• Aucun résultat trouvé

The radio sky

N/A
N/A
Protected

Academic year: 2021

Partager "The radio sky"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2018-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23003258

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The radio sky

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=5c1b3174-92f9-490e-8b12-01a4367d0ddd https://publications-cnrc.canada.ca/fra/voir/objet/?id=5c1b3174-92f9-490e-8b12-01a4367d0ddd

(2)

THE RADIO SKY

Ken Tapping, 1stMay, 2018

Thanks to the way we use it for entertainment, we tend to think of radio as something we listen to. However, it also brings us television signals, cell phone services, and if you have a home WIFI system, your computers and other devices are using radio to talk to each other. What we are doing in all these cases is using radio waves to transmit information. We imprint information on the waves, that is “modulate them”, transmit them, and then at some remote location, we extract that information, or “demodulate the signals” and then throw the radio wave away. That’s why radio engineers refer to it as the “carrier wave”. Radio waves, along with light rays, infrared, ultraviolet, X-rays and gamma rays, are all electromagnetic waves; the only difference between them is their wavelength – the distance between two successive wave crests. Radio waves have wavelengths of kilometres to

millimetres. Light waves range in length between 800 and 400 billionths of a metre. X-rays and gamma rays are far shorter. All these waves propagate through space, so we can in principle imprint information on them and use them to send it to distant locations. We can also image these waves just as we can image light. However, to make an image, the imaging lens or mirror has to be far bigger than the wavelength of the waves being used. Our eyes can image light to see details about one thirtieth of the diameter of the Full Moon. Our Synthesis Radio Telescope, at a wavelength of 21 cm, needs a row of antennas 600 metres long to achieve that same level of imaging detail. It is this difference in wavelength that makes radio telescopes look so different from optical telescopes, or our eyes. So why bother? Electromagnetic waves come in little packets called “quanta”, which cannot be subdivided. The amount of energy in a “quantum” of

electromagnetic waves depends on their wavelength, so making a quantum with a long wavelength requires less energy than we need to

make one with a short wavelength. This property is very useful for astronomy.

The sky we see with our eyes is produced by starlight. We see stars directly because of the light they produce, and other things, such as nebulae and planets, because the stars illuminate them. However, out there between the stars there is a lot of cold gas and dust, and electrons gyrating around magnetic fields where there is not enough energy to produce light quanta. For example, a red hot poker is hot enough to produce red light. When it cools a bit so that it is no longer glowing, we can still feel heat – infrared - coming from it. Even things a few degrees above absolute zero (-273 C) produce radio waves. We discovered the remnant heat from the Big Bang, now -270 C using radio telescopes. So radio telescopes can be used to map all that dark material between the stars, together with studying other processes that make only radio waves. Since this includes most of the normal matter in the universe, (stars form from it, and when they die, return their material to it) knowing how this material behaves is important. We use radar to see through fog because radio waves are not stopped by it. Similarly, lots of very interesting places, such as the core of our galaxy and regions in which stars are being born, lie behind screens of gas and dust that hide them from our optical telescopes. However, radio waves pass through these screening clouds, making it possible to see the odd things going on at the centres of galaxies, and how new stars are being born. This is only a tiny bit of what radio

telescopes are showing us. We have not mentioned pulsars, fast radio bursters, radio spectroscopy, interplanetary scintillation…. Venus is spectacular in the west after sunset. Jupiter rises at 9 pm, Mars at 2am and Saturn at 3 am. The Moon will reach Last Quarter on the 7th.

Ken Tapping is an astronomer with the National Research Council's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355 E-mail: ken.tapping@nrc-cnrc.gc.ca

Références

Documents relatifs

Nous avons utilisé le logiciel SYMBOLS-2000 pour la simulation du circuit électrique équivalent de ce capteur SYMBOLS-2000 est un logiciel de simulation pour la modélisation Bond

Chez le diabétique de type 2 obèse, la lipolyse est moins sensible à l'action de l'insuline et le taux sanguin ainsi que l'oxydation des acides gras libres sont toujours

Le processus de résolution du problème inverse est une approche basée sur le couplage des deux méthodes ATL et TLBO. L’ATL est utilisé pour résoudre le problème direct conduisant

Les figures 21 et 22 montrent le nombre de gènes différentiellement exprimés dans l’interaction entre l’écotype et de la plantation régionale ; et comment ils

Conversely, the effect of DTG and ATV/r was lost or reduced in USP18-silenced cells indicating that USP18 was required for the anti- and pro-inflammatory effects of DTG and ATV/r

To better understand the mechanism through which the combined treatment of GSK-343 and panobinostat increases the pro-angiogenic properties of ECFCs, we measured changes in

Après cette première séquence d’étayage, tous les élèves étaient convaincus de l’utilité des capsules vidéo pour leurs propres apprentissages. Le premier argument

During the strong EN event, the composites showed that SALLJ follows a path slightly southward the climatological low level wind circulation, with the jet maximum over the