• Aucun résultat trouvé

Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: A pre-requisite for optimization of gromining

N/A
N/A
Protected

Academic year: 2021

Partager "Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: A pre-requisite for optimization of gromining"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-01458433

https://hal.archives-ouvertes.fr/hal-01458433

Submitted on 6 Feb 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Nitrogen fixation and growth of Lens culinaris as

affected by nickel availability: A pre-requisite for

optimization of gromining

Ramez Saad, A. Kobaissi, Christophe Robin, Guillaume Echevarria, E Benizri

To cite this version:

Ramez Saad, A. Kobaissi, Christophe Robin, Guillaume Echevarria, E Benizri. Nitrogen fixation and

growth of Lens culinaris as affected by nickel availability: A pre-requisite for optimization of

gromin-ing. Environmental and Experimental Botany, Elsevier, 2016, 131 (Environmental and Experimental

Botany), pp.1-9. �10.1016/j.envexpbot.2016.06.010�. �hal-01458433�

(2)

Nitrogen

fixation

and

growth

of

Lens

culinaris

as

affected

by

nickel

availability:

A

pre-requisite

for

optimization

of

agromining

R.

Saad

a,b,c

,

A.

Kobaissi

c

,

C.

Robin

d,e

,

G.

Echevarria

a,b

,

E.

Benizri

a,b,

*

a

UniversitédeLorraine,Laboratoire“SolsetEnvironnement”,UMR1120,Vandœuvre-lès-Nancy,F-54518,France

b

INRA,Laboratoire“SolsetEnvironnement”,UMR1120,Vandœuvre-lès-Nancy,F-54518,France

c

UniversitéLibanaise,Laboratoire“BiologieVégétaleetEnvironnement”,FacultédesSciences1,Beyrouth,Lebanon

dUniversitédeLorraine,Laboratoire“AgronomieetEnvironnement”Nancy-Colmar,UMR1121,Vandœuvre-lès-Nancy,F-54518,France eINRA,Laboratoire“AgronomieetEnvironnement”Nancy-Colmar,UMR1121,Vandœuvre-lès-Nancy,F-54518,France

ARTICLE INFO Articlehistory: Received11March2016

Receivedinrevisedform13June2016 Accepted16June2016

Availableonline23June2016 Keywords: Nitrogenfixation Lensculinaris Soilfertility Agromining Nickel ABSTRACT

Lowsoilfertilityinultramaficsoilslimitstheefficiencyofnickelphytoextraction.Developingmore efficientcroppingsystemsforagrominingcanbeachievedbytheassociationofahyperaccumulatorwith alegume byenhancingsoil fertility.However, legumecropscanresultsensitive toultramafic soil conditions, including nickelNiavailability. Weassessed here whetherLensculinaris is adapted to ultramafic environments by growing on soils displaying a wide range of Ni concentrations and consequentlyproducingfunctionalnodules.ThesoilwasenrichedwithdifferentNiconcentrations([Ni]) (0–90mgNikg1).Natural15NabundancewasusedtoassessN

2fixation(%Ndfa).Bioticparameterswere

investigated (nodule number, Ni, carbon and nitrogen concentrations, plant biomass...). Soil parameterswereinvestigated(total[Ni],DTPA-extractableNi,CandNconcentrations...).Mostof thephysicochemicalandbiologicalparametersweresignificantlyaffectedbytheincreasedsoil[Ni]. Nodulenumbersperplantwaslowerunderhigh[Ni]thancontrol(soilwithoutNi).Noduleslosttheir capacitiestofix N2underhigh Niaddition(90mg Nikg1). Formany parameters,there wereno

significantdifferencesbetweencontrolandtreatmentsupto60mgofNikg1addedtothesoil.Lentilis abletogrowonasoilcontainingamountsofNi-DTPAsimilartothosegenerallyfoundinserpentinesoils. Itcouldbeusedinassociationwithahyperaccumulatorplantasanitrogenproviderinordertooptimize Niagromining.

ã2016ElsevierB.V.Allrightsreserved.

1.Introduction

Serpentine soils (i.e. ultramafic soils) are derived from

ultramaficrocksandcontainsignificantamountsofmetallictrace

elements(MTE)includingcopper,chromium,iron,titanium,cobalt

andnickel(Berazaín,2007;Chaneyetal.,2008).Theaveragetotal

content of nickel (Ni) in these soils under temperate to

Mediterranean conditions can range between 1400 and

3500ppm (Kabata-Pendias, 2000; Bani et al., 2014).Ultramafic

soils are also characterized by high Mg concentrations and a

deficiencyinN,P,KandCa(Kabata-Pendias,2000;BoydandJaffré,

2009).Asaresultofthepresenceofheavymetals,veryhighMg:Ca

ratio (Bani et al., 2007) and deficiencies, serpentine soils are

entirelyill-suitedtoprofitableagriculturalproduction andeven

forests(Tumietal.,2012).Theirlow-fertilityandlow-productivity

make themunattractive for traditionalagricultureand manyof

theseareasareslowlyabandonedbyfarmers,withruralexodus

and landscapeclosure. However,serpentineoutcrops inEurope

cover over 10,000km2 and these ultramafic landscapes have

potentialtoprovidemultipleecosystemservicesandcontributeto

Europe’s goals towards insuring production of renewable raw

materialsandrenewableenergy(Echevarriaetal.,2015).Theidea

ofphytominingmetalsemergedinthe90s(Chaneyetal.,2007)

andthegoalwastocultivateplantsabletoaccumulatetracemetals

from metal-rich soilsand transport them tothe shoots (>1%),

which could then be harvested as a bio-ore to recover highly

valuablemetals,e.g.nickel(Ni).Nickel-hyperaccumulatingplants

areconsideredidealcandidatesforagromining,whichisa

non-destructiveapproachtotherecoveryofhighvaluemetals(e.g.Ni)

frommetal-enrichedsoilsandores(vanderEntetal.,2013,2015).

InEurope,about40endemictaxaofNi-hyperaccumulatorsfrom

two families (Brassicaceae and Asteraceae) can be found. The

* Corresponding author at: Université de Lorraine, Laboratoire “Sols et Environnement”,UMR1120,Vandœuvre-lès-Nancy,F-54518,France.

E-mailaddress:emile.benizri@univ-lorraine.fr(E.Benizri).

http://dx.doi.org/10.1016/j.envexpbot.2016.06.010

0098-8472/ã2016ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Environmental

and

Experimental

Botany

(3)

processinvolvesrootuptakeoftracemetalsfromsoils,aswellas

theiractivetransporttotheshootswheretheycanbeextracted

afterharvest(Chaneyetal.,2008).Phytominingwasproventobe

efficientin the2000sand becamearealmarketopportunityin

2007(Chaneyetal.,2007;Tangetal.,2012).Fewworksdescribed

theimplementationofagroecosystemswhichcanleadtobetter

soil resource efficiency and to offer fully integrated, new

phytominingagriculture that couldcover thousands of km2 in

Europe and benefit local communities with sustainable rural

development(Banietal.,2007,2015a,b).Therecentdevelopment

ofthephytominingconceptledtothedefinitionof“agromining”

(vanderEntetal.,2015)asawaytoprovidemultipleecosystem

services,suchasprovisioningservices(e.g.metal,fuel-biomass)

and supporting services (e.g. amelioration of the fertility of

ultramafic soilsover time). In this context, the use of the

Ni-hyperaccumulatorAlyssummuralewasproventobeeconomically

feasibleinEurope(Albania)basedonsuccessfulfieldexperiments

(Banietal.,2007,2015a,b).However,severalbottleneckshavebeen

identifiedandneedtobesolvedbeforeagrominingfullydevelops

inEurope.Inparticular,ultramaficsoilsshowedlow-fertilityand

low-productivity,thusfertilizeramendmentssuchasN,PandK

must be considered to significantly improve crop growth and

phytoextractionyield(Banietal.,2015a;Kiddetal.,2015).Moving

towards agromining would result in a more resource-friendly

agriculture,i.e.agro-ecologicalpracticesshouldbeintroducedasa

substitutetoconventionalfertilizationandpest-controlpractices.

As shown with cereal food crops, forage, silvo-pastoral,

agroforestryandhorticulturalsystems,theinclusionofalegume

ininter-croppingorco-croppingprovidesnitrogeninputsinthe

culturalsysteminadditiontoproducingvaluableyields(Lizarazo

etal.,2015;Peoplesetal.,2015).Indeed,itisknownthatlegumes,

used in either inter-cropping or co-cropping, influence the

N-economy of a system in two ways: they fix part of their

N-requirementfromatmosphericN2and,therefore,depleteavailable

soil-Nlesserthannon-legumes,andalsoprovidepartofthe

fixed-N upon mineralization of decaying plant residues to the

non-leguminous crop(Nyagumbo et al., 2015; Peopleset al., 2015).

Moreover,intraditionnalagronomy,legumecovercropsareused

toreduceorpreventerosion, producebiomassandadd organic

mattertothe soil,attractbeneficialinsects andthey canbreak

weed-,disease-andinsect-cycles.Therefore,inter-croppingor

co-croppinghyperaccumulator plantswithlegumes couldimprove

phytoextractionyieldthroughtheenrichmentofultramaficsoils

withnitrogenfixedfromtheair.ApartoftheNfixedbeingusually

transferred to companion plants (Rodrigues et al., 2015), the

hyperaccumulatorcouldbenefitfromthisbiologicalprocess,while

reducing fertilizer inputs and pesticides to the field. The

combinationofalegumespecieswithahyperaccumulatorplant

couldbe an innovative strategy for agromining; if the legume

tolerates high metal concentration, it could lead to higher

hyperaccumulatorbiomass and reduce theamount of fertilizer

supplied, combining higher economic performance and lower

environmentalimpact(Scaliseetal.,2015;Luceetal.,2015).Thus,

NbiologicalfixationcanactasaprimaryNsource(biofertilizer)

and provide an ecosystem service, thereby complementing or

replacing fertilizer inputs (Fustec et al., 2010; Mokgehle et al.,

2014).

Amongthefactorsthatreduceplantgrowthandcropyieldin

ultramafic soils (i.e. the Serpentine syndrome) we can list

(Whittaker 1954; Proctorand Woodell1975; Brooks1987): Mg

excessoverCa;K,PandCadeficiency;Nitoxicity.Growing

non-adaptedlegumesin ultramaficconditionscouldthenresultina

reduction of beneficial effect of co-cropping because of these

factors.Specificamendmentscanhelptheplantfacethenutrient

unbalances.Butthepresenceofmetals(inourcaseNi)insoilcould

limitthegrowthofnon-hyperaccumulatorspeciesandstimulate

theproduction ofethylene in plants(Abeleset al.,1992; Glick,

2005; Glick, 2014), which affects root growth and nodule

formation in legumes suchas beans, peas,clovers and vetches

(Ligeroetal.,1991;LeeandLarue,1992;HirschandFang,1994).

Hence,ourobjectivewastoinvestigatewhetherLensculinaris,a

legume, could be used in inter- or co-cropping with a

hyper-accumulatorplant,onanaturalultramaficNi-richsoil,inorderto

improve Ni phytoextraction by the hyperaccumulator plant

withoutanychemicalfertilizerinputs.Thefirststepistoconfirm

ifthis legumecangrow and formnodules onasoil containing

variedNiconcentrations.Weassessedwhetherthesenodulesfix

nitrogeninthepresenceofNi.Thisstudyisaprerequisiteforusing

Lens culinarisin inter-or co-croppingwitha hyperaccumulator

plant,onanaturalultramaficNi-richsoil,inordertoimproveNi

phytoextraction.Ourstrategywastogrowlentilsonsoilartificially

enrichedwithNiandthentoestimatenitrogenfixationbynatural

15N abundance becauseusing a serpentine soil doesnot allow

assessing the effect of each of the factors that generate the

serpentinesyndrome.WechoseanagriculturalNi-enrichedsoilin

which wecarefullyadded Niinorder toreachthesame

DTPA-availableconcentrationsofNithanthosewecurrentlyfoundinthe

ultramafic soils (e.g. Albania) where we pretend to crop L.

culinaris+A. murale.Then, we willbe able to estimate if lentil

will be a good candidate for co-cropping or rotation with a

hyperaccumulatorplant.

2.Materialandmethods

2.1.Soilcharacteristicsandexperimentaldesign

We performeda two month microcosm study in controlled

conditions(photoperiod16h,temperature18Cnightand 22C

day, relative humidity 70%, PPFD: 350

m

molm2s1)based on

threetreatments:lentilsowninsoilwithincreasingNi

concen-trations,ryegrasssowninsoilwithincreasingNiconcentrations

andlentilsowninsandalsowithincreasingNiconcentrations.The

soilusedinthisexperimentwasanagriculturaltopsoil,collected

fromthesurfacelayer(10–20cm),originatingfrom“LaBouzule”

Experimental Farm of Université de Lorraine (4844022.2700N,

619019.8500E,MeurtheetMoselle,France)andpreviously

cultivat-ed with nodulated pea, thus naturally containing Rhizobium

leguminosarum.Immediatelyaftercollection,thesoilwassieved

to<5mmtoremovecoarsefragmentsandstoredat4Cforless

than7daysuntilsoilphysicochemicalanalyseswerecarriedout.

Soil physicochemical properties were determined by the Soil

AnalysisLaboratoryofINRA(Arras,France).Itcontained36.7,51.5

and7.2%,clay,siltandsandrespectivelyhadaC/Nratioof9.2,aMg/

Caratioof0.08andanavailablephosphoruscontent(OlsenP)of63

mg



kg1. Soil pH was 6.4 and was similar (less than 1 unit

difference)withtheultramaficsoilstargetedforfield

implemen-tation of agromining with legumeco-cropping in Albania and

Northwestern Spain (pH range from 6.0 to 7.0). Total Ni and

availableNi(DTPA-extractable)contentswererespectively67.5mg

Nikg1and1.8mgNikg1.Weartificiallyenrichedthesoilwith

nickelsulfate(NiSO4,7H2O)withsixdifferentconcentrations(0,

10, 20, 30, 60 and 90mg Nikg1 dry soil). The soil was then

incubatedfor15dayspriortosowingplantstoavoidmajorchanges

inNiavailabilityduringplantgrowthandhavethemoccurbefore.

OurgoalwastokeepthegradientofavailableNiinarangethat

included30mgNikg1,whichisthevaluethatwasmeasuredon

twofieldsiteswherelegumeswillbegrowntogetherwithAlyssum

murale.Microcosms(Polyvinylchloridetubes,4.7cmdiameterand

22cmheight)werefilledwith416.2gofsoil(ontheDWbasis).One

lentilorryegrassseedwassownineachmicrocosm.Lentilseeds

wereprovidedbySem-Patners(Lensculinarisvar.Beluga,France)

(4)

and ryegrass seeds by Forum (Lolium multiforum L. italicum.

France). A setof microcosms werefilled with sand,previously

enriched with the six nickel sulfate concentrations. Lentils

cultivatedonsandandinoculatedwithaRhizobiumstrain,were

usedascontrolsforquantificationofN2fixation(seebelow).Seeds

onsandysubstrateweredisinfectedbyimmersioninethanol95%

for30s,followedbyimmersionfor10mininahydrogenperoxide

solution(H2O2,3%).Theseedswerethenrinsedatleastfivetimes

withsteriledistilledwater.Beforeenrichedwithnickelsulfate,the

sandwaswashedwithhydrochloricacid(N/3,incubationfor12h

followed by several rinses with distilled water) in order to

mineralize the organic matter residues. Then, each sandy

microcosmwasinoculatedwithaRhizobiumstrain.Weusedthe

self-adheringpeat-basedinoculantforLentil(BeckerUnderwood,

Canada).Thisproductcontainsatleast109viablecellsofRhizobium

leguminosarumbiovarviciaestrain1435pergramandwebrought

1.2kg per 600kg seed, in accordance with manufacturer’s

instructions.

Theexperimenthadarandomizedcompleteblockdesignwith

threereplicates ofthefollowingtreatments:lentil andryegrass

cultivatedontheNi-enrichedagriculturalsoilandlentil

(inoculat-ed with Rhizobium) cultivated on Ni-enriched sand. The

Ni-contaminated agricultural soils were adjusted three times per

weekto70%ofsoilwaterholdingcapacitywithdistilledwater.

Lentilsonsandwereirrigatedwitha nutrientsolutionwithout

nitrogen(pH6.98)(Munns,1977).

2.2.Plantanalyses

After2monthsofculture,plantroots,stemsandleaveswere

collectedandseparated.Freshrootswerecarefullywashedwith

deionizedwaterandthenodulenumberperplantwascountedby

microscopicobservations.Then,rootsandshootspartswere

oven-driedat70Cfor72handdryweightsrecorded.Subsamples(0.5g)

ofdryandgroundplanttissuewereacid-digestedat95Cin2.5ml

ofconcentratedHNO3and5mlofH2O2(30%).Thefinalsolutions

werefiltered(0.45

m

mDigiFILTER)andcompletedupto25mlwith

deionized water. [Ni] in the solution was measured with an

InductivelyCoupledPlasma-AtomicEmissionSpectrometer

(ICP-AES,LibertyII,Varian).

Metalsareknowntocauseseveretoxicitytovariousmetabolic

activities of legumes, including physiological processes like

synthesisofchlorophyllpigments(BibiandHussain,2005;Ahmad

etal.,2008)andproteinsynthesis(Brahimaetal.,2010).Heavy

metalsareknownfortheirinhibitionofnitratereductaseactivity

(NRA) (Fatnassi et al., 2014). Consequently, total chlorophyll,

carotenoid concentrations and nitrate reductase activityin the

leaves were assessed as indicators of the Ni effects on plant

physiology. Chlorophyll and carotenoids were extracted by

incubation of leaves in acetone (80%) for 24h followed by

measurementsofopticaldensityusingaSmartSpecPlus

Spectro-photometer,BIO-RAD(wavelengthsof663,645and440nmfor

chlorophyll a, b and carotenoids, respectively). The respective

concentrationsofchlorophyllaandbwerecalculatedaccordingto

Arnon(1949).ThepotentialNRAwasestimatedinfreshleavesby

incubationin0.1Mphosphatebuffer(pH7.5),30mMKNO3,and5%

isopropanol at 28C for 2h, followed by the addition of

sulfanilamide 3M HCl and 0.02% naphthylethylene diamine

hydrochloride (NED HCl). The mixture was left for 20min for

maximumcolor developmentprior tooptical density

measure-mentwithaspectrophotometer(SmartSpecPlus

Spectrophotom-eter,BIO-RAD)at540nm(Jaworski,1971).ThetotalCandNinthe

plant parts were analyzed by combustion at 900C with an

analyzer C, N (vario MICRO cube, Elementar Analysensysteme

GmbH).

Weusedthe15Nnaturalabundance(

d

15N)technique(Kerley

andJarvis,1999)toestimatetheproportionofN(%Ndfa)inlentils

derivedfrombiologicalnitrogenfixation(BNF).Weusedryegrass

(LoliumperenneL.)growninpotscontaminatedwithNiinthesame

wayasthelentils,asnon-legume(non-fixing)controlplantsto

estimate

d

15NoftheNuptakefromsoil.Finally,weusedlentils

grownonsandysubstrateandinoculatedwithaRhizobiumstrain

to estimate the

d

15N of the legume when fixing 100% of N2

(Amargeretal.,1979;Högberg,1997).The%Ndfawascalculated

usingthefollowingequation:

%Ndfa¼ ð

d

15 Nof Ryegrass

d

15 NLentilÞ ð

d

15NofRyegrass 

d

15NLentilonsand Þ100

Then, the amount of Ndfa per plant was calculated by

multiplying the %Ndfa by the lentil biomass for each plant.

Nitrogenoriginatingfromtheseedswasquantified,bymeasuring

totalNand

d

15N.

2.3.Soilanalyses

Soilmoisturewasdeterminedbyheatingsubsamplesto105C

untilaconstantweightwasachieved.Subsamples(0.5g)ofdrysoil

were acid-digested in 2ml of concentrated HNO3 and 6ml of

concentratedHClforquantificationofmajorandtraceelements.

Thefinalsolutionswerefiltered(0.45

m

mDigiFILTER,SCPscience,

Canada)andcompletedupto50mlwithdeionizedwater.[Ni]in

thesolutionwasmeasuredwithanInductivelyCoupled

Plasma-Atomic Emission Spectrometer (ICP-AES, Liberty II, Varian).

AvailableNiinsoilsamplesfromeachmicrocosmwasextracted

witha DTPA–TEA solution(0.005MDiethyleneTriamine

Penta-acetic Acid, DTPA, 0.01M CaCl2, 0.1M triethanolamine,pH 7.3)

accordingtoLindsayandNorvell(1978)andthe[Ni]insolutions

wasmeasuredwithanICP-AES(LibertyII,Varian).TheCECwas

measuredaccordingtointernationalISOstandard23470.SoilpH

wasmeasuredusingapHmeterinasoil–watersuspension(soil:

waterratio=1:5).

Total and organic C and N were quantified with the C, N

Analyzer.SolubleC and Nweredeterminedon5gofdried soil

extractedwith25mlofCaCl2(1mM)byagitationat5rpmfor24h.

Themixturewas thenfilteredthroughaWhatmanfilter(nylon

membrane,0.45

m

m)andsolubleCandNofCaCl2solutionswere

then analyzed with a TOC analyzer (TOC-VSCN equipment,

Shimadzu, Kyoto, Japan). Nitrate and ammonium ions were

quantifiedon15goffreshsoilmixedto75mlof0.016MKH2PO4

and stirred for30minat 17rpm. Thesoil suspensionwas then

a a' abc a' abc a' ab a' bc a' c a' 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 S R S R S R S R S R S R 0 10 20 30 60 90

Shoot

and r

o

ot

bi

om

ass

(g

.p

la

n

t

-1

)

Doses

of Ni (mg.kg

-1

)

Fig.1.Shoot(greybars)androot(blackbars)biomass(gplant1)oflentilsin relation to Ni additions (mgkg1). Meansconfidence interval followed by differentlettersaresignificantlydifferentatp<0.05(Tukey’smultiplerangetest), (n=3).

(5)

centrifuged(20minat 5800g)and filtered througha Whatman

filter(nylonmembrane,0.45

m

m)beforeanalysisbyIon

Chroma-tography(Dionex1500iwithanAS4ASCcolumn;Sunnyvale,USA).

2.4.Statisticalanalyses

Variance analysiswascarried outonalldatausingone-way

ANOVA (Tukey test with a confidence interval of 95%). Also,

normality tests and k-sample comparison of variances were

analyzed.Thesestatisticalanalyseswerecarried outonXLSTAT

software(XLSTAT 2015.2.01.16520,http://www.xlstat.com).

Fur-thermore,alltheparametersstudiedweresubmittedtoPCAusing

StatBoxsoftware(Grimmersoft,Paris,France,http://www.statbox.

com).

3.Results

3.1.Plantanalyses

3.1.1.Shootandrootbiomass

Lentils from treatment without Ni (0mg Ni kg1) had the

greatest shoot dry biomass (1.19g) when compared to other

treatments(Fig.1). Therewas nosignificant differencefor the

shootdrybiomassfrom0(control)upto30mgNikg1.Treatment

with90mgNikg1showedthesmallestshootbiomass(0.32g),

significantlylowerthanthatofthecontrol.Therootdryweight

wasnotaffectedbyNiaddition.

3.1.2.Carbonandnitrogencontentinshootsandroots

Total N and C in plant shoots were similarly affected by

increasingsoil[Ni](Fig.2).Thecontroltreatmenthadthehighest

values(0.02and0.54gplant1oftotalNandtotalC,respectively)

andthe90mgNikg1treatmentthelowestvalues(0.01and0.14g

plant1 of total N and total C, respectively). There were no

significant differences among other treatments. There was no

significant effect of soil [Ni] on total N in theroots (data not

shown).Thetreatmentwith60mgNikg1showed thehighest

amount of total C in roots (0.12g plant1) with a significant

differencetoallothertreatments(datanotshown).

3.1.3.Niconcentrationsinshootsandroots

The total Ni concentrations in lentil shoots and roots

significantly increased when soil Ni-concentrations increased

(Fig.3).[Ni] was 34mg Ni kg1DW in shoots for thehighest

soil[Ni]of90mgNikg1.Unsurprisingly,rootsaccumulatedmuch

moreNithantheshoots,with172mgNikg1inthesoiltreatment

contaminatedwith60mgNikg1.TherewasnodetectableNiin

a' abc' abc' ab' bc' c' a bc abc ab bc c 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.0 0.1 0.2 0.3 0.4 0.5 0.6 N C N C N C N C N C N C 0 10 20 30 60 90

S

h

o

o

t to

ta

l

n

itro

g

e

n

(g

.p

la

n

t

-1

)

S

h

o

o

t to

ta

l

c

a

rb

o

n

(g

.p

la

n

t

-1

)

Doses

of Ni (mg.kg

-1

)

Fig.2.Totalnitrogen(N:greybars)andcarbon(C:blackbars)inshootsoflentils(g plant1)grownonsoilcontaminatedwithNi.Meansconfidenceintervalfollowed bydifferentlettersaresignificantlydifferentatp<0.05(Tukey’smultiplerange test),(n=3). c c c b ab a c b b b a a 0 50 100 150 200 250 0 5 10 15 20 25 30 35 40 S R S R S R S R S R S R 0 10 20 30 60 90 Tot a l N ickel i n t h e r oot (m g k g -1) Tot a l N ickel i n t h e shoot (m g k g -1) Doses of Ni (mg.kg-1)

Fig.3.TotalNiconcentrationinshoots(S:greybars)androots(R:blackbars) (mgkg1DW)oflentilsinrelationtoNiadditions(mgkg1).Meansconfidence intervalfollowedbydifferentlettersaresignificantlydifferentatp<0.05(Tukey’s multiplerangetest),(n=3).

a a a a a a ab' b' b' b' b' a' 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 5 10 15 20 25 30 35 0 10 20 30 60 90

Tot

a

l C

h

lo

ro

phy

ll

i

n

t

h

e shoot

(m

g

.g

-1

)

C

a

ro

te

noi

d

s

in

t

h

e shoot

(m

g

.g

-1

)

Doses

of Ni (mg.kg

-1

)

Fig.4.Carotenoid(greysquares)andchlorophyll(blacktriangles)concentrationsin leaves oflentils (mgg1 FW)grown onsoil contaminatedwith Ni.Means confidenceintervalfollowedbydifferentlettersaresignificantlydifferentatp<0.05 (Tukey’smultiplerangetest),(n=3).

a ab ab b b b 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 10 20 30 60 90

N

it

rat

e R

e

duct

ase

A

c

tiv

ity

m

o

l

NO

2-g

-1

h

-1

)

Doses

of Ni (mg.kg

-1

)

Fig.5. Variationofthenitratereductaseactivityinthefreshleaves(mmolNO2

g1h1)oflentilsgrownonsoilcontaminatedwithNi.Meansconfidenceinterval withincolumnsfollowedbythesameletterdonotdiffersignificantlyaccordingto Tukey’smultiplerangetest(a=0.05).

(6)

thecontrolshoots,althoughrootsdidaccumulatesmallquantities

(15.1mgNikg1).

3.1.4.Pigmentsandnitratereductaseactivity

A significantly higher chlorophyll concentration (1.19mgg1

FW)wasobservedinleavesofplantsgrownunderhighNiaddition

(90mg Ni kg1 in comparison withtheother treatments). The

control was not different from other treatments (Fig. 4). The

carotenoidconcentrationinleaveswasnotaffectedsignificantlyby

soil[Ni],butitfollowedthesametrendasthechlorophyllgetting

somehowhigherwiththeincreaseof[Ni](Fig.4).NRAdecreased

slightlywhen[Ni]inthesoilincreased(Fig.5).Plantsgrowingon

soilscontaminatedwith30–90mgNikg1hadsignificantlylower

NRA(0.70,0.71and0.68

m

molNO2g1h1,respectively)thanthe

control(0.87

m

molNO2g1h1).

3.1.5.Nodulenumber

Lentil plants growing on soil with 90mg Ni kg1 had

significantly fewer nodules than the control (0mg Ni kg1)

(Fig.6).Nosignificantdifferencewasobservedforthisparameter

forthelowest[Ni].

3.1.6.N2fixation

The amountof nitrogenfixedfrom theair (Ndfa) decreased

when soil[Ni] increased(Fig. 7).Controlsoilshad significantly

greater Ndfa(12.2mgplant1) incomparison toallother

treat-ments.Thehighest[Ni]completelycancelledNdfa(0mgplant1).

Nosignificantdifferenceswereshownamongother[Ni]of10,20,

30and60mgNikg1.

3.2.Soilcharacteristics

3.2.1.TotalNiandDTPA-Ni

Soil[Ni]suppliedatthebeginningoftheexperimentstrongly

structuredthedistributionoftotalNiandDTPA-extractablenickel

amongthegradientofsoils(Fig.8).Thetotal[Ni]quantifiedinthe

soilatharvestisproportionaltothe[Ni]suppliedinthesoiland

reached a maximum of 138.8mg Nikg1 withthe addition of

90mgNikg1.DTPA-extractableNishowedthesametrendasthe

totalNiinthesoil(alsomeasuredafterharvest)andwascomprised

between50 and 55%of Niaddedand thehighest addition(i.e.

90mg Ni kg1) led to a final DTPA concentration of 49.73mg

Nikg1 (Fig. 8). The targeted concentrations observed in field

conditions for further implementationof legumes (i.e. 30mg

kg1)werethuscomprisedintherangetestedhere.

3.2.2.pHandCEC

Regardlessofsoiltreatment,soilpHatharvestwassignificantly

lowerby0.13–0.22pHunitsthanthecontrolsoil(6.63)forthe60

and90mgNikg1treatments,respectively(Fig.9).Inthesame

way,thetreatmentwith[Ni]at90mgkg1hadthelowestCEC,the

difference withall othertreatments beingsignificant (datanot

shown).

3.2.3.Soilnitrogenandcarbon

Nosignificantdifferenceswereobservedbetweenanyofthe

treatmentsfor thepercentageoftotal andorganicsoilNandC

(datanotshown).Similarly,nosignificantdifferencewasdetected

forsolubleCinsoils(datanotshown).ThesolubleNconcentration

insoilsatharvestwasthehighest(58.8mgkg1)withadditionof

90mgkg1,comparedtocontrolandothertreatments(between

20.4 and 27.5mgkg1). There was no significant difference

between control and treatments with additions from 10 to

60mgNikg1. a ab ab ab ab b 0 50 100 150 200 250 300 350 400 0 10 20 30 60 90

N

odul

e num

ber

(

p

er

pl

ant

)

Doses

of Ni (mg.kg

-1

)

Fig.6. Nodulenumber(perplant)oflentilsinrelationtoNiaddtions(mgkg1).

Meansconfidenceintervalfollowedbydifferentlettersaresignificantlydifferent atp<0.05(Tukey’smultiplerangetest),(n=3).

a b b b bc c 0 2 4 6 8 10 12 14 16 0 10 20 30 60 90

S

h

o

o

t N

d

fa

(m

g

.p

la

n

t

-1

)

Doses

of NiSO

4

.7H

2

O (mg.kg

-1

)

Fig.7. Shootnitrogenfixedfromtheair(Ndfa,mgplant1)oflentilsgrownonsoil contaminatedwithNi.Meansconfidenceintervalfollowedbydifferentlettersare significantlydifferentatp<0.05(Tukey’smultiplerangetest),(n=3).

f e d c b a f' e' d' c' b' a' 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 DT P A -Ni To ta l N i DT P A -Ni To ta l N i DT P A -Ni To ta l N i DT P A -Ni To ta l N i DT P A -Ni To ta l N i DT P A -Ni To ta l N i 0 10 20 30 60 90

D

T

P

A

-N

i in

th

e

s

o

il

(m

g

.k

g

-1

)

Tot

al

N

i i

n

t

h

e

soi

l

(m

g.

kg

-1

)

Doses

of Ni (mg.kg

-1

)

Fig.8.Totalnickel(total-Ni)(blackbars)andDTPA-extractablenickel(DTPA-Ni) (grey bars) in the soilat the harvest (mgkg1). Meansconfidence interval followedbydifferentlettersaresignificantlydifferentatp<0.05(Tukey’smultiple rangetest),(n=3).

(7)

3.2.4.Ammoniumandnitrate

No ammonium was detected in soils at harvest for all

treatments (datanot shown). In contrast,high nitrate

concen-trationsweremeasured,withoutsignificantdifferenceamongall

treatments,except ahigher,but non-significant,nitrate

concen-trationfortheadditionof90mgkg1(59.7mgkg1)comparedto

thecontrol(34.6mgkg1)(datanotshown).

4.Discussion

Hyperaccumulators areconsideredtobeidealcandidates for

application in agromining, a non-destructive approach for the

recoveryofhighvaluemetals(e.g.Ni)frommetal-enrichedsoils.

Howeveragrominingshouldfocusonspeciesshowingthehighest

levelsofhyperaccumulation.Unfortunately, theannualbiomass

productionofsomehyperaccumulatorspeciesis notsufficiently

high.Therefore,highbiomassyieldandmetalhyperaccumulation

areboth requiredinorder tomake agromining acommercially

viablealternative(Zhangetal.,2014;vanderEntetal.,2015).

As shown in classic agriculturalsystems, the inclusion of a

legumeininter-croppingorco-croppingprovidesnitrogeninputs

in theculturalsystem in addition toproducing valuableyields

(Lizarazoetal.,2015).So,ourobjectivewastoinvestigatewhether

Lens culinaris could be used in inter- or co-cropping with a

hyperaccumulatorplantinordertoimproveNiphytoextractionby

hyperaccumulatorplantswithoutanychemicalfertilizerinput.But

it is necessary to control if this legume can grow and form

functionalnoduleswithintherangeofnaturalNiconcentrations

displayed by ultramafic agricultural soils. Indeed, there are

numerousreportswhereelevatedamountsoftracemetalshave

beenfoundtolimit thegrowth ofboth rhizobiaand theirhost

legumes (Heckman et al., 1987; Broos et al., 2005) and

concomitantlyreducecropyields.But,itisalsoknownthatthe

degreeoftoleranceofplants(includinglegumes)totracemetals

have been divided into three categories: hypotolerance, basal

tolerance,andhypertolerance(Ernstetal.,2008),andthatsome

legumes can be found in different habitats polluted by excess

heavy metals. For example, Anthyllis vulneraria can be found

naturallyin ultramafic soils and is able to fix 80% of its total

nitrogen from atmosphere. The study of serpentinophytes in

North-EstPortugalrevealedthatsomefamilies,suchaslegumes,

showedhightolerancetoserpentinesoils(MenezesdeSequeira

andPintodaSilva,1992).DifferentspeciesofTrifolium(T.Bocconei,

T. cherleri, T. strictum), Anthyllis sampaiana, Lotus tenuis are

commonin theseserpentineenvironments.Thesameoccursin

ultramaficsoilsofAlbaniawherespeciesofTrifolium(T.nigriscens,

T.campestre,T.angustifolium)andofLotus(L.corniculatusandL.

angustissimus)are commonspecies or can even bedominating

speciesanddisplayextremelyhighNiconcentrationsinshoots,e.g.

T.nigrescens(Banietal.,2007,2013).

Inourstudy,lentilwhichwasneverthelessadverselyaffected

bytheincreaseofsoil[Ni],toleratedamoderateavailabilityofNi,

from7.5to30.8mgNi-DTPAkg-1(correspondingtoadditionsof

10–60mgNikg1)basedonresultsofplantbiomassweight,Cand

Ncontent,physiologicalparametersandnodulenumbers.Trace

metalscontaminatedsoilsseverelyaffectsthesurvivalof

Rhizobi-umstrainsasdescribedbyGusmãoetal.(2005).Rhizobiastrains

isolatedfromLensculinarisrevealedthelowestresistancetotrace

metals, in comparison to other strains isolated from different

nodulatedlegumes(Viciafaba,CicerarietinumandSullacoronaria),

whentestedonculturemediaenrichedwithtracemetals(Cd,Pb,

ZnandCu)(Fatnassietal.,2014).Thisfactexplainsthereduced

atmospheric N2fixation inourstudythatcouldberelatedtoa

decreasedsymbioticactivityofthemicrobesatthehighestsoilNi

availability.Theseoutcomesaffectedvariousparameterssuchas

theNdfa,butalsotheshootbiomass,whichwasalsonegatively

correlatedtoNiadditionstothesoil.Moreover,shootsandrootsof

enriched treatments accumulatedgreater [Ni], which was also

positively correlated to Ni-DTPA concentrations, total and

ex-changeableNiinsoilsatharvest.SuchaccumulationofNiinplant

partsisknowntocauseareductionoftheplantbiomass(Ahmad

etal.,2012)androotsstoredahigheramountofNithanshoots,as

reportedbypreviousstudiesonlegumes(Royetal.,2009).Asa

result of the decreased Ndfa, the 15N excess in lentil and the

proportionofnitrogencontentinlentilcomingfromtheseed(data

notshown)increasedwhen[Ni]rosefrom0to90mgkg1.Atthe

latterconcentrationtherewasabsolutelynomoreNinputtothe

systemfromatmospheric N2fixation,thusmakingthepotential

associationwithhyperaccumulatorsnonprofitableintermsofN

budget(competitionforNabsorptionbetweenbothspecies).

Physiologically and more precisely, [Ni] showed direct and

indirecttoxiceffectsonthevariousplantprocesses,whichwere

monitoredinthisstudy.Wefollowedtheeffectof[Ni]onpigments

concentrationsinleaves,butweeventuallyfoundthatcarotenoids

werenotsignificantlyaffectedbytheincreaseof[Ni]inthesoil.

However,Nihadacontradictoryeffectonchlorophyllcontentin

leaves. It is knownthat tracemetals have a negative effecton

chlorophyll content in plants (Zengin and Munzuroglu, 2005;

Fatobaetal.,2008).Ourhypothesisregardingtheincreaseofthe

chlorophyllcontentin freshleaves athighestNi concentrations

was that reduction of plant biomass results in a mechanical

concentrationofchlorophyllinleaves(Krupaetal.,1993;Prasad

andFreitas,2003).Nickeladdedtothesoildeleteriouslyaffected

nitratereductaseactivity(NRA)inshoots.ReductionofNRA,dueto

theinhibitionofnitratetranslocationfromrootstoshootsbyNi,

hasalsobeenreportedinmany previousstudies (e.g.Kevrešan

etal.,1998;SharmaandSubhadra,2010).Consequently,decreased

amountsofleafnitrateimpliedlowerNRAlevels(Kevrešanetal.,

1998), which werealso affectedby thephotosynthetic process

(Bazzigalupietal.,1992).Metabolitesissuedfromthe

photosyn-thetic metabolism are essential tonitrate reduction. Therefore,

photosynthesis, related at the same time to leaf size and

chlorophyll quantities, was limited, thus decreasing both the

uptakeandreductionofnitrate(Bazzigalupietal.,1992).

Nitrogen and carbon in the shoots were also significantly

reduced by the Ni concentrations in the soil. Strong positive

correlationslinkedC andNcontentsinshootstoshootbiomass

and to Ndfa in shoots (Pearson correlations, 0.982 and 0.878,

respectively;datanotshown).Itisknownthathighconcentrations

ofmetalslimitnutrientandwateruptakefromthesoilandthus

reducebiomassproductionanddrymatteraccumulationinshoots

a a a ab b c 6.2 6.3 6.3 6.4 6.4 6.5 6.5 6.6 6.6 6.7 6.7 0 10 20 30 60 90

pH

Doses

of Ni (mg.kg

-1

)

Fig.9.pHofthesoilattheharvest. Meansconfidence intervalfollowedby differentlettersaresignificantlydifferentatp<0.05(Tukey’smultiplerangetest), (n=3).

(8)

and roots. Furthermore, the photosynthesis, carbohydrate and

proteinsynthesis arealsoreduceddue totheinducedoxidative

stressbytheheavymetal(Ahmadetal.,2012).Both,nitrogenfixed

fromtheairandnitrateassimilationfromthesoil,reportedtobe

reducedbytheheavymetaltoxicity,todiminishnitrogencontent

inbothshootsandroots(Ahmadetal.,2012).

Noammoniumconcentrationsweredetectedinoursoil.This

wasduetothemainconversionofammoniain soilintonitrate

throughnitrification(Robertson1997).Ingeneral,ammoniumis

foundinloweramountsinsoilsthannitrate(BurgerandJackson,

2003).

Soil pH and CEC decreased with increasing soil-Ni

concen-trationsandthiswasprobablyduetothecomplexationofNi2+to

soilsurfacesitesandtotheNi2+exchangewithothercationsfrom

CEC, in both cases releasing surface H+ ions. Furthermore, the

stabilityofNisorbedontoorganicparticlesandthepolymerization

ofcation-boundorganicmatterdiminishedtheCECinthesoilat

highNiconcentrations(Violanteetal.,2010).ThesolubleNpoolin

the soil and nitrate ions were reversely affected by increasing

concentrationsofNidue tothereduced abilityofthelentils to

absorbnutrientsathigherNiconcentrations(Ahmadetal.,2012).

Ononehand,weagreewiththiscommentbutontheotherhand,it

isneverpossibletoassessonesinglefactorinstudyingserpentine

stressbyusingserpentinesoilswhichcombineallstressesinone.

Thisis whywe based thestudy onDTPA-Ni ona soilthat we

anticipatedthinkingthatithadapHvalueclosetoneutralityto

avoidany pHeffect.Indeed, thepHvaluesafter croppingwere

slightlyhigher(whichbythewaymightexplaintheslightdecrease

inDTPA-Ni) butcomprised between6.5and 6.7 (consideredas

neutralpH).OurinterestwasthelevelofDTPA-Nitheplantwas

exposed to having all chemical fertility parameters in optimal

conditions,sothatwecouldhaveanideaofwhattheNistressison

thelegume.Thelevelofstresswasstillsignificant,althoughmany

serpentinesoilsmayexceedthisDTPA-Nivalueintopsoils.Sowe

canquestionthatideathatNiinserpentineisnotthestressing

factor.Weagree,buthereweusedanagriculturalsoilwhichis

normallyfertileandallstudiedparametersconfirmthephytotoxic

effectofNionlentilevenifthesoilpHwasneutral.

Innaturalultramaficsoilsstressestocropplantsarelinkedtoi)

thelowfertilityofthesesoils,ii)thetoxicityofNiand,iii)thehigh

ratio of Mg:Ca (Whittaker, 1954; Proctor and Woodell 1975;

Brooks,1987).Thetwolaststressescanbeovercomebyanadapted

chemicalfertilizationpattern,butitismoredifficulttochangeNi

availability, evenwith limestoneadditions (Kukier and Chaney,

2004). Our experience is thatDTPA-Ni and water-soluble Niin

temperateultramaficsoilsarestillhighenoughtocausetoxicity

symptomstonon-adaptedplantsatpHvaluesbelow8.0.Thisis

becausethemineralphasesthatbearNiaremoderatelysensitive

topHatthisrangeofvalues,i.e.below8.0(Massouraetal.,2006;

Banietal.,2014;Raousetal.,2013).RaisingthepHvalueof1unit

by liming to substantially decrease Ni availability cannot be

achievedwithoutanynegativesideeffectonPandKavailability

andrequiresfurtherfertilizerinput,thusbecominganeconomic

issue. Although liming has been proven to be beneficial toNi

phytoextractionyieldbyA.murale(KukierandChaney,2004),it

canbeexpensiveand canincreaseCaconcentrations inshoots,

thusincreasing thecostof hydrometallurgicaltreatment of the

biomassforNirecovery(Zhangetal.,2016).

Wedemonstrated that lentilscan tolerate strong

concentra-tionsofNi-DTPA inthesoilandit waspreviouslyreportedthat

lentilsareabletotoleratehighconcentrationsoftracemetals,such

ascopper,leadandcadmium(Fatnassietal.,2014).Thelentilscan

withstandawiderangeofDTPA-Niconcentrationsinthesoil(upto

30mg Nikg1)thatare atleast oneorderof magnitude above

acceptablelevelsformostcrops(L’HuillierandEdighoffer,1996).

Thisrangeofconcentrationsis frequentlyobservedin naturally

richultramaficsoilalthoughslightlylowerthanmanyultramafic

soils(Banietal.,2009,2013).Therefore,thenaturallyultramafic

soils, which will be used in further experiments to test the

associationofLensculinariswithahyperaccumulatorplantunder

co-croppingorinrotation,displayDTPA-Niconcentrationswhich

are comprised in our tested range and the plant should be

successfullycroppedinfieldconditionsprovidedthatCa,KandMg

fertilityissuesaremanaged.

5.Conclusion

Our study confirmed that lentils cantolerate relatively high

concentrationsofavailable nickelinthesoil(i.e.6timeshigher

thanbackgroundvaluesfoundinnonultramaficsoils),althougha

physiologicalstressisinducedwithadditionsofNiabove60mg

kg1.Lentilscanstillproducenodulesthatfixnitrogenfromtheair

formostoftherangeofNiadditionstestedalthoughthenumberof

nodulesisstronglyaffectedbyNiadditions.Nitrogenfixationis

alsoaffectedinthesamewayandbecomesnullwhenavailable

concentrationsofNireach49.7mgkg1DTPA-Ni.Thequantityof

availableNifoundintheserpentinesoil,whichwillbeusedinthe

futurework,iswithintherangeoftheconcentrationsinvestigated

inthisexperiment(i.e.30mgkg1Ni-DTPA).Ourupcomingwork

will be to test Lens culinaris in inter- or co-cropping with a

hyperaccumulator plant to enhance its biomass production by

providingnitrogenandtoallowthishyperaccumulatortoextract

moreNi,however, thepotential associationwith

hyperaccumu-latorswillbecomenonprofitableintermsofNbudget

(competi-tionforNabsorptionbetweenbothspecies)ifweexceedavalueof

30mgkg1Ni-DTPA.

Acknowledgment

We would like to acknowledge the technical team of

“LaboratoireSolset Environnement”for theirhelpand support

and the technical assistance of the joint research unit Forest

EcologyandEcophysiology(UMR1127INRA,EEF,Champenoux),

andespeciallyChristianHOSSANNfortheisotopicanalysisof15N.

ThisworkwassupportedbytheFrenchNationalResearchAgency

through thenational“Investissements d’avenir” program,

refer-ence ANR-10-LABX-21—LABEX RESSOURCES21 and through the

ANR-14-CE04-0005project“Agromine”.Finally,wearethankfulto

theAssociationofSpecializationandScientificGuidance(ASSG)for

fundingthePhDscholarshipofRamezSaad.

References

Abeles,F.B.,Morgan,P.W.,SaltveitJr.,M.E.,1992.Chapter4—Regulationofethylene productionbyinternal,environmental,andstressfactors,In:SaltveitJr.,M.E. (Ed.),EthyleneinPlantBiology.secondeditionAcademicPress,NewYork,pp. 56–119.doi:http://dx.doi.org/10.1016/B978-0-08-091628-6.50010-2.

Ahmad,M.S.A.,Hussain,M.,Ijaz,S.,Alvi,A.K.,2008.Photosyntheticperformanceof twomungbean(Vignaradiata)cultivarsunderleadandcopperstress.Int.J. Agric.Biol.10,167–172.

Ahmad,E.,Zaidi,A.,Khan,M.,Oves,M.,2012.Heavymetaltoxicitytosymbiotic nitrogen-fixingmicroorganismandhostlegumes.In:Zaidi,A.,Wani,P.A.,Khan, M.S.(Eds.),ToxicityofHeavyMetalstoLegumesandBioremediation.Springer, Vienna,pp.29–44.doi:http://dx.doi.org/10.1007/978-3-7091-0730-0-2.

Amarger,N.,Mariotti,A.,Mariotti,F.,Durr,J.C.,Bourguignon,C.,Lagacherie,B.,1979. Estimateofsymbioticallyfixednitrogeninfieldgrownsoybeansusing variationsin15

Nnaturalabundance.PlantSoil52,269–280.doi:http://dx.doi. org/10.1007/BF02184565.

Arnon,D.I.,1949.Copperenzymesinisolatedchloroplasts:polyphenoloxidasein Betavulgaris.PlantPhysiol.24,1–15.

Bani,A.,Echevarria,G.,Sulçe,S.,Morel,J.L.,Mullai,A.,2007.In-situphytoextraction ofNibyanativepopulationofAlyssummuraleonanultramaficsite(Albania). PlantSoil293,79–89.doi:http://dx.doi.org/10.1007/s11104-007-9245-1.

Bani,A.,Echevarria,G.,Mullaj,A.,Reeves,R.D.,Morel,J.L.,Sulçe,S.,2009.Nickel hyperaccumulationbyBrassicaceaeinserpentinesoilsofAlbaniaandNorthwest Greece.Northeast.Nat.16,385–404.

(9)

Bani,A.,Imeri,A.,Echevarria,G.,Pavlova,D.,Reeves,R.D.,Morel,J.L.,Sulçe,S.,2013. NickelhyperaccumulationintheserpentinefloraofAlbania.Fresen.Environ. Bull.22,1792–1801.

Bani,A.,Echevarria,G.,Montargès-Pelletier,E.,Gjoka,F.,Sulçe,S.,Morel,J.L.,2014. PedogenesisandnickelbiogeochemistryinatypicalAlbanianultramafic toposequence.Environ.Monit.Assess.186,4431–4442.doi:http://dx.doi.org/ 10.1007/s10661-014-3709-6.

Bani,A.,Echevarria,G.,Sulçe,S.,Morel,J.L.,2015a.Improvingtheagronomyof Alyssummuraleforextensivephytomining:afive-yearfieldstudy.Int.J. Phytoremediat.17,117–127.doi:http://dx.doi.org/10.1080/

15226514.2013.862204.

Bani,A.,Echevarria,G.,Zhang,X.,Benizri,E.,Laubie,B.,Morel,J.L.,Simonnot,M.-O., 2015b.Theeffectofplantdensityinnickel-phytominingfieldexperimentswith AlyssummuraleinAlbania.Aust.J.Bot.63,72–77.

Bazzigalupi,O.,Deroche,M.E.,Lescure,J.C.,Bachelier,C.,Tardif,S.,1992.Activité nitrateréductaseinvitrodejeunesplantulesdeblé(TriticumaestivumL.) cultivéesdanslesconditionsdedéterminationdelafacultégerminativeet aprèsaméliorationdelanutritionetdel’éclairement.Agronomie12,711–721.

Berazaín,R.,2007.Nickellocalizationintissuesofdifferenthyperaccumulator speciesofEuphorbiaceaefromultramaficareasofCuba.PlantSoil293,99–106. doi:http://dx.doi.org/10.1007/s11104-007-9227-3.

Bibi,M.,Hussain,M.,2005.Effectofcopperandleadonphotosynthesisandplant pigmentsinblackgram(VignamungoL.).Bull.Environ.Contam.Toxicol.74, 1126–1133.doi:http://dx.doi.org/10.1007/s00128-005-0698-8.

Boyd,R.S.,Jaffré,T.,2009.ElementalconcentrationsofelevenNewCaledonianplant speciesfromserpentinesoils:elementalcorrelationsandleaf-ageeffects. Northeast.Nat.16,93–110.doi:http://dx.doi.org/10.1656/045.016.0508.

Brahima,S.,Jokea,D.,Ann,C.,Jean-Paul,N.,Marjo,T.,Arja,T.,Sirpac,K.,Frank,V., Karen,S.,Jaco,V.,2010.LeafproteomeresponsesofArabidopsisthalianaexposed tomildcadmiumstress.J.PlantPhysiol.167,247–254.doi:http://dx.doi.org/ 10.1016/j.jplph.2009.09.015.

Brooks,R.R.,1987.SerpentineandItsVegetation:AMulticlisciplinaryApproach. DiscoidesPress,Kent,UK.

Broos,K.,Beyens,H.,Smolders,E.,2005.Survivalofrhizobiainsoilissensitiveto elevatedzincintheabsenceofthehostplant.SoilBiol.Biochem.37,573–579.

Burger,M.,Jackson,L.E.,2003.Microbialimmobilizationofammoniumandnitrate inrelationtoammonificationandnitrificationratesinorganicandconventional croppingsystems.SoilBiol.Biochem.35,29–36.doi:http://dx.doi.org/10.1016/ S0038-0717(02)00233-X.

Chaney,R.L.,Angle,J.S.,Broadhurst,C.L.,Peters,C.A.,Tappero,R.V.,Sparks,D.L.,2007. Improvedunderstandingofhyperaccumulationyieldscommercial

phytoextractionandphytominingtechnologies.J.Environ.Qual.36,1429–1443.

Chaney,R.L.,Chen,K.Y.,Li,Y.M.,Angle,J.S.,Baker,A.J.M.,2008.Effectsofcalciumon nickeltoleranceandaccumulationinAlyssumspeciesandcabbagegrownin nutrientsolution.PlantSoil311,131–140. doi:http://dx.doi.org/10.1007/s11104-008-9664-7.

Echevarria,G.,Baker,A.J.M.,Bani,A.,Benizri,E.,Houzelot,V.,Laubie,B.,Kidd,P.S., Morel,J.L.,Pons,M.N.,Simonnot,M.O.,vanderEnt,A.,Zhang,X.,2015. Agrominingfornickel:acompletechainthatoptimizesecosystemservices renderedbyultramaficlandscapes.13thInternationalConferenceonthe BiogeochemistryofTraceElements(ICOBTE),July12–16,pp.2015.

Ernst,W.H.O.,Krauss,G.J.,Verklej,J.A.C.,Wesenberg,D.,2008.Interactionwith heavymetalswiththesulphurmetabolisminangiospermsfromanecological pointofview.PlantCell.Environ.31,123–143.

Fatnassi,I.C.,Chiboub,M.,Jebara,M.,Jebara,S.H.,2014.Bacteriaassociatedwith differentlegumespeciesgrowninheavy-metalcontaminatedsoils.Int.J.Agric. PolicyRes.2,460–467.doi:http://dx.doi.org/10.15739/IJAPR.018.

Fatoba,P.O.,Udob,P.O.,Emem,G.,2008.Effectsofsomeheavymetalsonchlorophyll accumulationinBarbulalambarenensis.EthnobotanicalLeaflets12,776–783.

Fustec,J.,Lesuffleur,F.,Mahieu,S.,Cliquet,J.B.,2010.Nitrogenrhizodepositionof legumes.Areview.Agron.SustainableDev.30,57–66.doi:http://dx.doi.org/ 10.1051/agro/2009003.

Glick,B.R.,2005.ModulationofplantethylenelevelsbythebacterialenzymeACC deaminase.FEMSMicrobiol.Lett.251,1–7.doi:http://dx.doi.org/10.1016/j. femsle.2005.07.030.

Glick,B.R.,2014.BacteriawithACCdeaminasecanpromoteplantgrowthandhelp tofeedtheworld.Microbiol.Res.169,30–39.doi:http://dx.doi.org/10.1016/j. micres.2013.09.009.

Gusmão,L.A.I.,Figueira,E.,DeAlmeida,M.P.,Pereira,S.I.A.,2005.Cadmium toleranceplasticityinRhizobiumleguminosarumbv.viciae:glutathioneasa detoxifyingagent.Can.J.Microbiol.51,7–14.

Högberg,P., 1997.TansleyreviewNo9515

Nnaturalabundanceinsoil-plantsystems. NewPhytol.137,179–203.

doi:http://dx.doi.org/10.1046/j.1469-8137.1997.00808.x.

Heckman,J.R.,Angle,J.S.,Chaney,R.L.,1987.Residualeffectsofsewagesludgeon soybeanII.Accumulationofsoilandsymbioticallyfixednitrogen.J.Environ. Qual.16,117–124.

Hirsch,A.M.,Fang,Y.W.,1994.Planthormonesandnodulationwhatsthe connection.PlantMol.Biol.26,5–9.doi:http://dx.doi.org/10.1007/bf00039514.

Jaworski,E.G.,1971.Nitratereductaseassayinintactplanttissues.Biochem. Biophys.Res.Commun.43,1274–1279.

Kabata-Pendias,A.,2000.Traceelementsinsoilsandplants.CRCPress,BocaRaton, USA(432pp).

Kerley,S.J.,Jarvis,S.C.,1999.Theuseofnitrogen-15naturalabundanceinwhite clover(TrifoliumrepensL.)todeterminenitrogenfixationunderdifferent

managementpractices.Biol.Fertil.Soils29,437–440.doi:http://dx.doi.org/ 10.1007/s003740050578.

Kevrešan,S.,Petrovic,N.,Popovic,M.,Kandra9c,J.,1998.Effectofheavymetalson nitrateandproteinmetabolisminsugarbeet.Biol.Plantarum.41,235–240.doi: http://dx.doi.org/10.1023/A:1001818714922.

Kidd,P.,Mench,M.,Álvarez-López,V.,Bert,V.,Dimitriou,I.,Friesl-Hanl,W.,Herzig, R.,Janssen,J.-O.,Kolbas,A.,Müller,I.,Neu,S.,Renella,G.,Ruttens,A., Vangronsveld,J.,Puschenreiter,M.,2015.Agronomicpracticesforimproving gentleremediationoftraceelement-contaminatedsoils.Int.J.Phytoremediat. 17,1005–1037.doi:http://dx.doi.org/10.1080/15226514.2014.1003788.

Krupa,Z.,Siedlecka,A.,Maksymiec,W.,Baszyilski,T.,1993.Invivoresponseof photosyntheticapparatusofPhaseolusvulgarisL.tonickeltoxicity.J.Plant Physiol.142,664–668.doi:http://dx.doi.org/10.1016/S0176-1617(11)80899-0.

Kukier,U.,Chaney,R.,2004.Insituremediationofnickelphytotoxicityfordifferent plantspecies.J.PlantNutr.27,465–495. doi:http://dx.doi.org/10.1081/PLN-120028874.

L’Huillier,L.,Edighoffer,S.,1996.Extractabilityofnickelanditsconcentrationin cultivatedplantsinNi-richultramaficsoilsofNewCaledonia.PlantSoil186, 255–264.doi:http://dx.doi.org/10.1007/BF02415521.

Lee,K.H.,Larue,T.A.,1992.ExogenousethyleneinhibitsnodulationofPisumsativum L.cvsparkle.PlantPhysiol.100,1759–1763.

Ligero,F.,Caba,J.M.,Lluch,C.,Olivares,J.,1991.Nitrateinhibitionofnodulationcan beovercomebytheethyleneinhibitoraminoethoxyvinylglycine.PlantPhysiol. 97,1221–1225.

Lindsay,W.L.,Norvell,W.A.,1978.DevelopmentofaDTPAsoiltestforzinc,iron, manganese,andcopper.SoilSci.Soc.Am.J.42,421–428.doi:http://dx.doi.org/ 10.2136/sssaj1978.03615995004200030009x.

Lizarazo,C.I.,Yli-Halla,M.,Stoddard,F.L.,2015.Pre-cropeffectsonthenutrient compositionandutilizationefficiencyoffababean(ViciafabaL.)and narrow-leafedlupin(LupinusangustifoliusL.).Nutr.Cycl.Agroecosys.103,311–327.doi: http://dx.doi.org/10.1007/s10705-015-9743-0.

Luce,M.St.,etal.,2015.Legumescanreduceeconomicoptimumnitrogenratesand increaseyieldsinawheat-canolacroppingsequenceinwesternCanada.Field CropsRes.179,12–25.doi:http://dx.doi.org/10.1016/j.fcr.2015.04.003.

Massoura,S.T.,Echevarria,G.,Becquer,T.,Ghanbaja,J.,LeclercCessac,E.,Morel,J.-L., 2006.Controlofnickelavailabilitybynickelbearingmineralsinnaturaland anthropogenicsoils.Geoderma136,28–37.

MenezesdeSequeira,E.,PintodaSilva,A.R.,1992.Ecologyofserpentinizedareaof North-EastPortugal.In:Roberts,B.A.,Proctor,J.(Eds.),TheEcologyofAreaswith SerpentinizedRocks:AWorldView.KluwerDordrecht,pp.169–197.

Mokgehle,S.N.,Dakora,F.D.,Mathews,C.,2014.VariationinN2fixationandN

contributionby25groundnut(ArachishypogaeaL.)varietiesgrownindifferent agro-ecologies,measuredusing15

Nnaturalabundance.Agric.Ecosyst.Environ. 195,161–172.doi:http://dx.doi.org/10.1016/j.agee.2014.05.014.

Munns,D.N.,1977.Mineralnutritionandthelegumesymbioses.ATreatiseon DinitrogenFixation.SectionIV.Wiley,NewYork,pp.353–391.

Nyagumbo,I.,Mkuhlani,S.,Pisa,C.,Kamalongo,D.,Dias,D.,Mekuria,M.,2015. Maizeyieldeffectsofconservationagriculturebasedmaize–legumecropping systemsincontrastingagro-ecologiesofMalawiandMozambique.Nutr.Cycl. Agroecosys.doi:http://dx.doi.org/10.1007/s10705-015-9733-2.

Peoples,M.B.,Chalk,P.M.,Unkovich,M.J.,Boddey,R.M.,2015.Candifferencesin15N

naturalabundancebeusedtoquantifythetransferofnitrogenfromlegumesto neighbouringnon-legumeplantspecies?SoilBiol.Biochem.87,97–109.doi: http://dx.doi.org/10.1016/j.soilbio.2015.04.010.

Prasad,M.N.V.,Freitas,H.M.D.,2003.Metalhyperaccumulationinplants— biodiversityprospectingforphytoremediationtechnology.Electron.J. Biotechnol.93,285–321.

Proctor,J.,Woodell,S.R.J.,1975.Theecologyofserpentinesoils.Adv.Ecol.Res.9, 255–366.

Raous,S.,Echevarria,G.,Sterckeman,T.,Hanna,K.,Thomas,F.,Martins,E.S.,Becquer, T.,2013.Potentiallytoxicmetalsinultramaficminingmaterials:identification ofthemainbearingandreactivephases.Geoderma192,111–119.doi:http://dx. doi.org/10.1016/j.geoderma.2012.08.017.

Robertson,P.G.,1997.Nitrogenuseefficiencyinrow-cropagriculture:cropnitrogen useandsoilnitrogenloss.EcologyinAgriculture.AcademicPress,SanDiego,pp. 347–365.

Rodrigues,M.,Dimande,P.,Pereira,E.L.,Ferreira,Q.I.,Freitas,S.,Correia,C.M., Moutinho-Pereira,J.,Arrobas,M.,2015.Early-maturingannuallegumes:an optionforcovercroppinginrainfedoliveorchards.Nutr.Cycl.Agroecosys.103, 153–166.doi:http://dx.doi.org/10.1007/s10705-015-9730-5.

Roy,B.K.,Prasad,R.,Gunjan,R.,2009.Heavymetalaccumulationandchangesin metabolicparametersinCajanuscajangrowninminespoil.J.Environ.Biol.31, 567–573.

Scalise,A.,Tortorella,D.,Pristeri,A.,Petrovi9cová,B.,Gelsomino,A.,Lindström,K., Monti,M.,2015.Legume-barleyintercroppingstimulatessoilNsupplyandcrop yieldinthesucceedingdurumwheatinarotationunderrainfedconditions.Soil Biol.Biochem.89,150–161.doi:http://dx.doi.org/10.1016/j.soilbio.2015.07.003.

Sharma,J.,Subhadra,A.V.,2010.TheeffectofMercuryonnitratereductaseactivity inbeanleafsegments(Phaseolusvulgaris)anditschelationbyphytochelatin synthesis.LifeSci.Med.Res.(LSMR)13.

Tang,Y.T.,Deng,T.H.B.,Wu,Q.H.,Wang,S.Z.,Qiu,R.L.,Wei,Z.B.,Guo,X.F.,Wu,Q.T., Lei,M.,Chen,T.B.,2012.Designingcroppingsystemsformetal–contaminated sites:areview.Pedosphere22,470–488.

Tumi,A.F.,Mihailovic,N.,Gajic,B.A.,Niketic,M.,Tomovic,G.,2012.Comparative studyofhyperaccumulationofnickelbyAlyssummurale:populationsfromthe ultramaficsofSerbia.Pol.J.Environ.Stud.21,1855–1866.

(10)

Violante,A.,Cozzolino,V.,Perelomov,L.,Caporale,A.G.,Pigna,M.,2010.Mobility andbioavailabilityofheavymetalsandmetalloidsinsoilenvironments.J.Soil Sci.Plant.Nutr.10,268–292.

doi:http://dx.doi.org/10.4067/S0718-95162010000100005.

Whittaker,R.H.,1954.Theecologyofserpentinesoils.Ecology35,258–288.doi: http://dx.doi.org/10.2307/1931126.

Zengin,F.K.,Munzuroglu,O.,2005.Effectsofsomeheavymetalsoncontentof chlorophyll,prolineandsomeantioxidantchemicalsinbean(Phaseolus vulgaris)seedlings.ActaBiol.Cracov.Ser.Bot.47,157–164.

Zhang,X.,Houzelot,V.,Bani,A.,Morel,J.L.,Echevarria,G.,Simonnot,M.O.,2014. SelectionandcombustionofNi-hyperaccumulatorsforthephytomining process.Int.J.Phytoremdiat.16,1058–1072.doi:http://dx.doi.org/10.1080/ 15226514.2013.810585.

Zhang,X.,Laubie,B.,Houzelot,V.,Plasari,E.,Echevarria,G.,Simonnot,M.-O.,2016. Increasingpurityofammoniumnickelsulfatehexahydrateandproduction sustainabilityinanickelphytominingprocess.Chem.Eng.Res.Des.106,26–32. doi:http://dx.doi.org/10.1016/j.cherd.2015.12.009.

vanderEnt,A.,Baker,A.J.M.,Reeves,R.D.,Pollard,A.J.,Schat,H.,2013. Hyperaccumulatorsofmetalandmetalloidtraceelements:factsandfiction. PlantSoil362,319–334.

vanderEnt,A.,Baker,A.J.M.,Reeves,R.D.,Chaney,R.L.,Anderson,C.W.N.,Meech,J. A.,Erskine,P.D.,Simonnot,M.O.,Vaughan,J.,Morel,J.L.,Echevarria,G.,Fogliani, B.,Rongliang,Q.,Mulligan,D.R.,2015.Agromining:farmingformetalsinthe future?Environ.Sci.Technol.49,4773–4780.doi:http://dx.doi.org/10.1021/ es506031u.

Figure

Fig. 1. Shoot (grey bars) and root (black bars) biomass (g plant 1 ) of lentils in relation to Ni additions (mg kg 1 )
Fig. 5. Variation of the nitrate reductase activity in the fresh leaves ( m mol NO 2  g 1 h 1 ) of lentils grown on soil contaminated with Ni
Fig. 6. Nodule number (per plant) of lentils in relation to Ni addtions (mg kg 1 ).
Fig. 9. pH of the soil at the harvest. Means  confidence interval followed by different letters are significantly different at p &lt; 0.05 (Tukey’s multiple range test), (n = 3).

Références

Documents relatifs

growth during unity and division (DID) Border cities grew relatively more slowly than interior cities during division period Spatial convergence Convergence because border

Our recent formulation of Quantum Decision Theory (QDT) [3, 4] is based on the recognition that entanglement is also a characteristic property of human decision making. Indeed, any

By in- creasing the radial velocity dispersion in the thick disc there is less angular momentum transfer from the disc to the halo, and stars can reach the bar-b /p region from

Keywords: Soil; Total Nitrogen; Vis- Short Wavelength Near Infrared Spectroscopy; Data Set Assignment; Outlier Detection.. 1

Pour cela, les algues seront incubées avec les quinones dans les conditions d’expérience usuelles de chronoampérométrie et diluées, puis leur capacité à se reproduire sera

In this design, the robot is propelled by the water pressure behind. Thus the water.. pressure within the robot is relatively high. And then the blue sensors for force

The sample distribution is centered on 0 ‰ for the unpolluted soils and on 0.2 ‰ for the polluted soils (Figure 1a) indicating that, in general, the polluted soils have iso-

Taxonomic reassessment of bats from Castelnau’s expedition to South America (1843–1847): Phyllostoma angusticeps Gervais, 1856 (Chiroptera, Phyllostomidae) Joaquín