• Aucun résultat trouvé

COMBINED ANELASTICITY AND NONLINEARITY : THE LONGITUDINAL RESONANCES OF A BAR

N/A
N/A
Protected

Academic year: 2021

Partager "COMBINED ANELASTICITY AND NONLINEARITY : THE LONGITUDINAL RESONANCES OF A BAR"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00227150

https://hal.archives-ouvertes.fr/jpa-00227150

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMBINED ANELASTICITY AND NONLINEARITY : THE LONGITUDINAL

RESONANCES OF A BAR

H. Jeong, D. Beshers

To cite this version:

H. Jeong, D. Beshers. COMBINED ANELASTICITY AND NONLINEARITY : THE LONGITUDI- NAL RESONANCES OF A BAR. Journal de Physique Colloques, 1987, 48 (C8), pp.C8-317-C8-322.

�10.1051/jphyscol:1987846�. �jpa-00227150�

(2)

COMBINED ANELASTICITY AND NONLINEARITY : THE LONGITUDINAL RESONANCE OF A BAR

H.S. JEONG and D.N. BESHERS

Henry Krumb School of Mines, Columbia University, New York, NY 10027, U.S.A.

Résumé - Nous avons ajoute un terme quadratique peu important I

l'équation du modèle du solide anélastique standard et nous avons étudie son effet dans l'approximation du premier ordre. La résonance fondamen- tale ne change pas, en première approximation, mais uneharmonique de deuxième ordre apparaît. En fait, la. deuxième harmonique résulte de deux ondes spatiales à même fréquence. Comme l'amortissement linéaire tend vers zéro, la forme mathématique de la solution change, les deux ondes dégénèrent en une seule qui n'est pas exactement sinusoïdale.

Abstract - The addition of a small quadratic term to the standard anelas- tic solid model has been investigated to first order approximation. The fundamental resonance does not change, to first order, but a second har- monic wave appears. The second harmonic actually consists of two spatial waves with one frequency. As the linear damping goes to zero, the mathe- matical form of the solution changes, the two waves degenerating into one that is not entirely sinusoidal.

I - INTRODUCTION

The longitudinal resonance of a bar has often been exploited for the measurement of internal friction. The analysis of the experiments has usually been con- ducted in an elementary fashion, and often that suffices. However, when the internal friction is nonlinear, that is to say dependent on the amplitude of oscillation, then there is a need for more careful consideration of the problem, a need universally neglected for lack of a suitable theory. A first step towards such a theory, an approximate treatment for the case of a small nonli- near effect co-existing with a linear damping, is presented in this paper.

II - THE MODEL

Because nonlinear internal friction usually occurs in materials that also exhi- bit linear damping, it is important to treat the linear and nonlinear aspects together. The basic model for linear damping is the standard anelastic solid

(SAS) /1/. The longitudinal resonance of a bar made from a SAS has been treated already /2/. We consider here a bar of homogeneous material obeying a consti^

tutive equation based on the standard anelastic solid, but augmented by one nonlinear term:

* ~ 2

a + ba - ae + ce + de , (1 ) where a is the longitudinal stress, e the corresponding strain, and a, b, c, d are material constants; in the usual notation, a = 1/(JU+6J), c = t a > and b - J c. The coefficient d is assumed subsequently to be small. For a long, thin bar the equations of stress equilibrium reduce to

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987846

(3)

JOURNAL

DE

PHYSIQUE

where p d e n o t e s t h e d e n s i t y o f t h e m a t e r i a l and u = u ( x , t ) t h e d i s p l a c e m e n t of a c r o s s - s e c t i o n o f t h e b a r . S t r a i n and d i s p l a c e m e n t a r e r e l a t e d by

We e l i m i n a t e s t r e s s i n f a v o r o f u by d i f f e r e n t i a t i n g ( 1 ) w i t h r e s p e c t t o x , t h e n u s i n g ( 2 ) , a n d r e p l a c i n g E w i t h u by ( 3 ) , o b t a i n i n g t h e e q u a t i o n o f m o t i o n t o be s o l v e d :

putt + b p u t t t = a u + c u + 2duxuxx.

XX x x t ( 4 )

The b a r is c o n s i d e r e d t o be d r i v e n a t o n e e n d , x = 0 , by a p e r i o d i c s t r e s s o f a m p l i t u d e 20 a n d c i r c u l a r f r e q u e n c y w a n d t o be f r e e a t t h e o t h e r e n d , x = L.

The b o u n d a r y O c o n d i t i o n s a r e t h e n , c h o o s i n g t h e p h a s e a p p r o p r i a t e l y ,

o ( ~ , t ) = ooeiWt + 0 e - i w t a t x = O

0 ( 5 )

We s e e k a s t e a d y - s t a t e s o l u t i o n o f t h i s p r o b l e m , e x p e c t i n g t o f i n d r e s o n a n t modes, a n d t o e x a m i n e t h e b e h a v i o r i n t h e v i c i n i t y o f r e s o n a n c e . By s t e a d y - s t a t e we mean t h a t e v e r y t e r m i n t h e s o l u t i o n m u s t r e p e a t i n t i m e w i t h t h e f u n - d a m e n t a l f r e q u e n c y ; t h a t is we assume t h a t h a r m o n i c s o f t h e f u n d a m e n t a l w i l l o c c u r , b u t n o t s u b h a r m o n i c s . T h i s a s s u m p t i o n i s c o n s i s t e n t w i t h e x p e r i m e n t a l r e s u l t s i n t h i s l a b o r a t o r y .

The n o n l i n e a r term n e c e s s i t a t e s c a r e i n t h e u s e o f complex e x p o n e n t i a l func- t i o n s , w h i c h a r e o t h e r w i s e t h e s i m p l e s t r e p r e s e n t a t i o n w i t h w h i c h t o work. T h e r e a l p a r t o f a n y complex number Z i s g i v e n by

b u t R , a s a n o p e r a t o r , d o e s n o t commute w i t h m u l t i p l i c a t i o n . We s h a l l t h e r e f o r e i n e f f e c t r e q u i r e t h a t R o p e r a t e f i r s t by w r i t i n g t h e t r i a l s o l u t i o n i n t h e f o r m

m

u ( x , t ) = z [ u n ( x ) e i n w t +

u

* ( x ) e-inwt]. ( 8 ) n=O

I n t h i s way, a l l o u r e x p r e s s i o n s a r e r e a l , a l t h o u g h s o m e t i m e s we w i l l n o t b o t h e r t o w r i t e o u t t h e c o n j u g a t e p a r t .

I11

-

THE SOLUTION

S u b s t i t u t i o n o f ( 8 ) i n ( 4 ) g i v e s a v e r y l e n g t h y e q u a t i o n . B e c a u s e e x p ( i n w t ) a n d e x p ( - i n w t ) a r e l i n e a r l y i n d e p e n d e n t f u n c t i o n s , we r e q u i r e t h a t t h e c o e f f i c i e n t o f e a c h b e z e r o , which h a s t h e e f f e c t o f c o n v e r t i n g o u r p a r t i a l d i f f e r e n t i a l e q u a t i o n i n t o a n i n f i n i t e s e t o f c o u p l e d o r d i n a r y d i f f e r e n t i a l e q u a t i o n s . Each o f t h e s e o r d l n a r y e q u a t i o n s may be viewed a s c o n s i s t i n g o f two p a r t s . One p a r t c o n t a i n s f o u r t e r m s w h i c h c o r r e s p o n d t o t h e f o u r t e r m s o f t h e s t a n d a r d l i n e a r s o l i d a t t h e f r e q u e n c y nw a n d t h e o t h e r p a r t i s an i n f i n i t e s e r i e s which h a s t h e c o e f f i c i e n t d o f t h e n o n l i n e a r t e r m i n ( 1 ) . T h e s e o r d i n a r y e q u a t i o n s a r e t h e r e - f o r e inhomogeneous. Now t h e s o l u t i o n t o a n inhomogeneous e q u a t i o n i s t h e gem- e r a 1 s o l u t i o n o f t h e c o r r e s p o n d i n g homogeneous e q u a t i o n p l u s a n y p a r t i c u l a r s o l u t i o n o f t h e inhomogeneous e q u a t i o n . We c a n o b t a i n t h e s o l u t i o n s t o t h e homogeneous e q u a t i o n s i m m e d i a t e l y , and t h e n a p p r o x i m a t e t h e i n f i n i t e s e r i e s i n t e r m s o f t h e s e known s o l u t i o n s , a f t e r which p a r t i c u l a r s o l u t i o n s c a n b e f o u n d . T h i s s t r a t e g y i s f a c i l i t a t e d by t h e f a c t t h a t t h e terms o f t h e i n f i n i t e series, w h i l e n o n l i n e a r , become p r o d u c t s o f t r i g o n o m e t r i c f u n c t i o n s o f x a n d t h e r e f o r e

(4)

The homogeneous e q u a t i o n s

The reduced e q u a t i o n f o r any n has t h e form

where U' i n d i c a t e s dU/dx, and a n o t h e r e q u a t i o n which i s t h e complex c o n j u g a t e of ( 9 ) . Equation ( 9 ) h a s t h e well-known form

"n O" + K 2 ~ n 0 = 0 ( 1 0 )

where t h e complex p r o p a g a t i o n c o n s t a n t K = kn + i a n i s d e t e r m i n e d by

The g e n e r a l s o l u t i o n of ( 1 0 ) is

unO

= C sinK x + DncosK x ( 1 2 )

where t h e c o n s t a n t s C and D a r e t o be determined e v e n t u a l l y by t h e boundary c o n d i t i o n s . For t h e Boundary c o n d i t i o n s given by ( 5 ) and ( 6 ) . t h e s o l u t i o n is

and

u ( x , t ) = u l o ( x ) e i w t + C.C. ( 1 4 )

where C . C . s t a n d s f o r complex c o n j u g a t e . T h i s is t h e s o l u t i o n g i v e n p r e v i o u s l y / 2 / f o r t h e r e s o n a n c e o f a bar made of a s t a n d a r d l i n e a r s o l i d .

The Inhomogeneous e q u a t i o n s

R e t u r n i n g t o t h e inhomogeneous e q u a t i o n , we s t a r t t h e p r o c e s s of approximating t o t h e n o n l i n e a r terms by assuming t h a t

and t h a t a l l o t h e r U n a r e s m a l l of o r d e r d , a t l e a s t , and proceed t o s o r t t h e t e r m s by t h e powers of d , i n t h e end n e g l e c t i n g a l l t e r m s c o n t a i n i n g d t o a power h i g h e r t h a n 1 . I n t h e p r o c e s s of a p p r o x i m a t i o n we a r e a l s o helped by assuming t h a t 6J/J i s s m a l l s o t h a t t h e s t r a i n a m p l i t u d e a t r e s o n a n c e i s o r d e r s of magnitude l e s s t h a n u n i t y . The o n l y e q u a t i o n s t h a t s u r v i v e t h i s p r o c e s s a r e t h o s e f o r n = 0 , 1 , 2 . For n = 1 , t h e n o n l i n e a r term v a n i s h e s i n t h i s approxima.- t i o n . T h e r e f o r e t h e p r e s e n t t r e a t m e n t w i l l n o t , i n f a c t , e x t e n d t o t h e c a s e o f n o n l i n e a r damping. R a t h e r , t h e approximation i s one i n which t h e fundamental is u n a f f e c t e d t o f i r s t o r d e r , b u t s m a l l harmonic g e n e r a t i o n o c c u r s . Our approxirnw t i o n s have t h e n reduced t h e i n f i n i t e s e t of e q u a t i o n s e n v i s i o n e d i n ( 8 ) t o t h r e e o n l y . We f o c u s o u r a t t e n t i o n on t h e e q u a t i o n s f o r n = 2, p u t t i n g a s i d e t h e e q u a t i o n f o r n = 0 which w i l l not a f f e c t t h e r e s u l t s . Thereby, we d i s c u s s h e r e a system w i t h o n l y two s t a t e s , a c l o s e d system n o t a n open o n e . We have t h e n t o s o l v e t h e e q u a t i o n s f o r n = 2

and t h e complex c o n j u g a t e of ( 1 6 ) . With U, 0 g i v e n by (131, and d e n o t i n g t h e

(5)

JOURNAL DE PHYSIQUE

c o e f f i c i e n t of cosK1!L-x) i n (13) by A, t h e p a r t i c u l a r s o l u t i o n of ( 1 6 ) i s by t h e method of v a r i a t i o n of p a r a m e t e r s

where 2 2

D = [(2K1)

-

K 2

1

( a + ic2w).

The boundary c o n d i t i o n s , ( 5 ) and ( 6 ) , imply t h a t t h e s t r e s s c o r r e s p o n d i n g t o U2 s h a l l be z e r o a t both ends of t h e b a r , f o r c i n g t h e o t h e r t e r m s i n U t o be p r o p o r t i o n a l t o t h e c o e f f i c i e n t of t h e p a r t i c u l a r s o l u t i o n . L e t P s e n o t e t h e c o e f f i c i e n t of sin2K1 (L-x) i n ( 1 7 ) . Then t h e g e n e r a l s o l u t i o n o f ( 1 6 ) i s

U2 = C sinK (L-x) + C2cosK2(L-x) + Psin2K1(L-x)

1 2 (19)

where

Cl = (,-K2/2K1)P, and

C2 = P ( K ~ / ~ K , ) [ C O ~ ~ K ~ L

-

cosK2Ll/sinK2L.

Equation ( 1 9 ) shows t h a t o u r s o l u t i o n i s more c o m p l i c a t e d t h a n we might have e x p e c t e d . While we have o n l y one p e r i o d i c i t y i n t i m e , t h e s p a t i a l v a r i a t i o n i n v o l v e s two c l o s e l y spaced p e r i o d i c i t i e s , K and 2K1. The v a r i a t i o n of t h e e l a s t i c f i e l d of t h e second harmonic a l o n g t g e b a r i s t h u s an i n t e r f e r e n c e phenomenon. Use o f e q u a t i o n s ( 2 ) and ( 3 ) shows t h a t t h e s t r e s s and s t r a i n of t h i s f i e l d a r e n o t q u i t e p r o p o r t i o n a l t o e a c h o t h e r , because t h e p r o p a g a t i o n c o n s t a n t s of t h e two waves d i f f e r s s l i g h t l y . The d i f f e r e n c e between K and 2K1 a r i s e s from t h e f r e q u e n c y dependence of t h e a n e l a s t i c s t r a i n f o r t h e S ~ S . F u r t h e r ( 1 7 ) and (19) s t a t e t h a t t h e a m p l i t u d e of U2 i s p r o p o r t i o n a l t o t h e s q u a r e of t h e a m p l i t u d e of U 1 , and is t h e r e f o r e more s h a r p l y peaked a t resonance t h a n U 1 .

The d e g e n e r a t e Case

The d e g e n e r a t e c a s e when t h e denominator of P v a n i s h e s (K2

5

2K 1 ) r e q u i r e s s p e c i a l c o n s i d e r a t i o n . We r e s t r i c t o u r a t t e n t i o n t o t h e neighborhood of t h e fundamental r e s o n a n c e , k l L = n, s o w is not s i g n i f i c a n t l y v a r i a b l e . Using (111, we still f i n d t h r e e c a s e s f o r which K = 2K1: ( i ) when b = c = o , o r T = o;

( i i ) when b = c = m , o r T = -; and ( f i i ) c = b a , o r 6 J = o , f o r any TO. Case ( i i i ) c o r r e s p o n d s t o t h e Pemoval of t h e a n e l a s t i c d e f e c t s from t h e m a t g r i a l , a s by p u r i f i c a t i o n o r a n n e a l i n g . The damping is z e r o f o r a l l t h r e e c a s e s , b u t t h e modulus d e f e c t v a n i s h e s o n l y f o r t h e l a t t e r two.

When t h e damping goes t o z e r o , t h e s o l u t i o n does n o t d i v e r g e a s s u g g e s t e d by t h e appearance of t h e denominator of (171, b u t i n t h e l i m i t a s K .-2K g o e s t o z e r o t h e f u n c t i o n a l form changes. A new s o l u t i o n must b e s o u g h t $or t h i s c a s e ; i t is

2 3 2 3

where B1 = dA k / a = dA ( k / 2 ) / a , and A i s t h e a m p l i t u d e of t h e

fundamental. O w e 1 o b t a i n e d o ( 2 0 f by u s i n g the0method of v a r i a t i o n of p a r a m e t e r s , but t h e same r e s u l t is found by p u t t i n g 2K1 = K2 + n , where n i s s m a l l ,

o b t a i n i n g t h e f i r s t o r d e r approximation i n 0 , and t a k i n g t h e l i m i t a s

n

+ 0. TO keep A f i n i t e i n t h i s l i m i t , t h e d r i v i n g s t r e s s must go t o z e r o . The q u a l i t a - t i v e cRange i n t h e s o l u t i o n a s t h e damping g o e s t o z e r o , r e p r e s e n t e d by t h e f a c t o r of x i n t h e second term of ( 2 0 ) , i s noteworthy. The t r u e n a t u r e of t h e s o l u t i o n i s obscured when t h e undamped wave f u n c t i o n s a r e used i n t h e n o n l i n e a r c a l c u l a t i o n .

(6)

body w i t h no damping and no n o n l i n e a r i t y . T h e r e a r e no e n e r g y l o s s e s i n s u c h a model and s o a t s t e a d y ~ s t a t e t h e r e can be no e n e r g y i n p u t e i t h e r . Such a s t a t e might be c r e a t e d by a d r i v i n g f o r c e o p e r a t i n g f o r a c e r t a i n l e n g t h o f t i m e t o b u i l d up some p r e s c r i b e d a m p l i t u d e , a f t e r which t h e d r i v i n g f o r c e would be removed, and t h e s t a t e j u s t c r e a t e d would l a s t f o r e v e r a f t e r . Although s e e w i n g l y c o n v e n i e n t f o r c a l c u l a t i o n , and t h e u s u a l s t a r t i n g p o i n t , t h i s s i t u a t i o n i s q u i t e u n p h y s i c a l .

The r e a l i t y i s t h a t l o s s e s a r e a l w a y s p r e s e n t , b u t t h e mechanism of t h e l o s s may t a k e more t h a n o n e form. The SAS is a l i n e a r model w i t h t h e e n e r g y l o s s occur- r i n g everywhere i n t h e v i b r a t i n g body. The m e c h a n i c a l e n e r g y is c o n v e r t e d t o h e a t , e a c h volume e l e m e n t r e c e i v i n g i t s due p r o p o r t i o n , but t h e d e t a i l e d mechar nism of d i s s i p a t i o n is n o t s p e c i f i e d . S t e a d y c s t a t e o c c u r s when t h e i n p u t of e n e r g y from t h e d r i v i n g s t r e s s e q u a l s t h e sum o f t h e d i s t r i b u t e d l o s s e s . I f , i n s t e a d o f a n e l a s t i c i t y , n o n l i n e a r i t y i s i n t r o d u c e d , i n t h e g e n e r a l c a s e t h e e f f e c t is t o p r o v i d e f o r t h e c o n t i n u a l c o n v e r s i o n of e n e r g y from t h e f u n d a m e n t a l mode t o modes of h i g h e r f r e q u e n c y . We e x p e c t t h a t t h e s e o t h e r modes w i l l a l s o b e s u b j e c t t o t h e n o n l i n e a r i t y and s o t h e i r e n e r g y w i l l be c o n v e r t e d t o s t i l l o t h e r modes, b o t h h i g h e r and lower i n f r e q u e n c y , and s o on u n t i l a t s t e a d y - s t a t e t h e r e w i l l be a n i n f i n i t e ( i n a continuum) number of modes e x c i t e d , w i t h n e t c o n v e r s i o n from t h e f u n d a m e n t a l t o t h e o t h e r modes g i v i n g a n e n e r g y o u t f l o w t h a t w i l l be j u s t e q u a l t o t h e i n p u t by a d r i v i n g f o r c e a t t h e f u n d a m e n t a l f r e q u e n c y . Note t h a t , a l t h o u g h t h e c r e a t i o n o f harmonics draws e n e r g y from t h e f u n d a m e n t a l mode, t h a t e n e r g y is s t i l l i n o r g a n i z e d form i n t h e harmonics, n o t y e t l o s t t o h e a t . T h i s is q u i t e i n c o n t r a s t t o t h e a n e l a s t i c l o s s e s , which go s t r a i g h t t o t h e t h e r m a l b a t h .

The model p r e s e n t e d h e r e f a l l s s h o r t of d e s c r i b i n g t h e g e n e r a l c a s e . With o n l y two modes t r e a t e d , and t h e s e c o n d o n e s m a l l , t r a n s f e r s of e n e r g y t o h i g h e r modes have been n e g l e c t e d a s h i g h e r o r d e r p r o c e s s e s . The s o l u t i o n ( 2 0 ) t o t h e

undamped c a s e r e p r e s e n t s a n a p p a r e n t l o s s - l e s s s t e a d y - s t a t e . We b e l i e v e t h a t t h i s is an a r t i f a c t of t h e a p p r o x i m a t i o n , and t h a t t h e g e n e r a l c a s e w i l l eventu?

a l l y p r o v e t o be a s s u g g e s t e d i n t h e p r e v i o u s p a r a g r a p h .

When we combine t h e two mechanisms, a s i n t h i s problem, a11 modes c r e a t e d by n o n l i n e a r p r o c e s s e s have a n e l a s t i c i t y i n t h e i r own r i g h t a s shown by e q u a t i o n s ( 1 0 ) t o ( 1 2 ) . The e f f e c t is t o c r e a t e s m a l l s h i f t s i n t h e r e s o n a n t f r e q u e n c i e s of t h e modes, s h i f t s a s s o c i a t e d w i t h t h e modulus d e f e c t , s o t h a t t h e e x a c t r e s c n a n t f r e q u e n c i e s a r e n o t r e l a t e d by i n t e g e r s / 2 / , w h i l e t h e harmonic f r e q u e n c i e s a r e . Thus r e s o n a n c e o f t h e f u n d a m e n t a l mode c o r r e s p o n d s t o kl = r / L , w i t h a f r e q u e n c y w l , w h i l e r e s o n a n c e of t h e s e c o n d harmonic c o r r e s p o n d s t o k(w2) =

2 r / L , w i t h a f r e q u e n c y w 2 , s u c h t h a t w2 + 2wl. T h e r e f o r e t h e s e c o n d harmonic i s i m p e r f e c t l y e x c i t e d . The e x c i t a t i o n i n t h i s c a s e comes n o t from t h e d r i v i n g s t r e s s b u t from t h e t e r m on t h e r i g h t hand s i d e o f ( 1 6 ) t h a t r e n d e r s t h e e q u a r t i o n inhomogeneous.

The e x c i t a t i o n o f harmonics i s t h e r e f o r e d i s t r i b u t e d t h r o u g h o u t t h e b a r , a t t h e f r e q u e n c y w l , g e n e r a t i n g a wave o f f r e q u e n c y 2wl and p r o p a g a t i o n c o n s t a n t 2K

1 ' To s a t i s f y t h e boundary c o n d i t i o n s t h e l a t t e r g e n e r a t e s a n o t h e r wave a t t h e same f r e q u e n c y b u t w i t h t h e p r o p a g a t i o n c o n s t a n t K 2 = k2 + i a 2 c o r r e s p o n d i n g t o 2wl, a s g i v e n by ( 1 1 ) .

A s we have d e f i n e d i t , k i s n e i t h e r e q u a l t o 2kl n o r i s i t e q u a l when w = dl t o 2+/L, d i f f e r i n g from b o t 8 by t e r m s of t h e o r d e r of 6J/J = ( c / a b )

-

1. However,

t h e w i d t h o f t h e r e s o n a n c e i s a l s o of o r d e r 6 J / J U , s o t h e mismatch i n f r e q u e n c y is n o t s i g n i f i c a n t i n t h e p r e s e n t a p p r o x i m a t i o n . T h a t i s , i f ( 1 9 ) i s expanded f o r s m a l l

n

[ a s s u g g e s t e d below ( 2 0 ) ] , t h e r e s u l t d i f f e r s from ( 2 0 ) o n l y by

(7)

JOURNAL

DE

PHYSIQUE

s m a l l t e r m s . S i n c e we a r e assuming d s m a l l , t h e s e t e r m s belong t o t h e h i g h e r o r d e r s t h a t l i e o u t s i d e t h i s approximation.

For t h e approximation used h e r e , t h e a m p l i t u d e o f t h e second harmonic i s s m a l l and t h e energy l o s s e s from i t , by e i t h e r i n t e r n a l f r i c t i o n o r mode c o n v e r s i o n , a r e second o r d e r . T h e r e f o r e , a t s t e a d y - s t a t e , t h e a p p a r e n t i n t e r n a l f r i c t i o n i s unchanged t o f i r s t o r d e r . O f c o u r s e , b e f o r e s t e a d y - s t a t e was a c h i e v e d , energy had t o be added t o c r e a t e t h e harmonic wave; once c r e a t e d , t h e n t h e l o s s e s from t h e harmonic a r e second o r d e r .

F u r t h e r work i s n e c e s s a r y t o t r e a t t h e e x p e r i m e n t a l l y o b s e r v e d c a s e s of ampli- tude-dependent damping. The assumption of s m a l l d w i l l have t o b e dropped, a l t h o u g h t h e assumption of s m a l l s t r a i n a m p l i t u d e w i l l remain e m i n e n t l y v a l i d . I n c o n c l u s i o n , we have shown t h a t t h e i n c l u s i o n of a n e l a s t i c i t y l i f t s a degener- acy between 2K1 and K2, r e v e a l i n g t h a t t h e harmonic wave h a s an u n e x p e c t e d l y c o m p l i c a t e d s p a t l a l form. We e x p e c t t h a t t h e u s e of t h e SAS wave f u n c t i o n s w i l l be e s s e n t i a l i n t h e f u r t h e r development of t h e n o n l i n e a r t h e o r y .

R e f e r e n c e s

/ 1 / A. S. Nowick and B. S. B e r r y , A n e l a s t i c R e l a x a t i o n i n C r y s t a l l i n e S o l i d s , Academic Press,New York, 1972.

/ 2 / D. N. Beshers i n Techniques of M e t a l s R e s e a r c h , Vol. 7 , p a r t 2, Ed. R. Bunp s h a h , J o h n Wiley and Sons, New York, 1976, pp531-707.

Références

Documents relatifs

6 Obviously, the argument assumes the existence of scalar fields which induce the phe- nomenon of spontaneous symmetry breaking. We can construct models in which the role of the

So, in this paper, we first prove the theorem algebraically in section 2 and then, we expose the equivalent proof using combinatorial Quantum Field Theory (QFT) in subsection 3.3..

The antibiotic ointment (tetracycline) has to be applied relatively frequently and repeatedly for many years in order to prevent blinding disease.. It is, therefore,

Instead, Peterson’s theorem should (only) be interpreted in the following way: it formally shows that, given two other technical premises, the Archimedian condition and (as I argue

In [14] the author added a lower order term growing as |u| r−1 u, and studied existence, regularity and uniqueness of solutions to problem (1).. Although the right hand side is

According to the point of view of the French mathematicians who participated to the conference, a number of topics on which Iraqi mathematicians are doing research is not connected

This volume -- which is the fourth in the series -- is an endeavor by the Central Department of Sociology/Anthropology, Tribhuvan University to continue its tradition to bring out

Furthermore, concerning the forced nonlinear oscillators, these dynamics (i.e., the coexistence of two cycles near q-resonance points) were s h o w n experimentally [4] in a