• Aucun résultat trouvé

Matching and multiscale expansions for a model singular perturbation problem

N/A
N/A
Protected

Academic year: 2021

Partager "Matching and multiscale expansions for a model singular perturbation problem"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-00453366

https://hal.archives-ouvertes.fr/hal-00453366

Submitted on 8 Dec 2017

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Matching and multiscale expansions for a model singular perturbation problem

Sébastien Tordeux, Grégory Vial, Monique Dauge

To cite this version:

Sébastien Tordeux, Grégory Vial, Monique Dauge. Matching and multiscale expansions for a model

singular perturbation problem. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2006,

343 (10), pp.637-642. �10.1016/j.crma.2006.10.010�. �hal-00453366�

(2)

Matching and multiscale expansions for a model singular perturbation problem

Sébastien Tordeux

a

, Grégory Vial

b

, Monique Dauge

c

aMIP, INSA Toulouse, 31077 Toulouse, France bIRMAR, ENS Cachan Bretagne, 35170 Bruz, France cIRMAR, Université de Rennes 1, 35042 Rennes, France

Abstract

We consider the Laplace–Dirichlet equation in a polygonal domain which is perturbed at the scale εnear one of its vertices.

Weassumethatthis perturbationisself-similar, thatis,derivesfromthe samepatternforall valuesofε.On thebaseofthis modelproblem,wecomparetwodifferentapproaches:themethodofmatchedasymptoticexpansionsandthemethodof

multiscaleexpansion.Weenlightenthespecificitiesofbothtechniques,andshowhowtoswitchfromoneexpansiontotheother.

Résumé

Développementsraccordéetmulti-échellepourunproblèmedeperturbationsingulièremodèle. Onconsidèreleproblème deLaplace–Dirichletdansundomainepolygonalquiprésenteuneperturbationdetailleεenl’undesessommets.Cetteperturbation est supposée auto-similaire, i.e. provient d’un motif fixe dilaté à l’échelle ε. Sur ce problème modèle, nous mettons en œuvre deux méthodes : développements asymptotiques raccordés et développement multi-échelle. Nous mettons en évidence les particularités de chaque approche et montrons comment passer d’un développement à l’autre.

Version française abrégée

On considère un polygone ω deR2, qu’on perturbe localement au voisinage d’un de ses sommets,O placé à l’origine du repère. Le domaineωcoïncide au voisinage deOavec un secteur infiniKdont l’angle associé est notéα.

La perturbation est auto-similaire : elle provient d’un motif Ω qui est un domaine infini coïncidant avec le même secteurKà l’infini ; le domaine perturbé est défini comme :

ωε=

xω; |x|> εR

xεΩ; |x|< r

, (1)

E-mail addresses:sebastien.tordeux@insa-toulouse.fr (S. Tordeux), gvial@bretagne.ens-cachan.fr (G. Vial), monique.dauge@univ-rennes1.fr (M. Dauge).

(3)

pour desretRconvenables, voir Fig. 1. Nous nous intéressons au problème modèle suivant :

Trouveruε∈H10ε) tel que −uε=f dansωε, (2)

où le second membref ∈L2ε)a son support disjoint de la zone de perturbation.

Les singularités du problème de Dirichlet dans le secteurKjouent un rôle essentiel dans la structure deuε. Rappe- lons qu’avec la notationλ=π/αet les coordonnées polaires(r, θ ), ces singularités sont less=rsin(pλθ )pour tout entier relatifp[3,6].

La technique dedéveloppement asymptotique multi-échelle[7,1] consiste à construire une approximation globale deuεdansωε, composée de deux types de termes : les premiers interviennent en la variable standardxet les seconds en la variable dilatée x/ε. Les termes sont superposés à l’aide de fonctions de troncature (χ est nulle proche du pointO,ψest nulle à l’infini – voir (11) pour plus de détails) :

uε(x)=χ x

ε n

=0

ελvλ(x)+ψ (x) n =0

ελVλ x

ε

+O ε(n+1)λ

. (3)

L’approche desdéveloppements asymptotiques raccordés[4,5] consiste à construire un développementintérieur, va- lide localement autour de la perturbation, et un autre,extérieur, valide seulement loin de la perturbation. Ils doivent êtreraccordésdans la région intermédiaire. On utilise une fonction de troncatureϕ à l’échelle intermédiairer/

ε pour obtenir une approximation globale :

uε(x)=ϕ r

ε n

=0

ελuλ(r, θ )+

1−ϕ r

ε n

=0

ελUλ r

ε, θ

+O

ε(n+1)λ/2

. (4)

Chaque méthode a ses avantages et ses inconvénients, pour les principaux : la méthode multi-échelle présente l’avantage d’une approximation globale avec estimation optimale du reste, ainsi que le fait que tous les termes du développement sont solutions de problèmes variationnels, alors que la méthode de raccord permet de définir des termes intrinsèques, indépendamment de toute fonction de troncature. Par ailleurs, on peut passer de l’un à l’autre : il suffit de retrancher àu ou à U une combinaison linéaire de fonctions singulières dualess,p >0, pour retrouver les termes variationnelsvouV.

Les détails des preuves des résultats annoncés sont exposés dans [8].

1. Introduction

We consider families of self-similar perturbed domains defined thanks to two domainsωandΩ ofR2, satisfying the following conditions for suitable positive numbersrandR:

ωis a bounded polygon with one vertex at the originO: inside the ball centered inO of radiusr,ωcoincides with an infinite plane sectorKof openingα;

Ω is an unbounded domain, coinciding withKoutside the ball centered inOof radiusR. The domainsωεare defined as perturbations ofωusing the patternΩ: Forεsmall enough

ωε =

xω; |x|> εR

xεΩ; |x|< r

. (5)

Fig. 1 shows an example of such a situation: the corner is ‘rounded’ at vertex O to the scale ε. Of course, our geometrical setting covers a wider range of cases, and the domainΩmay have corners itself, or even cracks. Besides, we do not need any assumption of inclusion ofωεintoω(or conversely). The domainωεtends toωasεgoes to 0, andΩ appears to be the limit of the family of domainsε1ωε.

We denote byuεthe solution of the Laplace–Dirichlet equation inωε:

uε∈H10ε); −uε=f inωε, (6)

wheref is an L2-function whose support does not reach the origin O. The solutionuε clearly converges toward u0∈H10(ω), satisfyingu0=f inω. We aim at describing precisely the asymptotic behavior ofuε by means of (i) a multi-scale expansion, and (ii) matched asymptotic expansions. We give in §2 the first terms of these expansions,

(4)

Fig. 1. Example of domainsω,Ωandωε.

the complete expansions being described in §3 and §4, and compared with each other in §5. Details and proofs for the stated results can be found in [8].

The multi-scale approach of this problem has already been studied within a very general framework in [7]. Our purpose is to give for this model problem a simple explicit presentation for the two distinct, and even competing, techniques of multi-scale and matched expansions. Besides, this allows to prove formulas for transforming each expansion into the other one.

Notation.We need some notation used throughout the Note.

Singular exponents and functionsassociated with the Laplace–Dirichlet problem in the sectorKare denoted by ands, respectively, with:

λ=π

α, p∈Z, p=0 and s(r, θ )=rsin(λθ ), with(r, θ )polar coordinates inK.

Remainderswill be measured in the energy norm: we will writeOH1κ), which means that the norm in H1ε) is uniformly bounded byκ asε→0.

2. The first terms of the expansions

We present here the principles of the two methods, and provide the first terms of each expansion.

2.1. Multi-Scale Expansion (MSE)

The MSE method consists in looking for an expansion ofuεin powers ofεwith ‘coefficients’ combining the two scalesx and xε. Letχbe a smooth cut-off function vanishing at pointO andψa smooth cut-off function localized nearO. As a result of the MSE method we find for the first terms, see Theorem 1

uε=χ x

ε

v0(x)+ψ (x)ελVλ x

ε

+OH1

ε

, (7)

and, next uε=χ

x ε

v0(x)+εv(x) +ψ (x)

ελVλ

x ε

+εV x

ε

+OH1

ε

. (8)

Here, the first term v0 coincides with the limitu0. The profilesVλ andV are defined in the infinite pattern domain Ω. Thus information concerning the perturbing pattern is contained in the profiles (whose contribution is localized nearO), andv0,vcarry information corresponding to the bounded domainω(whose influence does not reach the corner).

In our MSE analysis, all the termsv(x)and all the profilesV (X)are solution of variational problems inωandΩ, respectively.

(5)

2.2. Matched Asymptotic Expansions (MAEs)

The MAEs method consists in constructing two full different expansions (outer and inner expansions, cf [4]) ofuε in powers ofε. The coefficients of the outer expansion are functions of the slow variablex, and those of the inner one are functions of the rapid variablex/ε. The outer expansion is valid far fromOand the inner one in a layer close toO.

But neither of these two expansions is valid everywhere. They have to bematchedand glued inside an intermediate region.

In order to have a representation ofuε everywhere and to optimize remainders, we use a cut-off function at the intermediate scaler/

ε. Letϕbe a smooth cut-off function withϕ(ρ)=0 forρ1 andϕ(ρ)=1 forρ2. As a result of the MAEs method we find for the first terms, see Theorem 2,

uε=ϕ r

ε

u0(x)+

1−ϕ r

ε

ελUλ x

ε

+OH1

ελ

, (9)

and, next uε=ϕ

r

ε

u0(x)+εu(x) +

1−ϕ

r

ε

ελUλ x

ε

+εU x

ε

+OH1

ε3λ/2

. (10) Here, again, the first termu0coincides with the limitu0. The termuis defined onωwhereas theprofilesUλand U are defined in the infinite domainΩ. The termsuλ(x),Uλ(X)andU(X)are solution of‘super-variational problems’, i.e. problems set in spaces larger than the variational spaces, and where standard formulations have non- unique solutions. Moreover, the termsuandU are, in general, distinct from thev andV and differ by a combination of dual singular functions, see Theorem 3.

3. Multiscale expansion

In the MSE approach, the global expansion is valid everywhere and consists of terms involving the two scalesx andx/ε, superposed via cut-off functions:χandψare smooth and radial, satisfying:

χ (X)=1 for|X|>2R and χ (X)=0 for|X|< R, ψ (x)=1 for|x|<r

2 and ψ (x)=0 for|x|> r. (11)

Theorem 1.The solutionuεof problem(6)admits the following multiscale expansion into powers ofε uε(x)=χ

x ε

n =0

ελvλ(x)+ψ (x) n =0

ελVλ x

ε

+OH1

ε(n+1)λ

, (12)

where the termsvλandVλdo not depend onε, and are defined inωandΩby Eqs.(13)and(14).

3.1. Short description of the terms

Generically,vλandVλsolve the variational problems vλ∈H10(ω) such that∀v ∈H10(ω),

ω

vλ· ∇v =

ω

fλv, (13)

Vλ∈W10(Ω) such that∀V ∈W10(Ω),

Ω

Vλ· ∇V =

Ω

FλV , (14)

where W10(Ω)is the space{V ∈W1(Ω); V =0 on∂Ω}, with the weighted space W1(Ω)defined as:

W1(Ω)=

VD(Ω); (1+R)1V ∈L2(Ω),V ∈L2(Ω)

withR= |X|. (15)

The right-hand sidesfλandFλare defined recursively.

(6)

• For=0, we havef0=f, defined in problem (6) (v0is equal to the limit solutionu0), andF0=0;

• For=1, the functionfλis 0 andFλ=b0λ([X, χ]sλ)=b0λ(X

χsλ)χ X(sλ)), with the scalar coefficient b0arising from the decomposition into singular functions ofv0, cf. [6,3]:

v0(x)= q p=1

b0s(r, θ )+ O r0

r

,xω,q∈N; (16)

• The next terms are generically nonzero:fλcomes from the expansion at infinity of the previous profiles V (p < ), namely for the first one

Vλ(X)= q p=1

Bλs(R, θ )+ O R→∞

R

,XΩ,q∈N, (17)

andFλfrom the decomposition into singular functions of the previous termsv(p < ).

4. Matched asymptotic expansions

Letϕ be a smooth cut-off withϕ(ρ)=0 forρ1 andϕ(ρ)=1 forρ2. The outer and inner expansions ofuε are glued together with the cut-off functionxϕ(r/

ε):

Theorem 2.The solutionuεof problem(6)admits the following expansion into powers ofε uε(x)=ϕ

r

ε n

=0

ελuλ(r, θ )+

1−ϕ r

ε n

=0

ελUλ r

ε, θ

+OH1

ε(n+1)λ/2

, (18)

where the termsuλandUλdo not depend onε, and are defined inωandΩ by Eqs.(19)and(20).

4.1. Short description of the terms

Generically,uλandUλsolve ‘super-variational’ problems:

FinduλVloc,0(ω) such that uλ= −δ0f inω and uλ

1

p=1

aλs∈H1(ω), (19)

FindUλVloc,(Ω) such that Uλ=0 inΩ and Uλ p=1

Aλs∈W1(Ω), (20) where the spacesVloc,0(ω)andVloc,(Ω)are defined as

Vloc,0(ω)=

uD(ω); Φu∈H10(ω),ΦC(ω)¯ withO /∈supp(Φ)

, (21)

Vloc,(Ω)=

UD(Ω); ΦU∈H10(Ω),ΦC(Ω)with compact support

. (22)

In (19) δ0 is the Kronecker symbol. The coefficients aλ andAλare constructed by induction, and play also the role of right-hand sides: In these super-variational problems, uniqueness is enforced by prescribing an asymptotics in terms of dual singular functions. The coefficients aλ andAλcome from the decomposition into singular and dual-singular functions of the termsUanduforp < , respectively.

Remark 1.The scaler/

εused in expansion (18) is, in a certain sense, arbitrary. If, instead, we choose the scalex/εγ withγ(0,1), we find for the remainderOH1(n+1)λmin{γ ,1γ}). Thus the scaler/

εoptimizes the remainder.

(7)

5. Comparison between the two expansions

Theorem 3.The expansions(12)and(18)can be compared as follows:the termsuandvcoincide away from the corner point i.e. forrr;the profilesUandVcoincide in the corner region i.e. forRR/2.

More precisely, we have the identities(for the definition of the coefficientsaandA, see Section4)

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

v(x)=u(x)ψ (x)

n1

p=1

as(x), xω,

V(X)=U(X)χ (X) n p=1

As(X), XΩ.

(23)

6. Extensions

Several extensions of the previous results are possible, requiring more or less effort. First, we can consider a smooth right-hand sidef whose support does reach the perturbation region. In this case, the so-called logarithmic- polynomial singularities have to be considered to take the Taylor expansion off near the corner pointOinto account.

Other boundary conditions may be treated as well. The Neumann case, for instance, is slightly more involved due to the logarithmic singularity and the absence of Poincaré inequality. Lastly, we mention the three-dimensional case: if the domainωhas only a conical point atO, the analysis is very similar to the two-dimensional case. However, in presence of edges, these techniques might still be used, but with non straightforward adaptations (see [2] for edge and corner-edge asymptotics without small parameters).

References

[1] G. Caloz, M. Costabel, M. Dauge, G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptotic Analysis (2006), in press.

[2] M. Dauge, Elliptic Boundary Value Problems in Corner Domains – Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988.

[3] P. Grisvard, Boundary Value Problems in Non-Smooth Domains, Pitman, London, 1985.

[4] A. Il’lin, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 1992.

[5] P. Joly, S. Tordeux, Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion, Multiscale Modeling and Simulation 5 (1) (2006) 304–336.

[6] V.A. Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc. 16 (1967) 227–313.

[7] V. Maz’ya, S.A. Nazarov, B.A. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Berlin, 2000.

[8] S. Tordeux, G. Vial, M. Dauge, Selfsimilar perturbation near a corner: matching and multiscale expansions, 2006, in preparation.

Références

Documents relatifs

Optimal constrained matching problem (see [3, 20]), which is a variant from the optimal matching problem and the partial transport problem (see for instance [14, 18]), consists

It is thus important to observe that both Bultan’s algorithm [14] and our fast ridge pur- suit with chirp atoms do provide a better approximation quality for a given sparseness than

In Section 5, we present the method of matched asymptotic expansions, with the construction of the terms and matching conditions, and, by the technique of [24, 11], the validation

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt -

Soit PACG la théorie dont les modèles sont des corps PAC parfaits de caractéristique p augmentés d’un prédicat G pour un sous-groupe additif, alors il existe une théorie PACG

Considerations on ellipsoids have to be done in the normal distribution dual space rather than in the geometric space, because local primitives are visible by their reflectance

The procedure is composed of following steps: 1-demagnetization; 2- application of the mean stress ¯ σ; 3-application of the static magnetic field (anhysteretic pro- cedure is

a method based on the Mori theory for calculating memory kernels of initially localized and unrelaxed excitons interacting (via linear coupling) with phonons by direct expansion