• Aucun résultat trouvé

Degradation of a PEM fuel cell stack with Nafion® membranes of different thicknesses. Part II : Ex situ diagnosis

N/A
N/A
Protected

Academic year: 2021

Partager "Degradation of a PEM fuel cell stack with Nafion® membranes of different thicknesses. Part II : Ex situ diagnosis"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Power Sources, 205, pp. 324-334, 2012-01-21

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowsour.2012.01.074

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Degradation of a PEM fuel cell stack with Nafion® membranes of

different thicknesses. Part II : Ex situ diagnosis

Yuan, Xiao-Zi; Zhang, Shengsheng; Ban, Shuai; Huang, Cheng; Wang,

Haijiang; Singara, Vengatesan; Fowler, Michael; Schulze, Mathias; Haug,

Andrea; Friedrich, K. Andreas; Hiesgen, Renate

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=833eb7d8-d09f-437f-b1a6-26464513d027

https://publications-cnrc.canada.ca/fra/voir/objet/?id=833eb7d8-d09f-437f-b1a6-26464513d027

(2)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Power

Sources

j o ur n a l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Degradation

of

a

PEM

fuel

cell

stack

with

Nafion

®

membranes

of

different

thicknesses.

Part

II:

Ex

situ

diagnosis

Xiao-Zi

Yuan

a,∗

,

Shengsheng

Zhang

a

,

Shuai

Ban

a

,

Cheng

Huang

a

,

Haijiang

Wang

a,∗∗

,

Vengatesan

Singara

b

,

Michael

Fowler

b

,

Mathias

Schulze

c

,

Andrea

Haug

c

,

K.

Andreas

Friedrich

c

,

Renate

Hiesgen

d

aInstituteforFuelCellInnovation,NationalResearchCouncilCanada,Vancouver,BC,CanadaV6T1W5

bDepartmentofChemicalEngineering,UniversityofWaterloo,200UniversityAvenueWest,Waterloo,ON,CanadaN2L3G1

cInstituteofTechnicalThermodynamics,GermanAerospaceCenter,Pfaffenwaldring38-40,70569Stuttgart,Germany

dUniversityofAppliedSciencesEsslingen,DepartmentofBasicScience,Kanalstrasse33,73728Esslingen,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13October2011

Receivedinrevisedform7January2012 Accepted12January2012

Available online 21 January 2012

Keywords:

Protonexchangemembranefuelcell Stack Exsitu Durability Idleconditions Degradation

a

b

s

t

r

a

c

t

PartIofthisstudycarriedoutmembraneelectrodeassemblydegradationofafour-cellstackwithNafion membranesofdifferentthicknesses,includingN117,N115,NR212,andNR211,for1000hunderidle conditions.Throughon-lineelectrochemicalmeasurementsitwasfoundthatasdegradationadvanced, cellswiththinnermembranesexperiencedmuchmorerapidperformancedegradationthanthosewith thickermembranes,especiallyafter800hofoperation,duetoadramaticincreaseinhydrogencrossover. Inthepresentworkweinvestigatethedegradationmechanismsofthisfour-cellstackusingseveralexsitu diagnostictools,includingscanningelectronmicroscopy(SEM),infrared(IR)imaging,ion chromatogra-phy(IC),gaspermeabilitymeasurement,contactanglemeasurement,andsimulation.Theresultsindicate thatthedrasticincreaseinhydrogencrossoverisduetomembranethicknesslossandpinholeformation. Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Thedurabilityofprotonexchangemembrane(PEM)fuelcells isoneofthebiggestchallengesandbarriersforcommercializing this promising technology. The 2015US Department ofEnergy lifetimerequirementsfortransportationapplicationsrangefrom 5000hforcarsto20,000hforbuses,andforstationaryapplications therequirementis40,000hofcontinuousoperation.Currently,the lifetimesoffuelcellvehiclesandstationarycogenerationsystems arearound1700hand10,000h,respectively[1].Accordingly, con-tinuousR&D ontheissues relatedtoPEMfuelcelldurabilityis stillrequiredtogainafundamentalunderstandingofdegradation mechanisms,whichinturnwillhelpreducethetechnologygapand providemitigationstrategies.

PEMfuelcellsconsistofmanycomponents,includingcatalysts, catalystsupports,membranes,gasdiffusionlayers(GDLs),bipolar plates,sealings,andgaskets.Eachofthesecomponentscandegrade

∗ Correspondingauthor.Tel.:+6042213000x5576.

∗∗ Correspondingauthor.Tel.:+6042213038;fax:+6042213001.

E-mailaddresses:xiao-zi.yuan@nrc.gc.ca(X.-Z.Yuan),

haijiang.wang@nrc-cnrc.gc.ca(H.Wang).

orfailtofunction,thuscausingthefuelcellsystemtodegradeor fail.Sofar,variousfailuremodesofcomponentdegradationhave beenidentified,suchascatalystparticleagglomeration/dissolution, carbonsupportoxidation,membranedissolution,ionomer degra-dationinthecatalystlayer(CL),hydrophobicitychangesintheCL and/orGDL,andPTFEdecompositionintheCLand/orGDL. Depend-ingoninternalfactors(e.g.,materialproperties, andthedesign ofthecomponentsandthestack)andexternalfactors(e.g.,fuel celloperatingconditions,impuritiesorcontaminantsinthefeeds, andenvironmentalconditions),oneorseveralfailuremodesare predominantovertheothers[2].

Generally,itisimpracticalandcostlytooperateafuelcellunder itsnormalconditionsforseveralthousandhours;acceleratedtest methodsarethuspreferredtofacilitaterapidlearningaboutkey durability issues.The USDepartment of Energyhasestablished acceleratedstresstest(AST)protocolsforcellcomponents, includ-ingelectrocatalysts,catalystsupports,membranes,andmembrane electrodeassemblies,inanattempttoprovideastandardsetoftest conditionsandoperatingprocedurestoevaluatenewcell compo-nentmaterialsandstructures[3].Differentresearchgroupsmay prefertheirowntestprotocolsordesignspecialdegradationteststo investigatefailuremodes,withaspecialtargetinmind.For exam-ple,astheidletimemayamounttoseveralthousandhoursover

0378-7753/$–seefrontmatter.Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2012.01.074

(3)

theentirelifetimeofafuelcell,itisconsideredoneofthemost crucialfactorsaffectingthecell’sdurability,especiallyfor automo-tivefuelcellsystems[4,5].Wuetal.[6]conductedasix-cellstack degradationprocedureunderclosetoopencircuitvoltage(OCV) conditions,findingconsiderablehydrogencrossoverafter800hof operation.Tofacilitatemembranedegradationstudies,Yuanetal.

[7]reportedanaccelerateddegradationtestinvolvingafour-cell stackdegradationprocedureusingNafionmembranesofdifferent thicknesses,includingN117,N115,NR212,andNR211,for1000h underidleconditions.Thecellperformanceandelectrochemical characteristicsweremonitoredapproximatelyevery200hof oper-ation.

WhilevariousASTsaredesignedandperformedonPEMfuel cells,numerousdiagnostictools,includinginsituandexsitutools, areimplementedtointerpretexperimentalresults,toinvestigate failuremodes,andtogainafundamentalunderstandingof compo-nentdegradation.Todate,awiderangeofexperimentaldiagnostic toolsfortheaccurateanalysisofPEMfuelcellsandstackshavebeen developed,asreviewedbyWuetal.[8,9].Forexample,

Atomicforcemicroscopy(AFM)NanoscaleNafionmembrane andGDLdegradation[10,11]

Infrared(IR)imagingMembranethinningandpinholedetection

[12,13]

X-raydiffraction(XRD)Particlesizechange[14] andlossof surfacearea[15]

Scanningelectronmicroscopy(SEM)Morphological changes

[16]anddegradationofmembrane[17],CL[18],andGDL[19]

Transmissionelectronmicroscopy(TEM)Diagnosisof electro-catalystdegradation[20]

Fouriertransforminfraredspectroscopy(FTIR)Polymer alter-ationsinducedbydegradation[21]

X-rayphotoelectronspectroscopy (XPS) Surface component loss[22]

Ionchromatography(IC)Membraneandionomerdegradation throughanalysisofdissolvedfluorideions[23,24].

Theseexsitutoolsplayanimportantroleininvestigatingfailure modesanddegradationmechanisms.

Previously,weperformedaninsitudiagnosisofafour-cellstack withmembranesofdifferentthicknesses,wheretraditional elec-trochemicaldiagnostictools (including OCV,polarizationcurve, electrochemicalimpedancespectroscopy(EIS),andlinearsweep voltammetry(LSV))wereusedtoobserveperformancelossesafter 1000hofoperationunderidleconditions[7].Inthepresentwork, anex situ diagnosisis carriedout toidentifythemajor failure mode.TheseexsitumeasurementsincludeSEM,IRimaging,IC, gaspermeabilitymeasurement,andcontactanglemeasurement.

2. Experimental

2.1. Fuelcellmaterialsandtestapparatus

Thefuelcelltestedwasafour-cellstackwithanactiveareaof 50cm2.ThematerialsusedwereIon Powercustomizedcatalyst coatedmembranes(CCMs)(N117,N115,NR212,andNR211)with aPtcatalystloadingof0.3mgcm−2,supportedoncarbononboth sides,andSGLGDLs.Duringthedegradationtest,thefour-cellstack wasoperatedataconstantcurrentof0.5A(10mAcm−2).Thefuel cellstacktemperaturewaskeptat70◦C,andairandhydrogenwere fullyhumidifiedpriortotheirdeliveryintothefuelcell.Detailed proceduresofthisstackdegradationtest,aswellaselectrochemical measurements,havebeendescribedintheliterature[7].

2.2. Exsitudiagnosis 2.2.1. SEM

Cross-sectional SEM imageswere taken using a HITACHI S-3500N before and after degradation to identify morphological changesaswellasthicknesschangesinthemembraneandCLs.All thesamplesusedforSEMscanning,includingfreshanddegraded NR211, NR212, N115, and N117, were cut from 50cm2 sheets into10mm×20mmpieces.Thesepieceswerethenfracturedafter immersioninliquidnitrogen.

2.2.2. IC

Thefluoridecontentofthewatersamplescollectedfromthe anodeandcathodeatthebeginningoftest(BOT)andendoftest (EOT)wasanalyzedusinganionchromatograph(DionexDX500) withanelectrochemicaldetector(DionexED40)andworkingwith agradientpump(DionexGP40).Theanalyticalcolumnusedto separatethefluorideionsfromotheranionswasaDionexAS17 plusAG17guardcolumn,and20mMNaOHwasusedastheeluent. Basedontherelativeexchangeofanionsbetweenthestationary columnandmobilephase,theanionswereelutedanddetectedat differenttimeintervals,makingthechromatogram.Theminimum detectablelimitoffluorideionsinthesamplewas0.011mgL−1.

2.2.3. IRimaging

Todetectpinholesgeneratedinthemembranesafter degrada-tion,IRimagingwascarriedouttoobservethelocationofhigher hydrogencrossover,reflectedbythetemperaturedistributionon themembraneelectrodeassembly(MEA),whichisbasedonthe heatoutputfromthechemicalreactionbetweenhydrogen(crossed over from the anode) and oxygen in the presence of Pt cata-lyst[12].ThetemperaturedistributionobtainedfromIRimages demonstratesthelevelofreactantcrossoverthroughthePEM.For comparison,thesametestwasalsoconductedonafreshMEA.

IRimagingwasperformedusinganIRcamera(InfraTechGmbH) andaspeciallydesignedcell(50cm2)withanopencathode,which providedsufficientairforthereaction.Theanoderequiredadiluted hydrogensupply(e.g.,5%H2inN2,Linde).Theentire experimen-talset-upincludedahydrogencylinder,hydrogenregulator,flow meter, dummycell, IRcamera,and computer. Theentire piece offreshordegradedMEAwasinstalledintheself-designedcell, withdilutedhydrogenpassingthroughtheanodeataflowrate of30sccmmin−1atroomtemperatureandapressureof5psi.The IRcamerawasplacedtowardstheopencathodetoobservethe temperaturedistribution.

2.2.4. Gaspermeability

Selectivepermeabilityofgasesthroughthemembraneisaneasy andviablemethodtoinvestigatemembranefailures,suchasrips, tears,cracks,andpinholes.Animpulsiveincreaseinpermeability maybeexpectedafteralong-termAST.Duringthisexperiment, selectivegases,suchasHe,N2,orAr,whichhavedifferent molec-ularsizes,werefedintotheanodesideofthecell,andthegasflux acrossthemembranewasmeasuredatthecathode.Thiscanbe doneforbothfreshanddegradedsamples.Byusingdifferentgases andtheirselectivepermeability,onecandistinguishwhetherthe permeationisrelatedtothesolutionortoKnudsonbehavior.The apparentpermeability(PM)ofthemembranewascalculatedusing Fick’slaw(1):

NA=PM(PI −PII)

l (1)

where PI and PII arethe partialpressures oftheanalyte gasat eithersideofthemembrane,andNAisthefluxofgasmolecules acrossthemembranewithafinitethickness(l).Itisassumedthat thegasfluxthroughthemembranewillincreaseifthemembrane

(4)

CF

2

CF

2

CF

2

CF

OCF

2

CF

CF

3

O

CF

2

x

y

m

CF

2

SO

3

H

Fig.1.ChemicalstructureofNafion.Inthiswork,theequivalentweightischosen tobeabout1100gofdryNafionpermoleofsulfonicacidgroups,withx=6.5and

y=m=1.

thicknesschangesduetothinningand/orthepresenceof mem-branepinholes,tears,orcracks.

2.2.5. Contactangle

ContactanglemeasurementwasconductedonaKitchener 519-748-4612fromFOLIOInstrumentsInc.,andthewaterdropimage takenandtheanglefittingprogramusedwasFTA32.Forcontact angleobservationoftheGDLs,twopieces(10mm×10mm)were cutfromeachfreshanddegradedsamplesheetsforboththeanode andcathode,andthenthreedifferentspotsweremeasuredoneach sample.Allthesampleswerestuckontoaglasssubstrateusinga double-sidedsticker.ToobservethecontactanglefortheCLs,the GDLlayerswerepeeledoffcarefullywiththehelpofascalpel.Note thatforeachsamplewechoseatleastthreelocations,andeach imagewasfittedatleastthreetimes.Therefore,thefinalresultfor thecontactangleisanaveragevalueforeachsample.

Notethatforeachoftheexsitutests,weusedthesamefreshand degradedsamples.IRimagingandgaspermeabilitymeasurements

Fig.2. Voltagedegradationtrendsforindividualcellsunderidleconditionsfor 1000h(operatingconditions:flowrateH2/air=1/2slpm,celltemperature70◦Cand

fullyhumidifiedonbothsides).

wereperformedbeforecuttingthesamplesforSEMandcontact angleobservations.The“fresh”samplesweretheonesthathave beencompressedandconditionedwithoutanyfurtheroperation asdescribedinourpreviouspublication[7].

2.3. Simulationmethods

ThekineticMonteCarlo(KMC)methodwasusedtomodelthe mainchainunzippingprocess[25,26].In thismethod,all possi-bleeventsorsimulationstepsareconsideredindependentforall

Fig.3. ComparisonofSEMimagesforNR211samplesbeforeandafterdegradation,atdifferentmagnifications:(a)beforedegradation,atamagnificationof200×,(b)after degradation,atamagnificationof200×,(c)beforedegradation,atamagnificationof1.0k×,and(d)afterdegradation,atamagnificationof1.0k×.

(5)

Fig.4.ComparisonofSEMimagesforNR212samplesbeforeandafterdegradation,atdifferentmagnifications:(a)beforedegradation,atamagnificationof180×,(b)after degradation,atamagnificationof180×,(c)beforedegradation,atamagnificationof1.0k×,and(d)afterdegradation,atamagnificationof1.0k×.

Nafionatoms.Acertaineventisselectedwithaprobability pro-portionaltoitsrate.Inparticular,thecarboxylgroupsareassumed tobethemajorreactant,witharateconstantof1.TheArrhenius equation k=Aexp



Ea RT



(2)

isoftenusedtoderivetherateconstantsfromthereactionenthalpy calculatedbydensityfunctiontheory[27].Asthepre-exponential termAisnotdeterminedexplicitlyinthiswork,theprocessing timecalculatedbyKMChasanarbitraryunit.Thechemical struc-tureofNafionisshowninFig.1[28].Inthepresentwork,aNafion polymerconsistedof20monomers,namely20sidechainsand300 CFxgroupsinthePTFEbackbone.Intotal,1000Nafionchainswere used.TheconcentrationofperoxideradicalsOH•wasassumedto beconstant[27].Byneglectingtheformationprocedureoffree rad-icalsinacceleratedstresstestwemayhaveslightlyoverestimated thequantityofradicalsintheinitialstage,whereionomer disso-lutionmayhavetakenplacelessrapidlythanwemodeled[27].A typicalsimulationwasstartedfromanetworkofNafionionomers partiallyterminatedwithcarboxylendgroups,withamaximumof twoperNafionchain.Aftertheexecutionofthisevent,thelistof possibleeventswasupdatedandtheprocedurewasrepeateduntil thedesiredweightlossofNafionwasreached.Statisticaldatafor thedegradationproductswascollectedduringthewholeprocess.

3. Resultsanddiscussion 3.1. Summaryofinsituresults

Basedonthepreviousinsitudiagnosis,theOCVofthe individ-ualcellsdecreasesmuchfasterforthinnermembranes,especially after800hofoperation.Beforedegradation,thethinnerthe mem-braneis,thehigherthecellperforms. However,asdegradation progresses,thecellswiththinnermembranesdegrademuchfaster.

Fig.2showsthevoltagedegradationcurvesofeachindividualcell ofthestack upto1000hunderidleconditions.Ascanbeseen, from600to800hthecellwiththeNR211membranedegrades significantly, whereas theother cells do not experiencedrastic degradation;from800to1000h, both cellswiththinner mem-branes(NR211andNR212)degradedramatically,whilethetwo cellswiththickermembranes(N115andN117)stillretainaslight degradation rate. Fig. 2 yields an average degradation rate of approximately0.18mVh−1forNR212and0.26mVh−1forNR211, andofapproximately0.09mVh−1forbothN115andN117.Note thatthevoltagejumpswerecausedbyinterruptionsofthe degrada-tionprocessforelectrochemicalmeasurementsat200hintervals orunexpectedshutdownsoftheteststationasindicatedinthe figure.Basedonthelinearsweepvoltammetry(LSV)curves mea-suredaftereach200h,increasedhydrogencrossoverwasfound toberesponsibleforthedrasticperformancelossforcells with thinnermembranes[7].Thisisinagreementwithourprevious degradationtestunderidleconditions[6].Theresultsindicatethat

(6)

Fig.5.ComparisonofSEMimagesforN115samplesbeforeandafterdegradation,atdifferentmagnifications:(a)beforedegradation,atamagnificationof200×,(b)after degradation,atamagnificationof200×,(c)beforedegradation,atamagnificationof500×,and(d)afterdegradation,atamagnificationof500×.

membranedegradationisthemajorsourceoftheentirecell per-formancedegradationunderidleconditions.Itwasassumedthat membranethinningorpinholeformationwasresponsibleforthe increasedhydrogencrossover[7].

3.2. Exsituresults 3.2.1. Thicknessloss

Figs.3–6showtherespectiveSEMimagesforNR211,NR212, N115,andN117samplesbeforeandafterdegradation,at differ-entmagnifications.Macroscopically,obviousthicknessdecreaseis observableafter1000hofdegradationunderidleconditions, espe-ciallyforthinmembranes.Wemeasuredthethicknesschangesfor allthemembranes;theresultsarelistedinTable1.

AsshowninTable1,thereisa3–4␮mdifferenceinmembrane thicknessbetweenthefreshsamplesandsamplesconditionedby cellcompression(100psi).Afterdegradation,membranethickness decreasessignificantly,especiallyforthinmembranes,withatotal thickness lossof 66% for NR211 and 68% for NR212. However, thisdoesnotmeanthatthinmembranesdegradefaster.Thickness

Table1

Membranethicknesschangebeforeandafterdegradation.

Fresh (␮m) After conditioning (␮m) Degradedafter 1000h(␮m) Thickness lost(␮m) Thickness decrease(%) NR211 25.4 22 7.5 14.5 66 NR212 50.8 44 14 30 68 N115 127 124 78 46 37 N117 183 179 142 37 21

losses for thin membranes arestill lowerthan for thick mem-branes,sincethereislessNafioninthethinmembranestodegrade. Webelievethatforthinmembranes,onlyasmallfractionofthe membraneneedstodegradetoobserveacrossoverincreaseand subsequentOCVdecrease.

AsanalyzedbyCollieretal.[29],thecausesofmembrane degra-dationincludemechanicaldegradation,thermaldegradation,and chemicaland electrochemicaldegradation.Webelievethat dra-matic membrane thickness loss or membrane thinning can be attributedtoradicalattacks,amechanismproposedbyCurtinetal.

[26].AsradicalsformedattheanodewillattackH-containingend groups,Nafionmembranedegradationbeginswiththeabstraction ofhydrogen.Theformedperfluorocarbonradicalcanthenreact witha hydroxylradicaltoproduceHFandanacidfluoride.The finalstepincludeshydrolysisoftheacidfluoride:

(i)R-CF2COOH+•OH→ R-CF2• +CO2+H2O (3) (ii)R-CF2• +•OH →R-CF2OH→ R-COF+HF (4) (iii)R-COF+H2O→R-COOH+HF (5) The water samples wereanalyzed using IC. This analysisof thefluoride concentrationinwater from thestack outletsmay beessentialinrevealingthelevelofmembrane dissolutionand ionomerlossintheCL.Theresultshows thatfluorineemission ratesincreaseddramaticallyfrom2.2mgL−1and2.4mgL−1atBOT to11.9mgL−1and10.3mgL−1atEOTfortheanodeandcathodeof thestack,respectively.Therefore,thetremendousthicknesslossin themembraneswasfurtherconfirmedbythefluorinerelease mea-suredbyIC.Unfortunately,thistechniquecouldnotdetectfluorine releaseratesforindividualcells.

(7)

Fig.6.ComparisonofSEMimagesforN117samplesbeforeandafterdegradation,atdifferentmagnifications:(a)beforedegradation,atamagnificationof70×,(b)after degradation,atamagnificationof70×,(c)beforedegradation,atamagnificationof200×,and(d)afterdegradation,atamagnificationof200×.

FromourSEMimages,wealsomeasuredthethicknesschanges intheCLs;theresultsarelistedinTable2.Wefoundthat:theCL thicknessesforbothelectrodeswerebetween9and13␮mbefore andafterdegradation;noobviouscathodeCLthinningwas iden-tifiable;andathicknesslossofabout1–2␮mwasobservablefor theanodeCL,but thechangewasnotsignificant.TheCLlossis attributabletoPtdissolution/migration/washoutandionomerloss, asobservedbyfluoriderelease.Itisstillunclearwhytheanodelost morecatalystthanthecathode.

3.2.2. Pinholeformation

Fig.7(a)–(d)comparesfourfreshMEAs withdifferent mem-branes.Ascanbeseenfromthefourimages,temperatureisevenly distributedthroughouttheMEAforallthefreshsampleswith dif-ferentmembranes.Noobvioushotspotcanbeobserved,evenfor thethinnestmembrane.However,fromthecolororaverage tem-peratureof each sample,we canconcludethat thethinnerthe membrane,thehighertheaveragetemperatureandthegreater the hydrogen crossover through the membrane, which agrees

Table2

Catalystlayerthicknesschangebeforeandafterdegradation.

Anodeafter conditioning (␮m) Cathodeafter conditioning (␮m) Anodeafter degradation (␮m) Cathodeafter degradation (␮m) NR211 11–12 11–12 10–11 11 NR212 9–10 9–10 8–9 10–11 N115 11–12 11–12 9–10 11–12 N117 13 13 11 13

perfectlywiththeresultsfromLSV inourpreviouspublication [7].Apparently,hydrogencrossoverthroughmembranes,aswell asmembranethicknesses,canbecomparedordetermined quali-tativelyusingIRimaging.

Figs.8–11compareIRimagesforMEAsampleswithdifferent membranesbeforeandafterdegradation.Forthickermembranes (N117andN115)thereisaveryslightincreaseintheaverage tem-perature,asshownbythecolorchangeintheimages.However,this temperature/crossoverchangeisnotatallsignificantbeforeorafter degradation,whichmatchestheslightperformancedecayobserved fromthepolarizationcurve.Forthinnermembranes(NR212and NR211),hydrogencrossesoversignificantlythroughaweakarea orpinholesafter1000hofoperationunderidleconditions.This resultagreesverywellwiththeLSVcurvesdescribedinour pre-viouspaper, and explains the OCVdegradation, as well asthe performancedegradationmeasuredbythepolarizationcurves.We furtherspeculate thatfor thinnermembranes,pinholes arethe majorreasonformembranedegradation,ratherthanmembrane thinning,indicatedbyaslightincreaseinthebackground temper-ature.

Theformationofpinholescanbeexplainedasacomprehensive effectoftheaforementionedmembranedegradationmechanisms. Radicalsformedfromelectrochemicalreactionsattackthe mem-brane,causinglossesofhydrogen,fluorine,sulfur,andendgroups, whichisadirectreasonformembranethinning.Athinner mem-braneleadstomorehydrogencrossover,whichfurtherworsensthe situation.Also,thecrossedhydrogenmayreactwithoxygen, caus-inglocalheatstress.Together,thecontinuousradicalattacks,heat stress,andmechanicalstressarisingfromthewettabilitychange leadtopinholeformation.

(8)

Fig.7.ComparisonofIRimagesforfreshMEAsampleswithdifferentmembranesusing5%H2inN2:(a)freshN117MEA(averagetemp:23.091◦C),(b)freshN115MEA

(averagetemp:23.429◦

C),(c)freshNR212MEA(averagetemp:23.724◦

C),and(d)freshNR211MEA(averagetemp:24.063◦

C).

Tofurtherconfirmthatpinholesdoexistafter1000hof mem-branedegradationtestingforthinnermembranes,wealsodesigned adifferentmeasurementusingthesameIRimagingset-upto visu-allyobservepinholes.InsteadofemployinganIRcameraforthe cathode,weputacertainamountofdeionizedwaterontopofthe opencathode,withhydrogenpassingthroughtheanodechannel ofthecellatapressureof5psiandaflowrateof30sccmmin−1. Nowaterbubbleswereobservableforthefreshsamples,orforthe degradedN117andN115samplesafter1000hofdegradation. Bub-bleswereobservedforthedegradedNR212andNR211MEAs,as showninFig.12.Unfortunately,thebubblelocationsdonotexactly matchthelocationsofthehotspotsobservedfromIRimages.This canbeexplainedbytheporousnatureofGDLs,asthehydrogen

crossingoverthroughpinholesprefersaneasierpaththroughthe GDL(notnecessarilyrightinlinewiththepinholes).

Furtherproofofpinholeformationcanbeobtainedthroughagas permeabilitytest.Fig.13showsthepermeabilityofheliumthrough highlypermeableandlesspermeableMEAs,definedthus:

non-permeable:nogasflowacrosstheMEAuntil50psilesspermeable:verylowgasflow,indicatedbybubbleformation

atlongerintervals

highlypermeable:considerablegasflowacrosstheMEA, mea-suredbyrotameter

(9)

Fig.9.ComparisonofIRimagesforN115MEAsamplesbeforeandafterdegradationunderidleconditionsusing5%H2inN2:(a)beforedegradationand(b)afterdegradation.

Fig.10. ComparisonofIRimagesforNR212MEAsamplesbeforeandafterdegradationunderidleconditionsusing5%H2inN2:(a)beforedegradationand(b)after

degradation.

Basedontheexperimentalresults,allthesamplesare catego-rizedintothesethreepermeabilitylevels,aslistedinTable3.The highpermeabilityofheliumthroughdegradedNR211andNR212 furtherconfirmstheformationofpinholesduringthe1000hof operationunderidleconditions.

3.2.3. LossofPTFE

Themostdirectmeasurementofcontactangleisachievedusing thesessiledropmethod,whereadropofliquidisplacedonasolid surfaceandtheresultingangleformedbetweentheplaneofthe solidandthetangenttothedropatthesolid–liquidcontactpoint ismeasured.Thisapproachbecomescomplicatedwhenthesolid

Table3

OverallcomparisonoffreshanddegradedMEApermeability.

Observation MEAsamples(fresh)

N117 Non-permeable N115 Lesspermeable NR212 Lesspermeable NR211 Lesspermeable MEAsamples(degraded)

N117 Lesspermeable N115 Lesspermeable NR212 Highlypermeable NR211 Highlypermeable

Fig.11. ComparisonofIRimagesforNR211MEAsamplesbeforeandafterdegradationunderidleconditionsusing5%H2inN2:(a)beforedegradationand(b)after

(10)

Fig.12.Picturesofbubblesafter1000hofdegradationunderidleconditionsusing 5%H2inN2:(a)degradedNR211and(b)degradedNR212.

ofinterestisaporousmedium.Duetotheroughnessand poros-ityofthesurface,adropletonlycontactsafractionofthesolid, causingtheobservedcontactangletodeviatefromtheactualvalue. Despite suchdifficultiesin measuring theactualvalue, contact anglecanstillbeausefulqualitativetoolformakingdirect com-parisonsbetweenGDLs,suchascomparisonsofchangesbetween freshanddegradedsamples.

Table4showsthatstatistically,thecontactangleofthefresh anodeisabout2◦higherthanthatofthecathode,asweusedSGL 25DC(20%PTFE)fortheanodeandSGL 25BC(5%PTFE)forthe cathode.Afterdegradation,thecontactangleforboththeanode andthecathodedecreasesabout2◦,indicatingPTFElossintheGDL forbothsidesduringthedegradationtestasthehydrophobicityof theGDLisbasicallydependantonitsPTFEcontent,andthemore hydrophobictheGDLis,themorePTFEtheGDLcontains.

ToobtaincontactangleobservationsfortheCLs,theGDLlayers werepeeledoffcarefullywiththehelpofascalpel,thenthecontact

Table4

ComparisonofcontactanglechangeofGDLs.

Freshanode(◦ ) Freshcathode (◦ ) Degraded anode(◦ ) Degraded cathode(◦ ) NR211 143.3 138.4 140.1 138.1 NR212 141.4 141.2 140.6 139.0 N115 143.1 140.9 139.6 136.0 N117 143.4 140.2 141.7 138.8 Average 142.8 140.2 140.5 138.0 0 0.2 0.4 0.6 0.8 1 1.2 60 50 40 30 20 10 0 Pressure (psi) Flux (cm 3 · cm -2 · s -1 ) Degraded NR211 Degraded NR212

(a)

0 10 20 30 40 50 60 70 60 50 40 30 20 10 0 Pressure (psi) Time (s) Degraded N117 Fresh N115 Degraded N115 Fresh NR211 Fresh NR212

(b)

Fig.13. Permeationofhelium(a)throughhighlypermeableMEAsand(b)through lesspermeableMEAs.

anglesfortheanodeandcathodeCLsweremeasured. However, fromthedatathusobtained(Table5)wedonotseeanyregular patternofincreaseordecreaseafterdegradationfortheanodeand cathode.ThisisprobablyduetounsuccessfulpeelingoftheGDL fromtheMEA.

.

3.3. Modeling

The mechanism of membrane thinning can be understood throughsimulating Nafionweightlossduring degradation test-ing.Asthemajorreactantsinvolvedinthemainchainunzipping processarethecarboxylendgroups,theirrateofweightlosswas calculatedinawiderangeofconcentrations,asshowninFig.14.A linearcorrelationwasfoundbetweenthelossrateandthe car-boxylpopulation, indicatingthat theinitialamountofcarboxyl groupspresentinthemembranedeterminedthedegradationrate ofNafionduringthetest.Moreover,suchalinearcorrelationcan alsobe noted fromtherelease of the degradationproducts, as showninFig.15.Fluorideionshadthehighestemissionrate,about twotimeshigherthanthatofCO2.Incomparison,theamountof

Table5

ComparisonofcontactanglechangeofCLs.

Fresh anode(◦ ) Freshcathode (◦ ) Degraded anode(◦ ) Degraded cathode(◦ ) NR211 142.7 137.0 142.3 138.6 NR212 132.7 135.4 138.7 144.7 N115 141.3 134.5 134.3 133.6 N117 140.3 131.9 133.3 129.3 Average 139.2 134.7 137.1 136.5

(11)

0.4 0.3 0.2 0.1 0 0.5 0.6 0.7 0.8 -COOH fraction 0 0.1 0.2 0.3 0.4 0.5

Rate of weight loss [a.u.]

Fig.14.WeightlossofdegradedNafionwithvariousfractionsofcarboxylend groups. 0.4 0.3 0.2 0.1 0 0.5 0.6 0.7 0.8

-COOH fraction

0 1 2 3 4

Product emission rate

F -CO2

SO4

2-Fig.15.ProductemissionratesofdegradedNafionwithvariousfractionsofcarboxyl endgroups.

reducedsulfatefromNafionsidechainswasnegligible.Onecan expectthatthelossofsulfonicgroups,eveninasmallamount,may considerablydecreaseaNafionmembrane’sprotonconductivity. Theevolutionof–SO3Hand–COOHendgroupsisthuscomputed

120 80 40 0 160 200 Time [a.u.] 0 4 8 12 16 20 Number of -SO 3

H per Nafion chain

0 0.2 0.4 0.6 0.8 1

Number of -COOH per Nafion Chain

Fig.16.Theevolutionof–COOH/–SO3HgroupsindegradedNafionwith10%

car-boxylendgroups.

Fig.17.SnapshotofdegradedNafionwith50%carboxylendgroups.Thefragments leftaretrifluoroaceticacid.

inFig.16.Itisinterestingtonotethatthenumberofcarboxylgroups remainsconstant,whileagradualdeclineinsulfonicgroupsoccurs alongwiththetestingtime.Thelossofsulfonicgroupsisattributed tothelossofNafionsidechainsinthemainchainunzipping pro-cess.Thereasonfortheineffectivedissolutionofcarboxylgroups canbeanalyzedfromthesimulationsnapshotshowninFig.17.As carboxylgroupsareusuallyterminatedattheendsofNafionchains, theshrinkageofNafionpolymertakesplacefromtheendstothe center.Duringthisprocedure,noadditionalcarboxylgroupsare createdandtheunzippingrateisbasicallyproportionaltothe con-centrationofcarboxylendgroups.Basedonthepresentmodeling resultsofNafiondegradation,itisknownthatthecarboxyldefects, initiallypresentinthemembrane,aresusceptibletoradicalattack. 4. Conclusions

Using a four-cell stack with Nafion membranes of different thicknesses,an acceleratedstresstest under idleconditions for 1000hwascarriedout.Theresultsindicatethatunderthese con-ditions,membranedegradationisthemajorsourceoftheoverall cell performance degradation. The predominant reason for the drasticperformancedecay thatoccurredafter800hfor thinner membranesisthedramaticincreaseinhydrogencrossover,caused by significantmembrane thickness loss and pinholeformation. Although the performance of thin membranes degrades much fasterthanthatofthickmembranes,thethicknesslossforthe for-merislower,asthinmembraneshavelessmaterialtodegrade.The mechanismofmembranethinningcanbeunderstoodthroughthe simulationofNafionweightlossviamainchainunzipping.Apart frommembranedegradation,whichispredominantinthis accel-erateddegradationtestunderidleconditions,otherdegradation mechanismsalsocontributetothetotalperformancelossofthe stack–forexample,catalystdegradation(thicknesslossintheCLs) andhydrophobicitylossintheGDL(contactangledecreasesfor bothGDLs).

Acknowledgments

Theauthorsacknowledgethe NRC-HelmholtzJointResearch Program,NRC-MOSTJointResearchProgram,andNRC-IFCI’s Inter-nalProgramforfinancialsupport.

(12)

References

[1]T.Payne,FuelCellsDurability&Performance,USBrookline:TheKnowledge PressInc.,2009.

[2]H.Wang,H.Li,X.Z.Yuan,PEMFuelCellFailureModeAnalysis,CRCPress,2011. [3]DOECellComponentAcceleratedStressTestProtocolsforPEMFuelCells,

http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/components.html

(March2007).

[4]S.Sugawara,T.Maruyama,Y.Nagahara,S.S.Kocha,K.Shinohra,K.Tsujita,S. Mitsushima,K.Ota,J.PowerSources187(2009)324–331.

[5] M.F.Mathias,R.Makharia,H.A.Gasteiger,J.J.Conley,T.J.Fuller,G.J.Gittleman, S.S.Kocha,D.P.Miller,C.K.Mittelsteadt,T.Xie,S.G.Yan,P.T.Yu,Electrochem. Soc.Interface14(2005)24–35.

[6]J.Wu,X.Z.Yuan,J.Martin,H.Wang,D.Yang,J.Qiao,J.Ma,J.PowerSources195 (2010)1171–1176.

[7]X.Z.Yuan,S.Zhang,H.Wang,J.Wu,C.Sun,K.A.Friedrich,M.Schulze,A.Haug, J.PowerSources195(2010)7594–7599.

[8]J.Wu,X.Z.Yuan,H.Wang,M.Blanco,J.J.Martin,J.Zhang,Int.J.HydrogenEnergy 33(2008)1735–1746.

[9] J.Wu,X.Z.Yuan,H.Wang,M.Blanco,J.J.Martin,J.Zhang,Int.J.HydrogenEnergy 33(2008)1747–1757.

[10] K.A.Friedrich,M.Schulze,A.Bauder,R.Hiesgen,I.Wehl,X.Z.Yuan,H.Wang, ECSTrans.25(2009)395–403.

[11]R.Hiesgen,I.Wehl,K.A.Friedrich,M.Schulze,A.Haug,A.Bauder,A.Carreras, X.Z.Yuan,H.Wang,ECSTrans.28(2010)79–84.

[12] S.Zhang,X.Z.Yuan,J.NgChengHin,J.Wu,H.Wang,K.A.Friedrich,M.Schulze, J.PowerSources195(2010)1142–1148.

[13]X.Z.Yuan,S.Zhang,J.Wu,H.Wang,in:H.Wang,H.Li,X.Z.Yuan(Eds.),PEM FuelCellDiagnosticTools,CRCPress,2011.

[14]V.Uvarov,I.Popov,Mater.Charact.58(2007)883–891.

[15]P.J.Ferreira,G.J.laO’,Y.Shao-Horn,D.Morgan,R.Makharia,S.Kocha,H.A. Gasteiger,J.Electrochem.Soc.152(2005)A2256–A2271.

[16]R.Lin,E.Gülzow,M.Schulze,K.A.Friedrich,J.Electrochem.Soc.158(2011) B11–B17.

[17] A.C.Fernandes,E.A.Ticianelli,J.PowerSources193(2009)547–554. [18]A.P.Young,J.Stumper,E.Gyenge,J.Electrochem.Soc.156(2009)B913–B922. [19] D.L.Wood,J.R.Davey,P.Atanassov,R.L.Borup,ECSTrans.3(2006)753–763. [20]R.Lin,B.Li,Y.P.Hou,J.X.Ma,Int.J.HydrogenEnergy34(2009)2369–2376. [21] A.Haug,R.Hiesgen,M.Schulze,G.Schiller,in:H.Wang,H.Li,X.Z.Yuan(Eds.),

PEMFuelCellDiagnosticTools,CRCPress,2011.

[22] M.Schulze,A.Haug,in:H.Wang,H.Li,X.Z.Yuan(Eds.),PEMFuelCellDiagnostic Tools,CRCPress,2011.

[23] S.Kundu,M.W.Fowler,L.C.Simon,R.Abouatallah,N.Beydokhti,J.Power Sources183(2008)619–628.

[24] S.Kundu,K.Karan,M.Fowler,L.C.Simon,B.Peppley,E.Halliop,J.PowerSources 179(2008)693–699.

[25] A.Chatterjee,D.Vlachos,J.Comput.AidedMater.Des.14(2007)253–308. [26] D.E.Curtin,R.D.Lousenberg,T.J.Henry,P.C.Tangeman,M.E.Tisack,J.Power

Sources131(2004)41–48.

[27]F.D.Coms,ECSTrans.16(2008)235–255.

[28]M.Takasaki,K.Kimura,K.Kawaguchi,A.Abe,G.Katagiri,Macromolecules38 (2005)6031–6037.

[29]A.Collier,H.Wang,X.Z.Yuan,J.Zhang,D.P.Wilkinson,Int.J.HydrogenEnergy 31(2006)1838–1854.

Références

Documents relatifs

Considerando-se os baixos níveis de contaminação utilizados, nossos dados não são surpreendentes e corroboram os estudos que utiliza- ram rações contaminadas com 10,0mg FB 1

The objectives of this study were (i) to confirm Mendelian monolocus inheritance of ABS resistance in triploid progenies, by analysing the segregation of resistance

Alikhanyan National Science Laboratory (Yerevan Physics In- stitute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy

33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia. 34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN),

The membrane resistance and the hydrogen crossover should be both lowered by optimizing the thickness of the membrane, the sulfonation degree of sepiolite and by

They renormalize the elastic coefficients and lead to a large distance anomalous elasticity, as in the case of a single tethered

The mimetic chains theory provides a better understanding of the reasons why some companies in situation of uncertainty rely more on the positions taken by others than on their

La pose d’un ou plusieurs clips endoscopiques pour traiter une AI colique a montré son efficacité dans certaines situations : lorsqu’il existe un saignement