• Aucun résultat trouvé

The influence of spatial variability on 2D reactive transport simulations

N/A
N/A
Protected

Academic year: 2021

Partager "The influence of spatial variability on 2D reactive transport simulations"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00613170

https://hal-mines-paristech.archives-ouvertes.fr/hal-00613170

Submitted on 5 Sep 2011

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The influence of spatial variability on 2D reactive transport simulations

Marco de Lucia, Vincent Lagneau, Chantal de Fouquet, Roberto Bruno

To cite this version:

Marco de Lucia, Vincent Lagneau, Chantal de Fouquet, Roberto Bruno. The influence of spatial

variability on 2D reactive transport simulations. Comptes Rendus Géoscience, Elsevier, 2011, 343 (6),

pp.406. �10.1016/j.crte.2011.04.003�. �hal-00613170�

(2)

on 2D reative transport simulations

Inuene de la variabilité spatiale

sur des simulations 2D de transport réatif

Maro De Luia

1,2

, Vinent Lagneau1, Chantal de Fouquet1, Roberto Bruno2

1

MINESParisTeh

2

DICMA,UniversitàdiBologna

orrespondingauthor's urrentaddress:HelmholtzCentrePotsdam

GFZGermanResearhCentreforGeosienes

Telegrafenberg,14473Potsdam- Germany

Tel:+49(0)3312882829,Fax:+49(0)3312881529

deluiagfz-potsdam.de

Abstrat

Inreativetransport simulations, theeets of thespatial variability of geologialmediaare gene-

rallynegleted. Theimpat ofthis variabilityis systematiallyexamined herein 2Dsimulations, with

a simple geometry and hemistry with a positive feedbak : inrease of porosity and of permeability

duringalitedissolution.Theresultshighlighttheleadingroleintheseonditionsof(i)theorrelation

length of porosity and of permeability and (ii) the kinematidispersivity, whose eets are dominant

omparedtothoseofvarianeandreationkinetis.Theimpatofstohastivariability(betweenseveral

randomdraws)isalsosigniant,asitisofthesameorderofmagnitudeastheimpatoftherangeand

dispersivity.

Keywords:spatialvariability,reativetransport,feedbak,range,dispersivity,kinetis

Résumé

La desription de la variabilité spatiale des milieux géologiques dans les simulations de transport

réatifestgénéralementnégligée.Dansetteétude,nousmettonsenévidenel'impatdeettevariabilité

de manière systématique sur les résultats de simulations 2D, sur une géométrie élémentaire, dans un

as de réation himique simple ave rétroationpositive : augmentation de laporosité et don de la

perméabilité lorsdela dissolutiondela alite.Les résultatsmettent enavant,dans es onditions,le

rle prépondérantde laportéeet de ladispersivité inématique,suivis par lavariane et lainétique.

L'eet de la variabilité stohastique (entre diérents tiragesaléatoire) n'est pas négligeable non plus,

puisqu'ilest demêmeordredegrandeurqueeluidelaportéeet deladispersivité.

Mots-lés:variabilitéspatiale,transportréatif, rétroation,portée,dispersivité, inétique

1 Introdution

Reativetransportmodellingin porous mediais apowerfultoolforstudyingwater-rokinterations;it

isused toimprovetheunderstandingof groundwaterpollution,undergroundwasteandarbondioxide

storage,metallogenesis,theenvironmentalimpat ofminingplants,et. Inthelasttwodeades, great

eortshavebeenmadetoenhanetheapabilitiesofmodellingtoolstokeeppaewiththeproblemsthat

theyansuessfullyhandle(unsaturatedmedia,multiphaseow,non-isothermalow,redoxreations,

(3)

modelling hasoftenbeendisregarded: desriptionoftheintrinsispatialvariabilityof geologialmedia

thatispresentateverysale. Themainreasonsisalakofrealgeohemialdataneededtoevaluatethe

spatialvariabilityofthegeologialformationsattherelevantsale(i.e. betweentheREV,Representative

ElementaryVolume,andthesizeofthesimulationdomain),andtheinsuientCPU-powerneededtorun

themodels, whih limitsthe spatialdisretizations to afew thousandgrid nodesto keep theruntimes

aeptable. Very reently, mainly due to inreasing CPU apaity and a growing onern about the

heterogeneityof thegeologialmedium, aninreasing numberof authors tendto set initial onditions

inludingspatialvariabilityonsomeparametersintheirsimulations([8,12,6,15℄). However,theeets

ofthisvariabilityhavenotbeensystematiallystudiedsofar.

Thepurposeofthisstudy istoexamineandquantifytheimpatofspatialvariabilityontheresults

of2Dreativetransportsimulations,withapartiularfousontheroleofhemistryfeedbakonhydro-

dynamis,whihistriggeredbythedissolutionofprimarymineralsresultingininreasedporosityand,

possibly,permeability. Asimplehemistryandaverysimplegeometrywerehoseninordertoproperly

handletheimpatof theinitialspatial variabilityaswellasthatofthekinetiand hydrodynamiow

onditionsontheresultsof thenumerialexperiments.

Inthisstudy,permeabilityandporosityeldswithspatialvariabilityareonsidered.Variablemineral

onentrationswere also investigated, but will bedisussed onlybriey. Non-onditional geostatistial

simulationsofpermeabilityandporositywereperformed,overingarangeofvaluesforthemostrelevant

parameters(seedisussionin setion3.1),inordertoestablishahierarhyamongthem.

The paper is organizedas follows: rst a brief overview of the relevant onepts and methods of

geostatistis and reative transport modelling, the spatial models and the hemial systemhosenfor

thisstudyaredisussed;thentheresultsforhomogeneousmediaareshown,tolarifytherepresentation

of thesystemandgiveareferenefor theheterogeneousmediasimulations. The observablequantities

hosento representthe resultsareexplained anddisussed; nally, wedisussthe resultsofnumerial

experimentspointingouttheeetsofeahparameter.

2 The tools

2.1 Spatial models and geostatistial simulations

Geostatistisis awell establishedbranh ofstatistis and probabilitytheory dealingwith spatial pro-

esses,i.e. withvariablesdenedoveraspatialdomainandreferredtoaspeivolume,alledsupport.

ItwastheoretiallyfoundedbyG.Matheroninthe1960's,andfounditsmainappliationinminingand

oilexploration. It is urrentlyapplied to virtuallyeverydisiplineof thegeosienes. Athorough and

insightfuloverviewof thetheory isgivenin [2℄, to whih thereaderanreferto formoredetails. The

fundamentalnotionofgeostatistisisthespatialautoorrelationfuntion;moregenerally,thesemivar-

iogram,orjust variogram,depitsthe spatialvariabilityoftheproessZ betweentwodistint points

ofthedomain,asafuntiononlyoftheirdistane:

γ(~h) =1 2E

h

Z(x)−Z(x+~h)i2

(1)

Theassumption of seond-order stationarity 1

and ergodiity is suient to establishthe existene

of avariogramfuntion, whih is non-negativeand usually monotoni, and whih anbe modelled by

means of simple analyti expressions. Throughout this study, a unique variogrammodel is used, the

isotropispherial model,whihisatrunatedpolynomialfuntion:

γ(~h) =





 σZ2

 3 2

|~h| a −1

2

|~h| a

!3

for 0≤ |~h| ≤a σZ2 for a <|~h|

(2)

The parameter a is the orrelation length, also alled range. It represents the maximum distane at

whih twopoints in thedomain show aorrelation. For distanes largerthan this orrelation length,

1

seondorderstationaritymeansthatalltherstandseondmomentsoftheRandomFuntionareonstantoverthe

domain.

(4)

thevariogramfuntion isonstantandequalstothesill. ThesillorrespondstoσZ2,thevarianeofthe

variable.

Formultivariateproblems,theross-variogrambetweenvariablesZ1andZ2representstheorrelation

betweentheirinrements:

γ12(~h) = 1 2E

h

Z1(x)−Z1(x+~h)i

×h

Z2(x)−Z2(x+~h)i

(3)

Toaddressand model theorrelationbetweenporosityandpermeability, theintrinsimodel of o-

regionalizationwashosen: all diret- and ross-variogramsare multiples of abase model [2℄. This is

ahievedbythefollowingonstrutionforthesimulationofpermeability(notedask)andporosity(ω):

Yk=ρYω+p

1−ρ2·R (4)

where ρ is the orrelation oeient at the same point between Yk and Yω, whih are the redued

Gaussian elds respetivelyassoiated withpermeability and porosity; Yω and R aretwoindependent geostatistialsimulations,randomlydrawnwiththesamevariogrammodel.

Thejointspatialdistributionsofpermeabilityandporosityareobtainedbynon-onditionalgeostatis-

tialsimulationsonne,regulargridsbytheDisreteFourierTransformalgorithm[18℄. Thistehnique

washosenforitsspeedandfortheimmediatepossibilityof obtainingafamilyofGaussianelds with

dierent orrelationlengths from asingleset of randomnumbers. This feature allowsthediret om-

parison of results obtained from geostatistial simulations with dierent orrelation lengths (or other

parameters), eetivelyltering theeet of the additionalvariability that would havebeenobtained

fromseveralrealisations.

TheGaussian random variables are then transformed into log-normal elds to math thelassial

distributionusedforpermeability:

K=emk+σkYk (5)

andsymmetriallyfortheporosityω. This transformationstepallowsusto takeintoaountamaro- sopi orrelation between porosity and permeability, as observed in natural systems. Among those

availablein theliterature,wehosetheempiriallawofBretjinski[16℄, whihreads:

ω= 0.593√7

K (6)

inwhihK isexpressedasm·s1. Takingthelogarithm:

log(ω) = log(0.593) +1

7log(K) (7)

makesiteasytoderivearelationshipbetweentheoeientsmω,mk andσω,σk tobeusedinthelog-

normaltransformation. TwolognormaldistributionsarethusobtainedwhoseGaussiantransformations

arerelatedbytheorrelationoeientρandwhihstohastiallyobeyBretjinski'slaw. Notethatifa

σlogk isimposed,thisxestheσlogω, thusreduingthedegreesoffreedomofthemodel.

Tosummarize, when the variogrammodel and theaverages of porosityand permeability are xed

oneandforall,themultivariatespatialmodelisompletelydenedbythreeparameters:theorrelation

lengthaofthevariograms,thestandarddeviation σlogK ofpermeabilityandtheorrelationoeient

ρbetweenlogK andlogω.

2.2 Reative transport ode

Reativetransport simulationsweremade withtheoupledprogramHyte, developed attheMINES

ParisTeh[22℄. InHyte, thehydrodynami part(ow,multiomponenttransport, heat transport)is

solvedbyanite-volumesapproahonunstruturedgridsbasedonVoronoïpolygons. Reativehemistry

isevaluatedbyhess,alsodevelopedatMINESParisTeh[23℄. Itdeterminesaqueousspeiation,ioni

exhange,surfaeomplexation,mineralpreipitationanddissolution,assumingeitherloalequilibrium,

oradynamimixedstatusof equilibrium/kinetis.

An upsalingmethodforpermeabilityisneessarytolink thene-gridded geostatistialsimulations

and the oarse, non-regular grids used in the oupled transport-hemistry modelling [19℄. Suh teh-

niqueswereintroduedandthoroughlydisussedin[4,5℄: theyweredenedinthemostgeneralaseof

(5)

surfaeoftriangles onbothsidesof theboundarybetweenelements) andof thenite volumes sheme

(the alulation isrestrited tothe omponentof ow orthogonalto theboundarybetweenelements).

Thereaderisreferredto[5℄forfurtherdetails.

2.3 Hydrohemial setting

The investigated hemial system depitsthe dissolution of alite(CaCO3) followingthe injetion of

hydrohloriaidHCl. Thisreationhasseveralappliations,e.g. inthework-overofoil-produingwells.

More generallyspeaking, it an be onsidered a shemati illustration of an aidattak on arbonate

roks, a proess expeted to govern, for instane, the natural development of karsti systems, or in

geologialstorageofCO2. From thepointofviewofhemistryfeedbakatingonthehydrodynamis, itrepresentsaaseofinreasingporosity.

Thereationanbewrittenforexample:

CaCO3+ 2HCl⇀↽Ca2++CO2(aq)+H2O+ 2Cl (8)

oralternatively

CaCO3+HCl⇀↽Ca2++HCO3 + 2Cl (9)

ThepHofthesolutionisontrolledbyaarbonatebuertriggeredbyalitedissolution,whihonsumes

theaid;atthesametime, thereationproduesalium,hlorideandCO2 in solution. Followingthe

reation,themineralvolumedereases,thus produinganinreasein porosity.

Under the thermodynami equilibrium assumption, the mass ation law onstrains the hemial

speiationvia theformationonstantK:





K = [H+]

[Ca2+

]·[HCO 3 ]

ifaliteispresent

K < [H+]

[Ca2+]·[HCO 3 ]

otherwise

(10)

Optionally,thedissolutionreationanbekinetiallyontrolled. Wehoseawidelyusedrst-orderlaw

[11℄toexpress thevariationofonentrationS ofamineralintime:

dS

dt =−kh(1−Ωcalcite) (11)

In this form, the kineti onstant kh is expressed in [molal · s1℄, therefore impliitly inluding the

(onstant) reative surfae of the mineral. The subsript h refers to the implementation in Hyte.

calciteistheratiobetweentheIonAtivityProdutandtheformationonstantofalite;thereforethe

non-dimensionalterm(1−Ωcalcite)aountsforthedeviation from equilibrium. This kinetilawdoes notdepend expliitlyon theporosity, but only onthe ativitiesof the speies. Other types ofkineti

lawsanbeused,partiularlyto betterdesribetheeetofvarying reativesurfaeareas,oratalyti

eets. However,theauthorsbelievethattheuseofotherkinetilawswouldnotsigniantlyalterthe

leadingonlusions ofthestudy.

Intuitively,primarymineraldissolutionmodiestheporestrutureofthemedium, thustriggeringa

feedbakmodiationofitshydrodynamiproperties,aetingowandtransport. Themodelsworking

at the REV sale (Representative Elementary Volume) are intrinsially not able to take into aount

suh feedbak; itis therefore ruial to introduefurther information in the model. The simplest way

is to relate porosity (an extensive variable, alulable by a mineral volume balane) and permeability

by anempirial relationship. To this purpose, thesame Bretjinski's law (eq. 6) used to orrelatethe

marosopi porosity and permeability spatial variability was hosen to hange the permeability asa

funtionof porosityhanges:

K K0 =

ω ω0

κ

withκ= 7 (12)

but therelationshipis nowxedand notprobabilisti. Otherforms of theporosity/permeabilityrela-

tionship ould havebeen used, suhasthe well known Kozeny-Carmanlaw. Thelattergivesaslower

inreaseofpermeabilitythanBretjinski'sfollowingtheinreaseofporosity. Nevertheless,theinueneof

suhahoiehastobefurtherinvestigated,optimallyinludingexperimentaldatarelatedtotheatual

mediumandthemodelledreation.

(6)

ler

Consideringthemarosopi(Dary)sale,thegoverningequationsareestablishedwithoutattemptingto

deriveanupsaledequationfrommassandmomentumonservationequationsdenedatthemirosopi

sale.

Theadvetion-dispersionequationforatransportedonentrationCi reads:

ω∂Ci

∂t − ∇ ·(D· ∇Ci) +∇ ·(~u Ci) =νikh(1−Ωcalcite) (13)

whereωistheporosity,Ciisthemolalityofatransportedspeies,D=De+αk~ukistheloaldispersion

tensor, sumofaneetivediusion oeientandadispersiveterm,in turn proportionalto thenorm

oftheloalDaryveloity~u; Deistheeetivediusion oeient(inm2

s

1

)-thusinorporatingthe

eetof tortuosity-and αthedispersivity(inm).

The right hand side of this equation orresponds to a reation rate governed by the only mineral

(alite) present in the domain. kh is the kineti onstant adopted in Hyte (eq. 11) and νi the

stoihiometrioeientofthe i-th aqueousspeiesin the hemialreationof alitedissolution(eq.

8and9). All variablesareat thispointdened overthebloksof thespatial disretizationused inthe

reativetransportode,whihissupposed tobesuiently largerthantheRepresentativeElementary

Volumefortheinvestigatedporousmedium.

Inreationkinetis,ompetitionarisesbetweentheamountofhydrodynamiallytransportedreative

substanesandthatonsumedbythereations. Thisrelationshipissummarizedbythenon-dimensional

Damkhölernumber(Da). Daisgenerallydenedastheratiobetweentheharateristitimesofkinetis andadvetion;however,itspreisedenition is tosomeextentarbitrary,andhastobeadapted tothe

partiularproblemandthespeiformulationofreationkinetis adopted(i.e. thekinetiorder-see

[7℄andfurther referenestherein,[1, 9,14, 17℄). Wehosethedenition foradomain-saleDamköhler

numberby[10,11℄:

Da= kh·L

v·c forP e >1 (14)

Inthisformulation,kh isthekinetionstantforalitedissolution,whosedimensionis[molal/s℄inour geohemialmodel,assumedoftherstorderandinludingimpliitlythereativesurfaeofthemineral.

This quantityis onstantoverthedomain giventhe kinetiformulation(eq. 11). Lis aharateristi length[m℄,arbitrarilyset asthedomainlength;vis thenormoftheseepageveloityaveragedoverthe

domain[m·s1andcaharateristionentration[molal℄,hosenastheonentrationofaidinthe solutioninjetedat theinowboundary.

ThePéletnumberP eisinturndened as:

P e= vL D

(15)

where D is the domain-averageddispersion tensor, redued to a salar in Hyte, with dimensions [m

2

s

1

℄;itsexpressionin termsofeetivediusivityandkinematidispersionwasintroduedabovein

(eq. 13). Moreover,under thehypothesisofdominantonvetiveow,theexpressionofP ereduesto:

P e= L

α (16)

Inpratieitisdiulttoseparatetheontributionoftheeetivediusionandthatofthekinemati

dispersion;thereforein thefollowingwewillvary thePéletnumberonlybyadjusting thedispersivity

α, and have xed the eetive diusion oeient De in the models at a quitesmall value(1·1010

m

2

s

1

).

TheombineduseofP eandDa,aspointedoutin [3,7℄,isameanstolassifythebehaviourofthe

system with respet to the dissolution pattern (formation of wormholes,ramied hannels oruniform

dissolution).

Références

Documents relatifs

Analysis of Electric field spatial variability in simulations of electromagnetic waves exposure to mobile telephony base stations.. First URSI Atlantic Radio Science Conference,

But for the largest (significant height larger than 4 m) and longest (mean spectral period longer than 7 s) waves, return peri- ods were smaller in Banyuls than in Sète.. In

suggests five hotspots with column density higher than 20 × 10 15 molec cm −2 : Jing-Jin-Tang; combined southern Hebei and northern Henan; Jinan; the Yangtze River Delta; and

Influence of the spatial variability of soil type and tree colonization on the dynamics of Molinia caerulea (L.).. Moench in

UTILISATION M is e à jo u r ❋✐❣✉r❡ ✶ ✕ ❙❝❤é♠❛ s②♥t❤ét✐q✉❡ ❞❡ ❧❛ ❣é♠♦❞é❧✐s❛t✐♦♥✱ ❝♦♠♣♦rt❛♥t ❧❡s ❞✐✛ér❡♥ts t②♣❡s ❞♦♥✲ ♥é❡s ✉t✐❧✐sé❡s✱

TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES satellite project dedicated to the study of the impulsive transfer of energy between the Earth's

Dans Liebman, anecdote allemande, nouvelle publiée par Baculard d’Arnaud en 1775, c’est bien encore (mais cette fois de manière totalement implicite), la figure de Rousseau qui,

the aim of this study was to understand how contrasting environ- ments influence the wood formation in eucalyptus clones and the effect on wood density and spatial