• Aucun résultat trouvé

Precipitation and dissolution of minerals in geochemistry

N/A
N/A
Protected

Academic year: 2021

Partager "Precipitation and dissolution of minerals in geochemistry"

Copied!
31
0
0

Texte intégral

(1)

HAL Id: hal-01892435

https://hal.inria.fr/hal-01892435

Submitted on 10 Oct 2018

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Jocelyne Erhel, Tangi Migot

To cite this version:

Jocelyne Erhel, Tangi Migot. Precipitation and dissolution of minerals in geochemistry. 2018 - Reac-

tive Transport Modeling Workshop, Feb 2018, Paris, France. pp.1-30. �hal-01892435�

(2)

Precipitation and dissolution of minerals in geochemistry

Jocelyne Erhel and Tangi Migot IRMAR, Rennes: INRIA and INSA

Workshop on reactive transport, Paris, February 2018

(3)

Simple examples of geochemistry systems Geochemistry model Optimization problem Precipitation diagrams

1 Simple examples of geochemistry systems

3 Optimization problem

4 Precipitation diagrams

(4)

Simple examples of geochemistry systems Geochemistry model Optimization problem Precipitation diagrams

1 Simple examples of geochemistry systems

2 Geochemistry model

4 Precipitation diagrams

(5)

Simple examples of geochemistry systems Geochemistry model Optimization problem Precipitation diagrams

1 Simple examples of geochemistry systems

2 Geochemistry model

3 Optimization problem

(6)

1 Simple examples of geochemistry systems

2 Geochemistry model

3 Optimization problem

4 Precipitation diagrams

(7)

One reaction with one salt

Chemical reactions

Na++Cl Nacl

Electrical neutrality: c1=c2=c Positivity of concentration: c≥0 Saturation threshold: γ(c) =c2

Salt dissolved under saturation: p= 0 andγ(c)≤K Salt precipitated at saturation: p>0 andγ(c) =K Mass conservation law: T =c+p thusT ≥0

(8)

Precipitation diagram with one salt

Three cases

no solutionT <0 salt dissolved 0≤T ≤√

K,c=T,p= 0 salt precipitatedT ≥√

K,c =√

K,p=T−c Precipitation diagram

(9)

Two reactions with two salts

Chemical reactions

Na++Cl Nacl K++Cl Kcl

Electrical neutrality: c3=c1+c2

Positivity of concentrations: ci≥0,i= 1,2 Saturation thresholds: γi(c) =cic3,i = 1,2

Salt dissolved under saturation: pi= 0 andγi(c)≤Ki,i= 1,2 Salt precipitated at saturation: pi >0 andγi(c) =Ki,i= 1,2 Mass conservation law: Ti =ci+pi,i= 1,2 thusTi ≥0

(10)

State with two salts precipitated

pi =Ti−ci,i= 1,2

ci(c1+c2) =Ki,i = 1,2, 0≤ci ≤Ti

( ci = Ki

K1+K2,i= 1,2, TiKKi

1+K2,i= 1,2

Two state boundaries

(11)

State with two salts dissolved

pi = 0,i= 1,2

ci=Ti,i= 1,2, Ti ≥0,

Ti(T1+T2)≤Ki,i= 1,2

Two state boundaries

(12)

States with one salt dissolved and one salt precipitated

Case of NaCl dissolved:

p1= 0 andp2=T2−c2





c1=T1,

c2(T1+c2) =K2, T2(T1+T2)≥K2, 0≤T1 K1

K1+K2

Case of KCl dissolved:

p1=T1−c1 andp2= 0





c2=T2,

c1(c1+T2) =K1, T1(T1+T2)≥K1, 0≤T2K2

K1+K2

(13)

Precipitation diagram with two salts

(14)

Geochemistry system

Species involved

Nc primary aqueous species Nαsecondary aqueous species Np minerals withNp≤Nc

Concentrations of species

Assumption: activity coefficients of aqueous species are equal to 1 c: vector of concentrations of primary aqueous species

α: vector of concentrations of secondary aqueous species p: vector of quantities of minerals

Constraints: c≥0 andp≥0

(15)

Mass action laws and saturation thresholds

Stoichiometric matricesS andE, with integer coefficients Constants of reactionsKα andKp (reals)

Matrix Constant

α S Kα

p E Kp

Mass action laws

αi(c) =Kαi Nc

Y

k=1

ckSik

Saturation thresholds

γi(c) =

Nc

Y

k=1

ckEik

(16)

Precipitation-dissolution

Either mineral is dissolved: γi(c)≤Kpi andpi = 0 Or mineral is precipitated: γi(c) =Kpi andpi>0 Nonlinear complementarity problem

p.(Kp−γ(c)) = 0, p≥0, γ(c)≤Kp

(17)

Conservations laws

Mass conservation law

T: vector of total analytical concentrations of primary species T =c+STα(c) +ETp

In a closed system,T is given

In an open system,T is coupled with another model Charge balance, withq electrical charges of ions

qTT =qTc Electrical neutralityqTc= 0

(18)

Chemistry model

System of (Nc+Np) unknowns (c,p)

with (Nc+Np) polynomial equations and constraints









c+STα(c) +ETp−T = 0, c≥0,

p.(Kp−γ(c)) = 0, p≥0,

γ≤Kp

withαi(c) =KαiQNc

k=1ckSik andγi(c) =QNc

k=1ckEik

(19)

Equivalent reduced model

If one coefficient forci is strictly negative, thenci >0.

If all coefficients forci are positive, thenTi ≥0 andTi= 0⇒ci = 0.

Equivalent model









c+STα(c) +ETp−T = 0, c>0,

p.(Kp−γ(c)) = 0, p≥0,

γ≤Kp

withαi(c) =KαiQNc

k=1ckSik andγi(c) =QNc

k=1ckEik

(20)

Equivalent logarithmic model

Logarithmic variablex= log(c) Equivalent logarithmic model

exp(x) +STexp(log(Kα) +Sx) +ETp−T = 0, pT(Ex−log(Kp)) = 0,

p≥0,Ex≤log(Kp),

KKT conditions of an optimization problem ?

(21)

Optimization problem with constraints

Objective function f(x) =eNT

cexp(x) +eNT

αexp(log(Kα) +Sx)−TTx, x∈RNc Gradient off

∇f(x) = exp(x) +STexp(log(Kα) +Sx)−T Hessian matrix off

2f(x) =D(exp(x)) +STD(exp(log(Kα) +Sx))S Inequality constraintsg(x)≤0 with

g(x) =Ex−log(Kp)

(22)

Optimality conditions and uniqueness of solution

Convex optimization problem min

g(x)≤0f(x) Assumption: E is of rankNp.

minimization problem⇔KKT conditions⇔logarithmic model

If the minimization problem has a solutionx with Lagrange muliplierp, they are unique.

(23)

Existence of solution

Assumption: E is of rankNp.

ifT >0 the minimization problem has a unique solution.

ifS≥0 andE ≥0, the problem has a solution if and only ifT >0.

(24)

Example with negative coefficents: calcite and gypsum

Three aqueous components

hydrogen ionH+, calcium ionCa2+, sulfate ionSO42−

Mineral Reaction κ

CaCO3 CaCO3+ 2H+Ca2++CO2+H20 1 CaSO4 CaSO4Ca2++SO42− 4 10−5 Stoichiometric matrixE, of rankNp

E =

−2 1 0

0 1 1

The problem has a solution if and only ifT2>0, T3>0, T1+ 2T2>0 Proof: Mass balance equation and positivity constraints imply these

(25)

Precipitation diagram

T is the set ofT with a unique solution (x(T),p(T)) Precipitation diagram

Partition ofT into at most 2Np non empty mineral statesMI

corresponding to the subsetsI of{1,2, . . . ,Np} Mineral state

MI ={T ∈ T, ∀i∈I :pi(T)>0 and∀i ∈I¯:pi(T) = 0}

I is the set of strongly active constraints State boundaries

At mostNp2Np−1algebraic curves interfacing the mineral states

(26)

Conservative variables

QRfactorization of ET

ET = (Q1Q2) R

0

=Q1R, Q1TET =R,Q2TET= 0

withQ orthogonal matrix andR triangular nonsingular matrix Elimination ofp

p(c) =R−1Q1T(T−c−STα(c))

Conservative variables decoupled from minerals (such as charge balance) Q2TT =Q2T(c+STα(c))

Reduced model withc unknowns



Q2T(c+STα(c)) =Q2TT, p(c).(K −γ(c)) = 0,

(27)

Mineral state

One case among 2Np different cases

Set of precipitated mineralsI ={i,1≤i≤Np, γi(c) =Kpi,pi(c)>0}

Set of dissolved minerals ¯I ={i,1≤i≤Np, γi(c)≤Kpi,pi(c) = 0}













Q2T(c+STα(c))−Q2TT = 0, γi(c) =Kpi,∀i∈I,

pi(c) = 0,∀i∈I¯, c>0,

pi(c)>0,∀i∈I, γi(c)≤Kpi,∀i∈I¯,

(28)

Computing mineral states

Symbolic computations with a Computer Algebra System Solve polynomial equalities: solutions are algebraic numbers Find a solution c(T) which satisfiesc(T)>0

Write the Np constraints forp andγ in function ofT Implicit description of the boundaries

(29)

Three salts

Chemical reactions:Nα= 0,Np= 3 and, using the electrical neutrality,Nc= 3

Na++Cl

NaCl

K++Cl

KCl

Mg+++K++ 3Cl

KMgCl3,6H2o

(30)

Calcite and gypsum

(31)

Future work

Use interior point method for the nonlinear complementarity problem Use the precipitation diagram to choose the initial guess

Couple the method with transport equations Compare with the Gibbs energy minimization Use a model with nonlinear activities

Références

Documents relatifs

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion