• Aucun résultat trouvé

PART  II     THE  NANOSTUCTURES

N/A
N/A
Protected

Academic year: 2022

Partager "PART  II     THE  NANOSTUCTURES"

Copied!
54
0
0

Texte intégral

(1)

                 

         

PART  II    

THE  NANOSTUCTURES

(2)
(3)

                                 

CHAPTER  IV                                                                                                                                                                                                                     Magnetic  nanostructures  

 

  This   chapter   is   dedicated   to   the   study   of   FePt   and   Co   nanostructures   synthesized   trough  colloidal  crystal  masks.    

The   morphology   (SEM/AFM)   of   the   dots   is   first   discussed,   followed   by   a   crystallographic   analysis   (XRD)   of   the   samples.    

Finally,  the  magnetic  properties  are  studied,   both   from   a   qualitative   (MFM)   and   quantitative  (SQUID/MOKE)  points  of  view.  

(4)

CHAPTER  IV  -­‐  Magnetic  nanostructures  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  95   1.  Introduction  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  97   1.1  Bulk  material  or  isolated  magnetic  particles…  A  difference?  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  97   1.2.  Studied  Materials  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  103   1.2.1  FePt  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  103  

Crystallographic  structures  and  phase  diagram  of  Fe-­‐Pt  alloys  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  103  

Synthesis  of  FePt  nanoparticles  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  105   1.2.2  Co  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  106   2.  Experimental  part  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  107   2.1  Colloïdal  mask  preparation   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  107   2.2  Deposition  of  nanodots  &  characterization  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  108   3.  Results  and  discussion  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  110   3.1  Morphological  study  of  the  nanodots  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  110   3.1.1  FePt  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  111   3.1.2  Co  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  117   3.1.3  Defects  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  119   3.2  Crystallographic  study  (DRX)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  119   3.2.1  FePt  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  119   3.2.1  Co  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  124   3.3  Magnetic  study  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  124   3.3.1  FePt  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  125  

Quantitative  study  (SQUID)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  125  

Qualitative  study  (MFM)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  131   3.3.2  Co  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  136  

Quantitative  study  (SQUID)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  136  

Qualitative  study  (MFM)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  139   4.  Conclusions  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  142   5.  References  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  143  

(5)

 

1.  Introduction  

In   recent   years,   patterned   magnetic   structures   have   attracted   a   huge   interest   due   to   their  potential  applications  in  many  technological  fields,  such  as  magnetic  information   storage   or   non-­‐volatile   magnetic   random   access   memory   (MRAM).   Indeed,   the   never-­‐

ending   race   towards   miniaturization   logically   requires   the   storage   of   data   in   an   ever-­‐

decreasing  space,  increasing  therefore  the  recording  density.    

Although  the  components  of  a  magnetic  hard  disk  are  multiple  (read  head,  write  head,   etc.),  this  chapter  focuses  on  the  implementation  and  study  of  nanostructures  fabricated   by  NSL,  which  could  be  used  as  magnetic  recording  media.  In  a  first  step,  let  us  consider   some   issues   and   consequences   of   the   shaping   of   ferromagnetic   compounds   at   the   nanoscale.  

 

1.1  Bulk  material  or  isolated  magnetic  particles…  A  

difference?  

Ferromagnetic  materials  exhibit  a  long-­‐range  ordering  phenomenon  at  the  atomic  level,   which   causes   the   atomic   magnetic   moments   to   line   up   parallel   with   each   other   in   a   restricted  region  called  a  domain.  Within  the  domain,  the  magnetization  is  intense,  but   in  a  bulk  sample  the  material  will  usually  be  demagnetized  because  many  domains  will   be  randomly  oriented  with  respect  to  each  other.    

When   a   magnetic   field   is   applied   (Figure   IV   -­‐   1),   the   magnetization   of   the   material   increases  until  saturation  (Ms).  This  process  takes  place  in  two  different  ways:  (1)  the   growth  of  domains  which  are  already  aligned  with  field  by  shifting  their  walls,  and  (2)   the   coherent   rotation   of   the   domains   to   a   direction   parallel   with   the   magnetic   field.  

When  the  magnetic  field  is  removed,  a  remnant  magnetization  (Mr)  is  maintained.  

The   magnetization   will   only   relax   back   to   zero   under   the   application   of   a   reverse   magnetic   field,   called   coercive   field*   (Hc)   and   will   reach   saturation   in   the   opposite   direction  (-­‐Ms)  by  further  increasing  the  field.    

The   full   cycle   of   magnetization   is   obtained   by   changing   the   direction   of   the   applied   magnetic  field  and  is  complete  when  reaching  again  saturation.    

The   lack   of   retraceability   in   the   magnetization   curve   is   the   property   called   hysteresis   and  is  related  to  the  existence  of  magnetic  domains  in  the  material.  Once  the  magnetic   domains   are   oriented,   it   takes   some   energy   to   turn   them   back   again.   A   ferromagnetic   material   can   possess   a   well-­‐defined   axis   (the   easy-­‐axis)   along   which   its   magnetic   moments  will  preferably  align.    

                                                                                                                         

*   The  coercive   field,   also   called  coercivity,   of   a   ferromagnetic   material   is   the   intensity   of   the   applied   magnetic   field   required   to   reduce   the   magnetization   of   that   material   to   zero   after   the   magnetization   of   the   sample   has   been   driven   to   saturation.   Coercivity   is   usually   measured   in   oersted   (Oe)   or   ampere/meter   (A/m)   units.   However,   due   to   a   misuse   of   language,   it   is   sometimes  expressed  in  tesla  (T),  which  is  the  unit  of  the  magnetic  induction  B.  

(6)

 

Several  books[1]  may  inform  the  reader  seeking  additional  information  on  the  basics  of   magnetism.  

 

Figure  IV  -­‐  1    

Magnetization  versus  field  (M-­‐H  loop)  for  a  ferromagnetic  material[2]  

To  begin,  let  us  consider  an  unmagnetized  sample  (point  0).  

(a)  As  the  magnetic  field  strength  is  increased  in  the  positive  direction,  the  magnetization   follows   a   non-­‐linear   magnetization   curve   (initial   magnetization   curve)   and   reaches   the   saturation  level  (Ms),  when  all  the  magnetic  domains  are  aligned  with  the  direction  of  the   field;  

(b)  If  the  magnetic  field  is  relaxed  to  zero,  the  ferromagnetic  material  retains  a  degree  of   magnetization  (Mr);  

(c)   In   order   to   drive   the   magnetization   back   to   zero,   the   applied   magnetic   field   must   be   reversed  (-­‐Hc);  

 (d)  If  the  reversed  magnetic  field  is  further  increased,  the  saturation  level  in  the  opposite   direction  is  reached;  

(e)   Reducing   H   to   zero   brings   the   sample   to   a   level   of   residual   magnetism   equal   to   that   achieved  in  point  (b)  but  in  the  opposite  direction  (-­‐Mr);  

(f)  A  magnetic  field  equal  to  the  coercive  field  (HC)  is  needed  to  remove  the  magnetization.  

 

The   parameters   described   above   (Hc,  Ms   &  Mr)   play   a   major   role   in   the   selection   of   materials  to  be  used  in  magnetic  information  storage.  When  the  easy-­‐axis  is  well  defined   (large  remnant  magnetization  along  the  easy-­‐axis  in  the  absence  of  applied  field)  and  if   the  field  necessary  to  reverse  the  magnetic  moment  is  large  enough,  the  material  will  be   called  a  permanent  magnet  and  can  be  used  to  store  information.  Indeed,  data  is  stored   in  the  media  based  on  the  two  stable  magnetic  configurations  corresponding  to  Mr  and  -­‐

Mr.    

The  stability  of  the  media  can  be  evaluated  on  the  basis  of  the  magnetic  anisotropy  of   the   used   material.   The   anisotropy   energy   describes   the   amount   of   energy   required   to   reverse  the  magnetization  from  one  stable  state  to  the  other.  This  depends  on  several   factors,  most  importantly  the  effective  anisotropy  constant  (K).  The  magnetic  anisotropy   is  positively  correlated  with  the  coercivity,  which  is  often  used  to  provide  a  qualitative   estimate   of   anisotropy   of   the   material.   The   magnetic   hardness   parameter   (κ)   is   often   used  to  classify  materials  by  measuring  the  relative  importance  of  anisotropy  compared   with  magnetostatic  effects.    

Magnetic Hysteresis

3

Figure 1:The magnetization ’M’ vs magnetic field strength ’H’ for a ferromag- netic:

(a) starting at zero the material follows at first a non-linear magneti- zation curve and reaches the saturation level , when all the magnetic domains are aligned with the direction of a field; when afterwards driv- ing magnetic field drops to zero, the ferromagnetic material retains a considerable degree of magnetization or ”remember” the previous state of magnetization;

(b) at this point, when H = 0 a ferromagnet is not fully demagnetized and only the partial domain reorientation happened;

(c) saturation level in the opposite direction of applied field;

(d) in order to demagnetize a ferromagnetic material the strong mag- netic field of the opposite direction (called “coercive field, ‘Hc’) has to be applied.

back again. This property of ferromagnetic materials is useful as a mag- netic ”memory”. Some compositions of ferromagnetic materials will retain an imposed magnetization indefinitely and are useful as ”permanent mag- nets”. The magnetic memory aspects of iron and chromium oxides make them useful in audio tape recording and for the magnetic storage of data on computer disks.

Basic relations of magnetic hysteresis theory

In vacuum the generated magnetic flux density or magnetic induction is proportional to applied fieldB:

B=µ0H, (1)

whereµ0= 4π·107V s/Am= 1,26·106V s/Am. The units of the magnetic field areA/mand for the magnetic flux densityBwe haveV s/m2= 1 Tesla.

!"

#"

$"

%"

&"

Magnetic Hysteresis

3

Figure 1:The magnetization ’M’ vs magnetic field strength ’H’ for a ferromag- netic:

(a) starting at zero the material follows at first a non-linear magneti- zation curve and reaches the saturation level , when all the magnetic domains are aligned with the direction of a field; when afterwards driv- ing magnetic field drops to zero, the ferromagnetic material retains a considerable degree of magnetization or ”remember” the previous state of magnetization;

(b) at this point, when H = 0 a ferromagnet is not fully demagnetized and only the partial domain reorientation happened;

(c) saturation level in the opposite direction of applied field;

(d) in order to demagnetize a ferromagnetic material the strong mag- netic field of the opposite direction (called “coercive field, ‘Hc’) has to be applied.

back again. This property of ferromagnetic materials is useful as a mag- netic ”memory”. Some compositions of ferromagnetic materials will retain an imposed magnetization indefinitely and are useful as ”permanent mag- nets”. The magnetic memory aspects of iron and chromium oxides make them useful in audio tape recording and for the magnetic storage of data on computer disks.

Basic relations of magnetic hysteresis theory

In vacuum the generated magnetic flux density or magnetic induction is proportional to applied fieldB:

'"

("

Ma gn et ic H yst er esis

3

Figure1:The

magnetization’M’

vsmagneticfieldstren

gth’H’foraferro mag-

netic:

(a)startingatzero the

materialfollo wsatfirst

anon-linea r magneti-

zationcurveand reachesthe

saturationlevel, when allthe

magnetic

domains arealignedwith

thedirect

ionofa field; when afterwards driv-

ing

magneticfielddropstozero , the

ferro

magneticmaterialretains a

considera

bledegreeofmagnetizationor”rem ember”

theprev ious state

ofmagnetization;

(b)atthis poin

t,whenH=0 a ferro

magnetisnot fully

dem agnetized

and only

the partialdomain

reorientation happ

ened;

(c)saturationlevelinthe oppositedirect

ionofappliedfield;

(d) inordertodem

agnetizeaferro

magnetic materialthe strongmag-

neticfieldofthe oppositedirect

ion(called

“coercivefield,‘Hc’)has to

beapplied.

backagain.Thisprop

ertyofferromagnetic materials

isusefulasamag-

netic”memo ry”. Some

compositions of ferromagnetic

materials will

retain

animposed magnetiza

tionindefinitelyand

areusefulas”perma nent ma

g-

nets”.The magnetic

memo ryaspects of

ironand

chromiumoxid esmake

themusefulinaudiotape recordingand

forthemagnetic storageofdata

on

computerdisks.

Basic

relationsofmagnet ichysteres

istheory

Invacuum the

generated magnetic

flux

densityormagnetic induction

is

prop ortional to

applied field

B: B=µ0H,

(1)

whereµ0=4π·10

7Vs/Am

=1,26·10

6Vs/Am . The

unitsofthemagnetic

field areA/m

and

forthemagnetic flux

densityBwehaveVs/m

2 =1Tesla.

(7)

 

Two  main  cases  are  apparent:  magnetically  soft  samples,  with  a  hardness  parameter  κ  ≪   1,  and  magnetically  hard  samples,  with  larger  values  of  κ.  

  ! =  !!  !

!!!!    (Equation  IV  -­‐  1)  

Parallel   to   the   research   on   materials   is   the   intense   development   of   new-­‐shaped   structures   such   as   magnetic   nanoparticles   as   candidates   for   the   media   of   future   magnetic   data   storage   systems.   As   illustrated   in   Figure   IV   -­‐   1,   bulk   magnets   are   composed  of  many  domains  that  form  in  an  effort  to  minimize  the  magnetostatic  energy   of  the  material.  The  magnetostatic  energy  can  further  be  reduced  through  the  formation   of  closure  domains,  where  the  magnetization  has  a  direction  approximately  parallel  to   the   surface   of   the   sample.   A   scheme   of   a   simplified   domain   configuration   is   shown   in   Figure  IV  -­‐  2.    

Figure  IV  -­‐  2    

Simplified   scheme   of   magnetic   domain   configuration   in   (a)   Multi-­‐domain   and   (b)   single-­‐domain  particles.[3]  

 

By   reducing   the   particle   size   to   the   nanoscale,   the   transition   from   multi-­‐domain   to   single-­‐domain  is  reached,  as  the  energy  required  to  make  a  domain  wall  is  larger  than   the   decrease   in   magnetostatic   energy   resulting   from   dividing   the   grain   into   two   domains.    

Like   bulk   ferromagnets,   an   array   of   single-­‐domain   magnetic   nanoparticles   can   exhibit   hysteresis   in   the   M-­‐H   loop.   However,   the   main   difference   between   a   bulk   magnetic   material   and   an   array   of   magnetic   nanoparticles   lies   in   the   mechanism   by   which   the   magnetization   is   cycled   through   the   hysteresis   loop.   In   a   single-­‐domain   nanoparticle,   domain  wall  movement  is  not  possible  and  only  coherent  magnetization  rotation  can  be   used  to  overcome  the  effective  anisotropy  (K)  of  the  particle.    The  behavior  of  uniformly   magnetized,   non-­‐interacting   single-­‐domain   particles   was   identified   by   Stoner   &  

Wohlfarth.[4]    

In   the   case   of   soft   magnetic   particles,   a   vortex   arrangement   of   magnetic   moments   is   favored  in  between  the  single-­‐  and  multi-­‐domain  regimes.  This  type  of  magnetic  domain   will  be  further  detailed  with  the  study  of  Co  nanostructures  in  section  3.3.2.    

For   particles   of   hard   material,   the   vortex-­‐domain   state   isn’t   favored   for   any   range   of   diameters.    These  magnetic  domains  are  illustrated  in  Figure  IV  -­‐  3.    

 

!"#$ M. .IBonder et al.

Figure 1. Schematic of magnetic domain configuration for a) multi-domain and b) single domain ferromagnets.

The transition from multi-domain to single domain becomes very apparent when one considers the coercivity as a function of particle size as shown in Fig. 2 below.

Particle diameter (Arbitrary units)

n M U)

'z I 0 0 3

Figure 2. Coercivity as a function of particle size.

I"'.,'- -Ir'"I'. .'I..'.I

: single-domain multi-domain 1

For large sizes the particles are multi-domain becoming more bulk-like with increasing size. The mechanism of magnetization reversal is domain wall nucleation and motion for the multi-domain case [I]. As the particle size is reduced the increase of energy due to domain wall formation dominates over the decrease in energy attributed to the formation of domains. Thus, below a critical particle size domain walls will no longer

* -

0 50 100 150 200 250 300

M. .IBonder et al.

Figure 1. Schematic of magnetic domain configuration for a) multi-domain and b) single domain ferromagnets.

The transition from multi-domain to single domain becomes very apparent when one considers the coercivity as a function of particle size as shown in Fig. 2 below.

Particle diameter (Arbitrary units)

n M U)

'z 3 I 0 0

Figure 2. Coercivity as a function of particle size.

I"'.,'- -Ir'"I'. .'I..'.I

: single-domain multi-domain 1

For large sizes the particles are multi-domain becoming more bulk-like with increasing size. The mechanism of magnetization reversal is domain wall nucleation and motion for the multi-domain case [I]. As the particle size is reduced the increase of energy due to domain wall formation dominates over the decrease in energy attributed to the formation of domains. Thus, below a critical particle size domain walls will no longer

* -

0 50 100 150 200 250 300

!%#$

(8)

 

The  importance  of  particle  size  to  its  magnetic  behavior  becomes  very  apparent  when   one   considers   the   coercivity   as   a   function   of   particle   size   as   shown   in   Figure   IV   -­‐   4.  

Generally,   a   single-­‐domain   state   is   associated   with   a   higher   coercivity   than   the   multi-­‐

domain  state.    

 

 

Figure  IV  -­‐  3  

Possible  magnetic  domains  in  a  spherical  magnetic  particle  

(a)  Single-­‐domain  particle;  (b)  Multi-­‐domain  particle;  (c)  Vortex-­‐domain  particle.[3]  

     

Figure  IV  -­‐  4    

Schematic   evolution   of   magnetic   coercivity   with   size   of   particle,   highlighting   four   regimes:   (a)   superparamagnetic   (SPM)   regime   with   0<Diameter<DSPM  ;   (b)   ferromagnetic   single-­‐domain   particle   with   DSPM<Diameter<D0,   (c)   vortex-­‐domain   state  for    D0<Diameter<  D1  (only  for  soft  magnetic  materials)  and  (d)  multi-­‐domain   state  for  Diameter>D1.[3]  

   

Taking   into   account   only   two   possible   spin   arrangements,   single-­‐domain   and   two   domains  separated  by  a  domain  wall,  the  single-­‐domain  critical  diameter  (!!"!")  between   these  two  regimes  for  a  spherical  particle  is  given  by  the  following  expression.    

  !!"!" =  !"  ! !"  

!!!!    (Equation  IV  -­‐  2)  

62 3 Magnetism of Small Particles

Coercivity

Diameter

Dcr D0

0

a b c d

D1 SPM

Fig. 3.5.Curve of coercivity vs. size of magnetic particle, showing four regimes: (a) super- paramagnetic 0<D<Dspmcr , (b) ferromagnetic single-domain, forDspmcr <D<D0, (c) vortex state, forD0<D<D1(for soft magnetic samples) and (d) multidomain, forD>D1=Dcr

10 100

Diameter Hc(Oe)

1000 10000

10 nm 100 nm 10µ 100µ

CoO Fe O2 3

Co (76 K)0 Fe (76 K)0

Fe O3 4 BaO 6 Fe O2 3

Fig. 3.6. Dependence of the magnetic coercivity with size of different magnetic small parti- cles. (Reprinted (re-drawn) with permission from [37]. Copyright (1961), American Institute of Physics)

!"#$%&'()*+"#, -.%/"',

()*+"#,

!/+0%&,

!.1&2' 1+2+*+$#&/"3,

4)&23"5"/6,

7"+*&/&2,,

8)2/&9', ()*+"#,

DcrSPM D0 D1

64 3 Magnetism of Small Particles

a b c

Fig. 3.7. Three possible spin configurations for the lowest energy state of a spherical magnetic particle: (a) single-domain, (b) two-domain structure and (c) vortex

is the magnetostatic energy. The magnetostatic energy for a single-domain sphere is given, using (2.102), p.49:

Ea=1

2µ0Hd·MV=1 6µ0Ms2 4

3πR3. (3.1)

A dimensionless quantity can be obtained fromEa, dividing byµ0Ms2V, whereV is the volume of the particle: the result,ga=1/6, does not depend on the radius of the particle.

For the configuration with two domains, on the other hand, the magnetic field at a distance from the particle will be reduced, since it will represent a field due to two opposing dipoles. One can therefore, to a first approximation, ignore the mag- netostatic term. In the domain wall, the region separating the two domains, there will be contributions from exchange and anisotropy. Inside the two domains, these terms are again zero, since the magnetic moments are aligned along the anisotropy axis. Assuming that the magnetic moments in the wall turn outside the plane, two components ofm(which is a vector of unitary length) vary of the order of 1 in a distance of the order of∆/2, whereis the domain wall width parameter. There- fore,(∇m)2(∆m/∆x)22(2/∆)2. Considering that the domain wall occupies a fraction of the order of∆/Rof the volume of the sphere, the exchange energy, from ((2.54), p.35), isEex(8A/∆2)(∆/R). The anisotropy energy of the moments inside the volumeVdof the domain wall,K1sin2θ·Vd=K1(1/2)(∆/R)V, where we have used the average sin2θ=1/2.

Therefore, the energy corresponding to the arrangement with two domains is Eb1

R

!8A

+K1 2

"

V. (3.2)

The variable can be eliminated by minimizing the energy, i.e., solving dE/d∆=0. The solution is

s=4

#A

K1 =4∆, (3.3)

  (a)   (b)   (c)

(9)

 

  -­‐  101  -­‐  

In  this  expression,  A  is  the  exchange  stiffness  constant,  K  is  the  anisotropy  constant,  Ms   is  the  saturation  magnetization  and  μ0  is  the  vacuum  magnetic  permeability.    

For  most  magnetic  materials,  this  diameter  is  in  the  range  of  10-­‐100  nm.  However,  the   limit  can  reach  several  hundred  nanometers  for  high-­‐anisotropy  materials.[5]    

However,   if   nothing   is   mentioned   about   the   hardness   of   the   material,   the   vortex   state   has   to   be   considered.   Brown   has   developed   expressions   for   the   critical   diameters   between  the  different  regimes.  The  following  equations  report  for  the  calculations  of  D0   and  D1   mentioned   in   Figure   IV   -­‐   4.  D0   represents   the   upper-­‐limit   of   the   single-­‐domain   configuration,   while   the   critical   diameter   for   a   transition   from   vortex   to   multi-­‐domain   for  a  soft-­‐magnetic  material  is  given  by  D1.    

  D! =  7.211   !"

!!!!!    (Equation  IV  -­‐  3)  

  !! =  

!.!"#$   !!

!!!!!

!!!.!"#$ !!

!!!!!

   (Equation  IV  -­‐  4)  

One  should  note  that  the  values  of  the  parameters  that  appear  in  the  literature  present  a   wide   dispersion,   reflecting   the   experimental   uncertainty   of   some   magnetic   quantities,   for   example,   in   the   estimate   of   the   exchange   stiffness   constant  A.   Moreover,   those   models   are   based   on   spherical   particles,   which   can   explain   the   difference   in   case   of   particles   with   other   shapes.   However,   it   is   obvious   that   the   critical   single-­‐domain   diameter  increases  with  anisotropy  (Figure  IV  -­‐  5).  

 

Figure  IV  -­‐  5  

Critical   single-­‐domain   diameters   versus   modulus   of   the   anisotropy   constant   for   several   magnetic   materials,   showing   the   correlation   between   these   two   parameters.[5]    

                                                                                                                         

  The   exchange   constant  (A)   describes   the   strength   of   the   exchange   interaction   inside   a   ferromagnetic   system.   In   solids,   the   electronic   orbitals   of   neighboring   atoms   overlap,   which   leads   to   the   correlation   of   electrons.   This   results   in   the   interatomic   exchange   interaction   that   makes   the   total   energy   of   the   crystal   depend   on   the   relative   orientation   of   spins   localized   on   neighboring  atoms.  The  exchange  interaction  is  the  largest  magnetic  interaction  in  solids  (≈1eV)   and   is   responsible   for   the   existence   of   parallel,   i.e.   ferromagnetic,   and   antiparallel,   i.e.  

antiferromagnetic,  spin  alignment.  

50 2 Magnetic Domains

Fig. 2.11.Critical single-domain diameters versus modulus of the anisotropy constant for several magnetic materials, showing the correlation between these two quantities. It is evident that the critical diameters increase with increasing|K| [13]. (Reproduced from [13] with permission from Wiley)

Therefore, as expected, if the domain wall energy increases, the critical single- domain diameter will also increase. In other words, if the price paid for the creation of a domain wall increases, the single-domain configuration will remain energetically more favorable up to larger diameters.

A more accurate value for the parameterα, which gives an estimate for the re- duction in magnetostatic energy in the case of a spherical particle isα=0.472 [8].

Values of critical single-domain diameters computed using this value ofαare given in Table2.9. These critical diameters depend, from (2.105), on the value (the abso- lute value) of the anisotropy constantK1, and this dependence is shown, for several materials, in Fig.2.11.

2.4.2 Domain Wall Motion

A magnetic field applied to a multidomain sample will, in principle, induce a dis- placement of the magnetic domain walls. Consider, for example, the 180domain wall between two magnetic domains shown in Fig.2.9. A magnetic field applied in thezdirection will create a torque on the magnetic moments inside the wall; this will generate a magnetization component perpendicular to the plane of the wall (theyz plane). This component, in its turn, creates a demagnetizing field also perpendicular

!!!""#$%&'()%

*+,-,./0%1,2304'56&/,2%5,/&4-4+""2&)%

(10)

 

As   the   particle   diameter   further   decreases,   loss   of   data   due   to   thermal   instability   (superparamagnetic   effect)   may   arise.   Superparamagnetism   refers   to   the   influence   of   thermal  energy  on  a  ferromagnetic  nanoparticle.  In  the  superparamagnetic  size  regime   the  moments  of  the  nanoparticle  fluctuate  due  to  thermal  energy.  This  fluctuation  tends   to  randomize  the  moments  of  the  nanoparticle  unless  a  magnetic  field  is  applied.    

Considering  an  uniaxial  single-­‐domain  magnetic  particle,  the  two  states  of  magnetization   are   separated   from   each   other   by   an   energy   barrier,   KV,   where   K   and   V   stand   respectively  for  the  anisotropy  constant  of  the  material  and  the  particle  volume.  If  the   thermal  energy,  kBT,  becomes  comparable  to  the  barrier  height,  the  magnetization  is  no   longer  stable  and  the  particle  is  said  to  be  superparamagnetic.  This  thermally  activated   switching  follows  the  Arrhenius-­‐Neel  equation  (Equation  IV  -­‐  5)  where  f  is  the  frequency   of   switching   between   magnetization   states,   τ   is   the   relaxation   time   and   fo   is   the   proportionality  constant  equal  to  10-­‐9s-­‐1.  

    !=  !!  =!!  !!!!"!!           (Equation  IV  -­‐  5)  

By  fixing  τ  to  100  s  (which  is  roughly  the  time  to  measure  the  remanence  of  a  sample),   the  superparamagnetic  critical  volume  can  be  obtained  (!!"!"# = (25!!!) !)  and  used   to  calculate  the  superparamagnetic  critical  diameter  (Equation  IV  -­‐  6).  

    !!"!"# =   !

!  !!"!"# !!               (Equation  IV  -­‐  6)  

Table   IV   -­‐   1   gives   some   values   of   the   single-­‐domain   critical   diameter   (!!"!")   and   the   superparamagnetic  critical  diameter  for  different  spherical  particles.  

   

 

 

Moreover,   the   size   and   shape   of   a   patterned   thin   film   may   also   strongly   influence   its   magnetic  behavior.  

Many  methods  can  be  used  to  synthesize  magnetic  structures  from  sub-­‐micron  scale  to   nanometer  dimensions.  Both  top-­‐down  and  bottom-­‐up  strategies  have  been  reported  in  

Table  IV  -­‐  1  

Critical   single-­‐domain   diameter   (DSD)   and   critical   superparamagnetic   diameter   (DSPM)  for  spherical  particles  composed  of  different  materials.[  5]  

 

Material   !!"!"  (nm)   !!"!"#  (nm)  

Fe3O4   12   4  

Fe   19   16  

Ni   54   35  

Co   96   8  

Nd2Fe14B   21   4  

FePt    340   3  

SmCo5   1170   2  

 

(11)

 

the   literature,   forming   either   periodic   structure   (such   as   arrays   of   various   shaped   elements)  or  isolated  single  nanodots.  

Due  to  the  small  size  of  the  nanostructures,  their  magnetic  characterization  is  not  easy   to  perform  and  do  require  sensitive  methods.  

Among  those  materials,  Co  and  FePt  will  be  further  studied  through  this  thesis.  

 

1.2.  Studied  Materials  

1.2.1  FePt  

Crystallographic  structures  and  phase  diagram  of  Fe-­‐Pt  alloys  

 Recent   reviews[6,   7],   focused   on   the   present   reality   and   evolution   of   magnetic   data   storage,  clearly  highlighted  that  one  of  the  most  promising  candidates  for  high-­‐density   magnetic  recording  was  the  face-­‐centered  tetragonal  (fct)  L10  phase  of  FePt.    For  most   applications,  a  permanent  magnet  should  have  not  only  optimised  magnetic  properties,   but  also  appropriate  nonmagnetic  properties  (electrical,  mechanical,  corrosion  behavior   etc.).    

Modern   permanent   magnet   materials   are   based   on   intermetallic   compounds   of   rare   earths  and  3d  transition  metals  with  very  high  magnetocrystalline  anisotropy,  such  as   Nd2Fe14B  and  SmCo5.[8,  9]  Distinct  advantages  of  Fe-­‐Pt  alloys  are,  as  opposed  to  the  rare-­‐

earth-­‐transition-­‐metal-­‐based   compounds,   that   they   are   very   ductile   and   chemically   inert.[10]  Since  the  mid-­‐1930s,[11]  Fe-­‐Pt  alloys  are  known  to  exhibit  high  coercivities  due   to   high   magnetocrystalline   anisotropy   of   the   L10   FePt   phase,   but   the   high   price   prevented  widespread  applications  of  these  alloys.    

Depending  on  the  Fe  to  Pt  elemental  ratio,  iron-­‐platinum  alloys  can  display  chemically   disordered  face  centered  cubic  (fcc)  phase  (A1,  Fm3m)  or  chemically  ordered  phases,   such  as  (L12,  Pm3m)  for  Fe3Pt,  face  centered  tetragonal  (fct)  phase  (L10,  P4/mmm)  for   FePt  and  (L12,  Pm3m)  for  Pt3Fe.    The  L12  structure  is  a  cubic  phase  that  can  form  around   a  1:3  stoichiometry.  In  Fe3Pt  (FePt3),  the  Pt  (Fe)  atoms  occupy  the  cube  corners  and  the   Fe  (Pt)  atoms  occupy  the  face-­‐centre  positions.    

The  structure  variations  (Figure  IV  -­‐  6)  have  dramatic  effects  on  the  magnetic  properties   of   the   alloys.   For   example,   the   Fe3Pt   material   is   paramagnetic,   the   FePt3   is   antiferromagnetic,  the  FePt  (A1)  phase  presents  a  very  small  magnetic  anisotropy  and   displays   soft   magnetic   properties   while   the   FePt   (L10)   phase,   which   is   made   of   an   alternate   stacking   of   Fe   and   Pt   planes,   has   a   large   uniaxial   magnetocrystalline   anisotropy[12]  (K  ≅  7.106  J/m3)  and  shows  strong  ferromagnetic  properties.    

                                                                                                                         

 Chemically  disordered  (versus  chemically  ordered)  indicates  that  any  atomic  site  in  the  unit  cell   has  an  equal  chance  of  being  occupied  either  by  iron  or  platinum  atom.  

Références

Documents relatifs

NEUTRON DEPOLARISATION AS A METHOD TO DETERMINE THE MAG- NETIZATION, THE MEAN DOMAIN SIZE AND THE MEAN SQUARE COMPONENTS OF THE INNER MAGNETIZATION OF

We hope that ongoing studies will document interaction of TB5 domain and ADAMTSL2 and contribute to a greater understanding of how enhanced TGFb signaling caused by FBN1 mutations

We have already done it in the case of the interior Dirichlet problem for the Stokes equations in [13], where we presented a suitable representation of the velocity part of

In order to nucleate this domain wall, the sum of the demagnetizing and applied fields must be greater than the nucleation field.. Once the domain wall is nucleated, the domain

— A microscopic theory for curved antiphase domain wall motion in ordered structures leads to a prediction that velocity is proportional to mean curvature.. Unlike previous models,

Mais un amendement récemment pré- senté contre l'avis du gouvernement par le Sénateur Hugues Portelli , dans le cadre du vote de la loi Valter de transposition de la directive

In chapter six, we will present results of Non-Standard Words (NSW) and Standard Words (SW) classifier on the Synthesio dataset and the annotated Named Entity Recognition (NER)

In fact, whilst earlier comparison between the src and the spectrin SH3 domains suggested this class of proteins to fold via a robust two-state mechanism