= ⊕

nd=0

Z

p

n

]p

n+1

e

d

⊂ pZ

p

n

].

Thus it is clear that ω

n

(T )Λ ⊂ U

n

⊂ (p, ω

n

(T )). Now:

p

n+1

e

0

≡ p(

pn−1

X

ℓ=0

(1 + T )

) (mod ω

n

(T )).

(10)

Thus:

p

n+1

e

0

≡ p ω

n

(T )

T (mod ω

n

(T )).

Let d be an integer, 1 ≤ d ≤ n. We have:

p

n+1

e

d

≡ p(

pn−1

X

ℓ=0

(1 + T )

( X

fχ=pd+1

χ(1 + p)

)) (mod ω

n

(T )).

Thus:

p

n+1

e

d

≡ p(

p

X

n−1

ℓ=0

T r

Kd1/Qp

pd

)(1 + T )

) (mod ω

n

(T )).

Now recall that T r

Kd1/Qp

pd

) = 0 if v

p

(ℓ) < d − 1. Therefore:

p

n+1

e

d

≡ p

d

(

pn−d+1

X

−1

ℓ=0

(1 + T )

ℓpd1

T r

K0/Qp

p

)) (mod ω

n

(T )).

But:

pn−d+1

X

−1

ℓ=0,ℓ≡0 (modp)

(1 + T )

ℓpd−1

T r

K0/Qp

p

) = (p − 1) ω

n

(T ) ω

d

(T ) , and

pnd+1−1

X

ℓ=0,ℓ6≡0 (modp)

(1 + T )

ℓpd1

T r

K0/Qp

p

) = ω

n

(T )

ω

d

(T ) − ω

n

(T ) ω

d−1

(T ) . Thus:

p

n+1

e

d

≡ p

d+1

ω

n

(T )

ω

d

(T ) − p

d

ω

n

(T )

ω

d−1

(T ) (mod ω

n

(T )).

The Lemma follows. ♦

3 Mirimanoff ’s power series

Recall that Mirimanoff has introduced the following polynomials in F

p

[T ] :

∀j, 1 ≤ j ≤ p − 1, ϕ

j

(T ) = X

p−1

a=1

a

j−1

T

a

.

(11)

These polynomials have many beautiful properties and we refer the inter- ested reader to [9], [11] and [2]. In this section, we will introduce some power series that are related to these polynomials.

Let L be a finite extension of Q

p

. Let π

L

be a prime of L. Let θ ∈ ∆. b Let a ∈ O

L

such that a(a − 1) 6≡ 0 (mod π

L

). For all n ≥ 0, we set:

M

n

(θ, a) =

pn+1

X

−1

k=1,k6≡0 (modp)

a

k

a

pn+1

− 1 θ(k)ω

−1

(k)γ

n

(k) ∈ O

L

n

].

Lemma 3.1

(M

n

(θ, a))

n≥0

∈ lim

O

L

n

].

Proof We must prove that:

∀n ≥ 0, Res

n+1,n

(M

n+1

(θ, a)) = M

n

(θ, a).

Now observe that:

Res

n+1,n

(M

n+1

(θ, a)) =

pn+1−1

X

k=1,k6≡0 (modp)

θ(k)ω

−1

(k)γ

n

(k) 1 a

pn+2

− 1 (

X

p−1

ℓ=0

a

k+ℓpn+1

).

The Lemma follows.♦

By the above Lemma, (M

n

(θ, a))

n≥0

corresponds to a power series M (T, θ, a) ∈ Λ

L

. If θ = ω

j

, 1 ≤ j ≤ p − 1, observe that:

M(0, θ, a) ≡ ϕ

j

(a)

a

p

− 1 (mod π

L

).

Therefore we call M (T, θ, a) the Mirimanoff’s power series attached to θ and a.

Lemma 3.2

M (T, θ, a) = −θ(−1)ω

−1

(−1)M (T, θ, a

−1

).

Proof

We have:

M

n

(θ, a) =

pn+1

X

−1

k=1,k6≡0 (modp)

a

pn+1−k

a

pn+1

− 1 θ(p

n+1

− k)ω

−1

(p

n+1

− k)γ

n

(p

n+1

− k).

(12)

Thus:

M

n

(θ, a) = −

pn+1

X

−1

k=1,k6≡0 (modp)

(a

−1

)

k

(a

−1

)

pn+1

− 1 θ(p

n+1

−k)ω

−1

(p

n+1

−k)γ

n

(p

n+1

−k).

The Lemma follows. ♦ Theorem 3.3

M

(T, θ, a) ≡ 0 (mod π

L

) if and only if a ≡ −1 (mod π

L

) and θ is odd.

Proof By Lemma 3.2, M (T, θ, −1) = 0 if θ is odd. Thus, if a ≡ −1 (mod π

L

) and if θ is odd, we have M

(T, θ, a) ≡ 0 (mod π

L

).

The proof of this Theorem is based on Sinnott’s proof that the Iwasawa µ-invariant vanishes for cyclotomic Z

p

-extensions of abelian number fields ([10]) as exposed in Washington’s book([12], paragraph 16.2).

Now, let’s suppose that M

(T, θ, a) ≡ 0 (mod π

L

). We have:

∀n ≥ 0, M (T, θ, a) ≡

pn+1

X

−1

k=1,k6≡0 (modp)

a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1+T )

i(k)

(mod ω

n

(T )), where i(k) = Log

p

(k)/Log

p

(1 + p). Thus, for all n ≥ 1, we have:

(1+T )M

(T, θ, a) ≡

pn+1

X

−1

k=1,k6≡0 (modp)

i(k) a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1+T )

i(k)

(mod (p

n

, ω

n

(T ))).

Therefore, for all n ≥ 1, we get:

pn+1

X

−1

k=1,k6≡0 (modp)

i(k) a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1 + T )

i(k)

≡ 0 (mod (π

L

, ω

n

(T ))).

Recall that i(k) ≡ i(k

) (mod p

n

) if and only if

<k>−1

p

<kp>−1

(mod p

n

).

Therefore changing i(k) to

<k>−1

p

permutes exponents modulo p

n

and do not affect divisibility by π

L

. Thus:

∀n ≥ 1,

pn+1

X

−1

k=1,k6≡0 (modp)

< k > −1 p

a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1+T )

<k>p1

≡ 0 (mod (π

L

, ω

n

(T ))).

(13)

Let α ∈ µ

p−1

. For n ≥ 1, set:

h

αn

(t) ≡

pn+1

X

−1

k=1,k≡α (modp)

α

−1

k − 1 p

a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1+T )

α

1k−1

p

(mod (p

n

, ω

n

(T ))).

Note that:

h

αn+1

(T ) ≡ h

αn

(T ) (mod (p

n

, ω

n

(T ))).

Now recall that:

Λ

L

≃ lim

Λ

L

(p

n

, ω

n

(T )) . Therefore, there exists h

α

(T ) ∈ Λ

L

such that:

∀n ≥ 1, h

α

(T ) ≡ h

αn

(T ) (mod (p

n

, ω

n

(T ))).

Thus, we have: X

α∈µp−1

h

α

(T ) ≡ 0 (mod π

L

).

And also: X

α∈µp1

(1 + T )h

α

((1 + T )

p

− 1) ≡ 0 (mod π

L

).

Now, note that:

(1 + T )h

αn

((1 + T )

p

− 1) ≡ f

nα

((1 + T )

α1

− 1) (mod (p

n

, ω

n

(T ))), where

f

nα

(T ) ≡

pn+1

X

−1

k=1,k≡α (modp)

α

−1

k − 1 p

a

k

a

pn+1

− 1 θ(k)ω

−1

(k)(1+T )

k

(mod (p

n

, ω

n

(T ))).

For α ∈ µ

p−1

, let s

0

(α) ∈ {1, · · · , p − 1} such that α ≡ s

0

(α) (mod p). We have:

f

nα

(T ) ≡ θ(α)ω

−1

(α)

p

X

n−1

ℓ=0

α

−1

(s

0

(α) + pℓ) − 1 p

a

s0(α)+pℓ

a

pn+1

− 1 (1+T )

s0(α)+pℓ

(mod (p

n

, ω

n

(T ))).

But:

pn−1

X

ℓ=0

a

s0(α)+pℓ

a

pn+1

− 1 (1 + T )

s0(α)+pℓ

≡ a

s0(α)

(1 + T )

s0(α)

a

p

(1 + T )

p

− 1 (mod (p

n

, ω

n

(T ))),

(14)

and

p

X

n−1

ℓ=0

ℓ a

s0(α)+pℓ

a

pn+1

− 1 (1+T )

s0(α)+pℓ

≡ −a

p

(1+T )

p

a

s0(α)

(1 + T )

s0(α)

(a

p

(1 + T )

p

− 1)

2

(mod (p

n

, ω

n

(T ))).

Set:

f

α

(T ) = θ(α)ω

−1

(α) a

s0(α)

(1 + T )

s0(α)

a

p

(1 + T )

p

− 1 ( α

−1

s

0

(α) − 1

p − α

−1

a

p

(1 + T )

p

a

p

(1 + T )

p

− 1 ).

Then:

∀n ≥ 1, f

nα

(T ) ≡ f

α

(T ) (mod (p

n

, ω

n

(T ))).

We have obtained:

X

α∈µp1

f

α

((1 + T )

α1

− 1) ≡ 0 (mod π

L

).

Observe that for all α ∈ µ

p−1

, f

α

(T ) ∈ Λ

L

∩L(T ). Thus, by Sinnott’s Lemma ([12], Lemma 16.9), for all α ∈ µ

p−1

there exists c

α

∈ O

L

such that:

f

α

(T ) + f

−α

((1 + T )

−1

− 1) ≡ c

α

(mod π

L

).

Observe that:

f

α

(T ) ≡ θ(α)ω

−1

(α) a

s0(α)

a

p

− 1 ( α

−1

s

0

(α) − 1

p −α

−1

a

p

a

p

− 1 )(1+T )

s0(α)

(mod (π

L

, T

p

)), and

f

−α

((1 + T )

−1

− 1) ≡ θ(−α)ω

−1

(−α)

apaps−10(α)

(

−α1(p−sp0(α))−1

+ α

−1apa−1p

)(1 + T )

s0(α)

(mod (π

L

, T

p

)).

Thus, for all α ∈ µ

p−1

, we must have:

a

s0(α)

(

α1s0p(α)−1

−α

−1apa−1p

) ≡ θ(−1)a

p−s0(α)

(

−α1(p−sp0(α))−1

−1apa−1p

) (mod π

L

).

For α = 1, we get:

a a

p

a

p

− 1 ≡ −θ(−1)a

p−1

( a

p

a

p

− 1 − 1) (mod π

L

).

Thus:

a

2

≡ −θ(−1) (mod π

L

).

We obtain a ≡ −1 (mod π

L

) and θ is odd or θ is even and a

2

≡ −1

(mod π

L

). For the second case, if we consider all the equations obtained

(15)

when α runs through µ

p−1

, we obtain that for all b ∈ {1, · · · , p − 1}, b even, we must have:

b ≡ ω(b) + p (mod p

2

), and for all b ∈ {1, · · · , p − 1}, b odd, we must have:

b ≡ ω(b) (mod p

2

),

This leads to a contradiction and the Theorem is proved. ♦ We will need the following Lemma:

lemma 3.4 There exists α ∈ µ

p−1

such that for all prime numbers ℓ, ℓ ≡ α (mod p) and ℓ ≥ p

2

, we have:

T r

Q(ζ)/Q

( ζ

p+1

+ ζ

p−1

p

− 1)

2

) 6≡ 0 (mod p), where ζ

is a primitive ℓth root of unity.

Proof For a ∈ Z, let [a]

∈ {0, · · · , ℓ − 1}, such that a ≡ [a]

(mod ℓ). Let Φ

(X) be the ℓth cyclotomic polynomial, then:

Φ

(1) = ℓ, Φ

(1) = ℓ(ℓ − 1)

2 , and

Φ

′′

(1) = ℓ(ℓ − 1)(ℓ − 2)

3 .

Now: Φ

(X)

Φ

(X) = X

ρ∈µ\{1}

1 X − ρ ,

and Φ

′′

(X)

Φ

(X) − ( Φ

(X)

Φ

(X) )

2

= − X

ρ∈µ\{1}

1 (X − ρ)

2

. Therefore:

T r

Q(ζ)/Q

( 1

ζ

− 1 ) = 1 − ℓ 2 , and

T r

Q(ζ)/Q

( 1

− 1)

2

) = (ℓ − 1)

2

4 − (ℓ − 1)(ℓ − 2)

3 .

(16)

Furthermore, if a ∈ Z, a 6≡ 0 (mod ℓ), we have:

T r

Q(ζ)/Q

( ζ

a

ζ

− 1 ) = ℓ + 1

2 − [a]

. Set:

S = T r

Q(ζ)/Q

( ζ

p+1

+ ζ

p−1

p

− 1)

2

).

Let m be the order of p modulo ℓ, set:

a = [1 + p

m−1

]

and b = [1 − p

m−1

]

. We have:

S = T r

Q(ζ)/Q

( ζ

a

+ ζ

b

− 1)

2

).

Since ℓ ≥ p

2

, we have b ≥ 3, and thus:

a = ℓ + 2 − b.

Now:

S = T r

Q(ζ)/Q

( ζ

a

− 1

p

− 1)

2

) + T r

Q(ζ)/Q

( ζ

b

− 1

p

− 1)

2

) + 2T r

Q(ζ)/Q

( 1 (ζ

p

− 1)

2

).

We obtain:

S = −b

2

+ b(ℓ + 2) − ℓ

2

+ 6ℓ + 5

6 .

Therefore, S ≡ 0 (mod p) implies that:

2

+ 2

3 ∈ (F

p

)

2

. Now observe that the function field F

p

(T,

q

T2+2

3

) has genus zero and thus has exactly p + 1 places of degree one. The Lemma follows. ♦

Theorem 3.5 Let θ ∈ ∆, θ b even. There exists α ∈ µ

p−1

such that for all prime numbers ℓ, ℓ ≡ α (mod p) and ℓ ≥ p

2

, we have:

X

ρ∈µ\{1}

M

(T, θ, ρ) 6≡ 0 (mod p).

(17)

Proof

Let ℓ be a prime number, ℓ 6= p. Suppose that we have:

X

ρ∈µ\{1}

M

(T, θ, ρ) ≡ 0 (mod p).

For α ∈ µ

p−1

, set:

f

α

(T ) = X

ρ∈µ\{1}

θ(α)ω

−1

(α) ρ

s0(α)

(1 + T )

s0(α)

ρ

p

(1 + T )

p

− 1 ( α

−1

s

0

(α) − 1

p −α

−1

ρ

p

(1 + T )

p

ρ

p

(1 + T )

p

− 1 ).

By the proof of Theorem 3.3, we get:

X

α∈µp1

f

α

((1 + T )

α1

− 1) ≡ 0 (mod p).

Therefore by [12], Lemma 16.9, for all α ∈ µ

p−1

there exists c

α

∈ Z

p

such that:

f

α

(T ) + f

−α

((1 + T )

−1

− 1) ≡ c

α

(mod p).

But:

f

1

(T ) ≡ −(1 + T )T r

Q(ζ)/Q

( ζ

p+1

p

− 1)

2

) (mod (p, T

p

)), and

f

−1

((1 + T )

−1

− 1) ≡ −(1 + T )T r

Q(ζ)/Q

( ζ

p−1

p

− 1)

2

) (mod (p, T

p

)).

Thus we get:

T r

Q(ζ)/Q

( ζ

p+1

+ ζ

p−1

p

− 1)

2

) ≡ 0 (mod p).

It remains to apply Lemma 3.4. ♦

4 p-adic L-functions

Let θ ∈ ∆. b We set:

- f (T, θ) = 0 if θ is odd,

(18)

- if θ is even, f (T, θ) is the Iwasawa power series associated to the p-adic L-function L

p

(s, θ) (see [12], paragraph 7.2.).

Recall that if θ 6= 1, f (T, θ) ∈ Λ, anf if θ is the trivial character then:

(1 − 1 + p

1 + T )f (T, θ) ∈ Λ

. For α ∈ µ

p−1

, we set:

ρ

n

(α) = α − ζ

pn+1

ω(α − 1) ∈ U

n

, and

ρ

(α) = (ρ

n

(α))

n≥0

∈ U

. We set:

η

n

= Y

α∈µp−1\{1}

ρ

n

(α)

α1−1

∈ U

n

, and

η

= (η

n

)

n≥0

∈ U

. Lemma 4.1 Let θ ∈ ∆, θ b 6= 1, ω. Then:

U

eθ

= (η

eθ

)

Λ

. Proof By the proof Theorem 2.3:

φ

θn

n

(α)

eθ

) ≡ M

n

(θ, α

−1

)e

θω1

T

n

(mod p

n+1

).

Thus:

φ

θn

neθ

) ≡ ( X

α∈µp1\{1}

(α − 1)M

n

(θ, α))e

θω1

T

n

(mod p

n+1

).

But: X

α∈µp1\{1}

(α − 1)M

0

(θ, α) = (p − 1)θ(−1)ω

−1

(−1) ∈ Z

p

. The Lemma follows. ♦

Let θ ∈ ∆, θ b 6= 1, ω. We denote by G(T, θ) ∈ Λ

the power series that corresponds to (( P

α∈µp1\{1}

(α − 1)M

n

(θ, α)))

n≥0

. Observe that:

X

α∈µp−1\{1}

(α−1)M

n

(θ, α) = (p−1)θ(−1)ω

−1

(−1)γ

n

(p−1)

pn

X

ℓ=1,ℓ6≡0 (modp)

θ(ℓ)ω

−1

(ℓ)γ

n

(ℓ).

(19)

Let θ ∈ ∆, θ b 6= 1, θ even. By π

neθ

we mean the unique (p − 1)

2

th root in U

n

which is congruent to 1 modulo π

n

of:

p−1

Y

a=1

( ζ

pω(a)n+1

− 1

ζ

pn+1

− 1 )

(p−1)θ1(a)

. We set:

π

eθ

= (π

neθ

)

n≥0

∈ U

. Theorem 4.2

i) Let θ ∈ ∆, θ b even and non-trivial. Then:

eθ

)

−G(1+T1+p−1,θ)

= (η

eθ

)

f(1+T1+p−1,θ)

. ii) Let θ ∈ ∆, θ b 6= 1, ω. Then:

∀α ∈ µ

p−1

\ {1}, (ρ

(α)

eθ

)

G(1+T1+p−1,θ)

= (η

eθ

)

M(1+T1+p−1,θ,α1)

. Proof Recall that:

φ

θn

n

(α)

eθ

) ≡ M

n

(θ, α

−1

)e

θω1

T

n

(mod p

n+1

), and

φ

θn

neθ

) ≡ ( X

α∈µp−1\{1}

(α − 1)M

n

(θ, α))e

θω1

T

n

(mod p

n+1

).

Thus ii) follows from Lemma 4.1, Lemma 2.4, and Proposition 2.2. Note that:

φ

θn

neθ

) ≡ e

θω1

1

ζ

pn+1

− 1 (mod p

n+1

).

Let f(X) =

XpnX+1−1−1

, then:

(X − 1)Xf

(X) + Xf (X) = p

n+1

X

pn+1

. Therefore:

1

ζ

pn+1

− 1 = 1 p

n+1

pn+1

X

−1

k=1

pkn+1

.

(20)

Let θ ∈ ∆, b for θ 6= 1, set:

v

n

(θ) = − 1 p

n+1

pn+1−1

X

k=1,k6≡0 (modp)

kθ(k)ω

−1

(k)γ

n

(k),

and if θ = 1, set:

v

n

(θ) = −(1 − (1 + p)γ

n

(1 + p)) 1 p

n+1

pn+1−1

X

k=1,k6≡0 (modp)

−1

(k)γ

n

(k).

Then by [12], paragraph 7.2, (v

n

(θ))

n≥0

corresponds to f (

1+T1

−1, θ) if θ 6= 1, and to (1 − (1 + p)(1 + T ))f (

1+T1

− 1, θ) if θ is trivial. Observe that if θ is even and non-trivial:

e

θω1

1

ζ

pn+1

− 1 = −v

n

(θ)e

θω1

T

n

, and if θ = 1 :

(1 − (1 + p)γ

n

(1 + p))e

θω1

1

ζ

pn+1

− 1 = −v

n

(θ)e

θω1

T

n

. The Theorem follows. ♦

Theorem 4.3 Let d be an integer, d ≥ 2, d 6≡ 0 (mod p). Let θ ∈ ∆. b Then:

X

ρ∈µd, o(ρ)=d

M (T, θ, ρ) = −f ( 1

1 + T −1, θ)( X

ℓdivides d

ℓµ( d

ℓ )θ(ℓ)ω

−1

(ℓ)(1+T )

Logp(ℓ) Logp(1+p)

),

wher µ(.) is the M¨obius function.

Proof If θ is odd, the result is clear by Lemma 3.2. Thus we assume that θ is even. Let Φ

d

(X) be the dth cyclotomic polynomial, i.e.

Φ

d

(X) = Y

ρ∈µd, o(ρ)=d

(X − ρ) ∈ Z[X].

Then:

Φ

d

(X) = Y

ℓdivides d

(X

− 1)

µ(d/ℓ)

.

(21)

If we take logarithmic derivatives, we get:

Φ

d

(X)

Φ

d

(X) = X

ℓdivides d

ℓµ( d

ℓ ) X

ℓ−1

X

− 1 . It follows that:

X

ρ∈µd, o(ρ)=d

ζ

pn+1

ζ

pn+1

− ρ = X

ℓdivides d

ℓµ( d

ℓ ) ζ

pn+1

ζ

pn+1

− 1 . Thus:

X

ρ∈µd, o(ρ)=d

1

ρζ

pn+1

− 1 = ( X

ℓdivides d

ℓµ( d

ℓ )σ

n

(ℓ)) 1 ζ

pn+1

− 1 . Now:

ρ

pn+1

− 1

ρζ

pn+1

− 1 − 1 =

pn+1−1

X

k=1

ρ

k

ζ

pkn+1

. Thus:

1

ρζ

pn+1

− 1 − 1 ρ

pn+1

− 1 =

pn+1−1

X

k=1

ρ

k

ρ

pn+1

− 1 ζ

pkn+1

.

We are working in the extension Q

p

d

, ζ

pn+1

)/ Q

p

d

) and we identify Gal( Q

p

d

, ζ

pn+1

)/ Q

p

d

)) with Γ

n

× ∆. Therefore:

e

θω1

1

ρζ

pn+1

− 1 = M

n

(θ, ρ)e

θω1

ζ

pn+1

+ e

θω1

(

p

X

n−1

k=1

p

)

k

p

)

pn

− 1 ζ

pkn

).

Now observe that the map µ

d

→ µ

d

, ρ 7→ ρ

p

, is an isomorphism. Thus:

e

θω1

( X

ρ∈µd, o(ρ)=d

1

ρζ

pn+1

− 1 ) = ( X

ρ∈µd, o(ρ)=d

M

n

(θ, ρ))e

θω1

T

n

.

But T

n

generates a normal basis for the field extension K

n

/Q

p

, thus:

X

ρ∈µd, o(ρ)=d

M

n

(θ, ρ) = −( X

ℓdivides d

ℓµ( d

ℓ )θ(ℓ)ω

−1

(ℓ)γ

n

(ℓ))v

n

(θ),

where v

n

(θ) is as in the proof of Theorem 4.2. The Theorem follows. ♦

(22)

Corollary 4.4 Let θ ∈ ∆, θ b even and non-trivial. Then:

f

(T, θ) 6≡ 0 (mod p).

Proof Let α ∈ µ

p−1

as in Theorem 3.5. Let ℓ be a prime number such that ℓ ≥ p

2

and ℓ ≡ α (mod p

2

) (note that there exist infinitely many such primes). We know that:

X

ρ∈µ\{1}

M

(T, θ, ρ) 6≡ 0 (mod p).

But by Theorem 4.3:

X

ρ∈µ\{1}

M (T, θ, ρ) = −f( 1

1 + T − 1, θ)(ℓθ(ℓ)ω

−1

(ℓ)(1 + T )

Logp(ℓ)

Logp(1+p)

− 1).

But since ℓ

p−1

≡ 1 (mod p

2

), we have:

Log

p

(ℓ)

Log

p

(1 + p) ≡ 0 (mod p).

Thus, if we take derivatives and reduce modulo p, we get:

X

ρ∈µ\{1}

M

(T, θ, ρ) ≡ 1

(1 + T )

2

f

( 1

1 + T −1, θ)(ℓθ(ℓ)ω

−1

(ℓ)(1+T )

Logp(ℓ)

Logp(1+p)

−1) (mod p).

The Corollary follows. ♦

The case of the trivial character is treated in the last section.

5 Other results

Let θ be an even Dirichlet character of conductor d or pd, where d ≥ 1, d 6≡ 0 (mod p). For all n ≥ 0, set: q

n

= p

n+1

d. Let g(T, θ) be the power series introduced in [12], paragraph 7.2, i.e.

g(T, θ) = T − q

0

1 + T f (T, θ),

(23)

where f (T, θ) is the power series associated to the p-adic L-function L

p

(s, θ) (see [12], Theorem 7.10). Set L = Q

p

(θ), and let π

L

be a prime of L. Then, the Ferrero-Washington Theorem states (see [12], paragraph 16.2):

g(T, θ) 6≡ 0 (mod π

L

).

We have:

Theorem 5.1

g

(T, θ) 6≡ 0 (mod π

L

).

Proof For y ∈ Q , set:

B(y) = (1 + q

0

){y} − {(1 + q

0

)y} − q

0

2 ∈ Z

p

,

where {y} is the fractional part of y. recall that ([12], proof of Theorem 7.10):

∀n ≥ 0, g(T, θ) ≡

qn

X

a=1,(a,q0)=1

B( a

q

n

) θω

−1

(a) (1 + T )

−i(a)−1

(mod ω

n

(T )), where i(a) =

LogLogp(a)

p(1+q0)

. Let’s suppose that g

(T, θ) ≡ 0 (mod p). We have, for all n ≥ 1 :

(1+T )

2

g

(T, θ) ≡ − P

qn

a=1,(a,q0)=1

(i(a)+1) B(

qa

n

) θω

−1

(a) (1+T )

−i(a)

(mod (p

n

, ω

n

(T ))).

Therefore, we get:

∀n ≥ 1,

qn

X

a=1,(a,q0)=1

(i(a)+1) B( a q

n

) θω

−1

(a) (1+T )

i(a)

≡ 0 (mod (π

L

, ω

n

(T ))).

Now, changing i(a) to (1 + q

0

)

<a>−1

p

permutes exponents modulo p

n

and does not affect divisibility by π

L

. Thus, for all n ≥ 1 :

P

qn

a=1,(a,q0)=1

((1+q

0

)

<a>−1

p

+1) B(

qa

n

) θω

−1

(a) (1+T )

(1+q0)<a>−p 1

≡ 0 (mod (π

L

, ω

n

(T ))).

For n ≥ 1 and for α ∈ µ

p−1

, set:

H

αn

(T ) ≡ P

a≡α (modp)

((1 + q

0

)

α1pa−1

+ 1) B(

qan

) θω

−1

(a) (1 + T )

(1+q0)α

1a−1 p

(mod (p

n

, ω

n

(T ))).

Note that:

H

αn+1

(T ) ≡ H

αn

(T ) (mod (p

n

, ω

n

(T ))).

(24)

Thus, there exists H

α

(T ) ∈ Λ

L

such that:

H

α

(T ) ≡ H

αn

(T ) (mod (p

n

, ω

n

(T ))).

We get: X

α∈µp1

H

α

(T ) ≡ 0 (mod π

L

).

Therefore:

X

α∈µp1

(1 + T )

1+q0

H

α

((1 + T )

p

− 1) ≡ 0 (mod π

L

).

Let f

α

(T ) ∈ Λ

L

as in [12], Lemma 16.8. Set:

F

α

(T ) = α

−1

p (1 + T )f

α

(T ) + (1 − 1 + q

0

p )f

α

(T ).

It is not difficult to see that F

α

(T ) ∈ Λ

L

∩ L(T ). By [12], Lemma 16.8, we have:

F

α

(T ) ≡ P

a≡α (modp)

((1+q

0

)

α1pa−1

+1) B(

qan

) θω

−1

(a) (1+T )

(1+q0)a

(mod (p

n

, ω

n

(T ))).

Therefore, we get:

X

α∈µp−1

F

α

((1 + T )

α1

− 1) ≡ 0 (mod π

L

).

Now apply [12], Lemma 16.9, and we get that for all α ∈ µ

p−1

, there exists b

α

∈ O

L

such that:

F

α

(T ) + F

−α

((1 + T )

−1

− 1) ≡ b

α

(mod π

L

).

But observe that:

F

α

(T ) = F

−α

((1 + T )

−1

− 1).

Thus, for all α ∈ µ

p−1

, there exists c

α

∈ O

L

such that:

α

−1

p (1 + T )f

α

(T ) + (1 − 1 + q

0

p )f

α

(T ) ≡ c

α

(mod π

L

).

Now we take α = 1, and we set:

G

1

(T ) = (1+q

0

) P

0<a<q0,a≡1 (modp)

θω

−1

(a) (1+T )

a(1+q0)

− P

0<a<q20+q0,a≡1 (modp)

θω

−1

(a) (1+

T )

a

.

(25)

We get:

(1 −

1+qp0

)((1 + T )

q0(1+q0)

− 1)G

1

(T ) +

1p

(1 + T )(((1 + T )

q0(1+q0)

− 1)G

1

(T ) − q

0

(1 + q

0

)(1 + T )

q0(1+q0)−1

G

1

(T )) ≡ c

1

((1 + T )

q0(1+q0)

− 1)

2

(mod π

L

).

Note that:

G

1

(T ) ≡ −(1 + T ) (mod (1 + T )

1+p

), ans

G

1

(T ) ≡ −1 (mod (1 + T )

p

).

Thus we must have:

c

1

≡ 0 (mod π

L

).

The coefficient of 1 + T in the left-side is: 1 − d and the coefficient of (1 + T )

q0(1+q0)+1

in the left side is 2d − 1 +

qp20

. The Theorem follows. ♦

References

[1] A. Adler and L. C. Washington, p-adic L-functions and higher- dimensional magic cubes, J. Number Theory 52 (1995), 179-197.

[2] B. Angl`es, Units and norm residue symbol, Acta Arith. 98 (2001), 33-51.

[3] R. Coleman, Division values in local fields, Invent. Math. 53 (1979), 91-116.

[4] B. Ferrero and L. C. Washington, The Iwasawa invariant µ

p

vanishes for abelian number fields, Annals of Math. 109 (1979), 377-395.

[5] S. Lang, Cyclotomic Fields I & II, Springer-Verlag (1990).

[6] H. W. Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlk¨orpers, J. Reine angew. Math. 201 (1959), 119-149.

[7] G. Lettl, The ring of integers of an abelian number field, J. Reine angew. Math. 404 (1990), 162-170.

[8] T. Mets¨ankyl¨a, Iwasawa invariants and Kummer congruences, J. Num-

ber Theory 10 (1978), 510-522.

(26)

[9] P. Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag (1979).

[10] W. Sinnott, On the µ-invariant of the Γ-transform of a rational func- tion, Invent. Math. 75 (1984), 273-282.

[11] G. Terjanian, Sur la loi de r´eciprocit´e des puissances ℓ-i`emes, Acta Arith. 54 (1989), 87-125.

[12] L. C. Washington, Introduction to Cyclotomic Fields, Second Edition,

Springer-Verlag (1997).

Références

Documents relatifs

In Section 3 we introduce Artin motives with coefficients in a number field E in terms of representations of the Ga- lois group, determine when the Q-dimension of the left-hand side

We prove new explicit formulas for the p-adic L-functions of totally real number fields and show how these formulas can be used to compute values and representations of

We present the article q-difference equations and p-adic local monodromy written by Lucia Di Vizio and Yves Andr´ e.. We only expose the first part of the article which aims

The notion of p-rationality of number elds naturally appears in several branches of number the- ory. In Iwasawa theory, the study of Galois groups of innite towers of number elds,

In order to obtain from them numerically valued distributions interpolating critical values attached to standard L-functions of Siegel modular forms, one applies a suitable linear

The previous Section 3 shows that the good notion of p-adic regulator comes from the expression of the p-adic finite group R K associated with the class field theory interpretation

Some results about the p-adic Leopoldt transform of [1] and Proposition 1 will allow us to reduce the proof of Theorem 1 to the computation of the rank of a certain matrix whose

Bruno Angles. On the p-adic Leopoldt Transform of a power series.. An element of F p [[T ]] will be called a pseudo-rational function if it is the quotient of two