• Aucun résultat trouvé

Identification of milestone papers through time-balanced network centrality

N/A
N/A
Protected

Academic year: 2021

Partager "Identification of milestone papers through time-balanced network centrality"

Copied!
17
0
0

Texte intégral

(1)

Identification of milestone papers through time-balanced

network centrality

Manuel Sebastian Mariani

a,∗

, Matúˇs Medo

a

, Yi-Cheng Zhang

a,b

aDepartment of Physics, University of Fribourg, 1700 Fribourg, Switzerland

bChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.R. China

Citations between scientific papers and related bibliometric indices, such as the h-index

for authors and the impact factor for journals, are being increasingly used – often in

con-troversial ways – as quantitative tools for research evaluation. Yet, a fundamental research

question remains still open: to which extent do quantitative metrics capture the

signifi-cance of scientific works? We analyze the network of citations among the 449,935 papers

published by the American Physical Society (APS) journals between 1893 and 2009, and

focus on the comparison of metrics built on the citation count with network-based metrics.

We contrast five article-level metrics with respect to the rankings that they assign to a

set of fundamental papers, called Milestone Letters, carefully selected by the APS editors

for “making long-lived contributions to physics, either by announcing significant

discov-eries, or by initiating new areas of research”. A new metric, which combines PageRank

centrality with the explicit requirement that paper score is not biased by paper age, is the

best-performing metric overall in identifying the Milestone Letters. The lack of time bias

in the new metric makes it also possible to use it to compare papers of different age on

the same scale. We find that network-based metrics identify the Milestone Letters better

than metrics based on the citation count, which suggests that the structure of the citation

network contains information that can be used to improve the ranking of scientific

publica-tions. The methods and results presented here are relevant for all evolving systems where

network centrality metrics are applied, for example the World Wide Web and online social

networks. An interactive Web platform where it is possible to view the ranking of the APS

papers by rescaled PageRank is available at the address http://www.sciencenow.info.

1. Introduction

The notion of quantitative evaluation of scientific impact builds on the basic idea that the scientific merits of papers (Narin, 1976; Radicchi, Fortunato, & Castellano, 2008), scholars (Egghe, 2006; Hirsch, 2005), journals (Bollen, Rodriquez, & Van de Sompel, 2006; Liebowitz & Palmer, 1984; Pinski & Narin, 1976), universities (Kinney, 2007; Molinari & Molinari, 2008) and countries (Cimini, Gabrielli, & Labini, 2014; King, 2004) can be gauged by metrics based on the received citations. The respective field, referred to as bibliometrics or scientometrics, is undergoing a rapid growth (Van Noorden, 2010) fueled by the increasing availability of massive citation datasets collected by both academic journals and online platforms, such as

∗ Corresponding author.

E-mail address:manuel.mariani@unifr.ch(M.S. Mariani).

http://doc.rero.ch

Published in "Journal of Informetrics 10(4): 1207–1223, 2016"

which should be cited to refer to this work.

(2)

GoogleScholarandWebofScience.Thepossiblebenefits,drawbacksandlong-termeffectsoftheuseofbibliometricindices arebeinghighlydebatedbyscholarsfromdiversefields(Hicks,Wouters,Waltman,deRijcke,&Rafols,2015;Lawrence, 2008;VanRaan,2005;Weingart,2005;Werner,2015).

Althoughsomeefforthasbeendevotedtocontrastdifferentmetricswithrespecttotheirabilitytosingleoutseminal papers(Dunaiski&Visser,2012;Dunaiski,Visser,&Geldenhuys,2016;Yao,Wei,Zeng,Fan,&Di,2014;Zhou,Zeng,Fan,& Di,2015),differencesamongtheadoptedbenchmarkingproceduresanddiverseconclusionsofthementionedreferences leavea fundamentalquestionstillopen:whichmetricofscientificimpactbestagreeswithexpert-basedperceptionof significance?InagreementwithWasserman,Zeng,andAmaral(2015),thesignificanceofascientificworkisintendedhere asitsenduringimportancewithinthescientificcommunity.

Toaddressthisquestion,wefocusonalistof87physicspapersofoutstandingsignificance–calledMilestoneLetters– recentlymadeavailablebytheAmericanPhysicalSociety(APS)[http://journals.aps.org/prl/50years/milestones,accessed 25-11-2015].AccordingtotheAPSeditors’description,theMilestoneLetters“havemadelong-livedcontributionstophysics, eitherbyannouncingsignificantdiscoveries,orbyinitiatingnewareasofresearch”.Thesearticleshavebeencarefully selectedbytheeditorsoftheAPS,andthechoicesaremotivatedindetailinthewebpage;thefactthatalargefractionof themledtoNobelPrizeforsomeoftheirauthorsisanindicationoftheexceptionalleveloftheselectedworks.

Inthiswork,weanalyzethenetworkofcitationsbetweentheN=449,935paperspublishedinAPSjournalsfrom1893 until2009tocomparefivearticle-levelmetricswithrespecttotherankingpositiontheyassigntotheMilestoneLetters. Areliableexpert-basedevaluationofthesignificance(intendedasenduringimportance,asinWassermanetal.,2015) ofapapernecessarilyrequiresatimelagbetweenthepaper’spublicationdateandtheexpert’sjudgment.Forexample, thereisatimeintervalof14yearsbetweenthemostrecentMilestoneLetter(from2001)andtheyearatwhichthelistof MilestoneLetterswasreleased(2015).However,weshowthatawell-designedquantitativemetricoffersustheopportunity todetectpotentiallysignificantpapersrelativelyshortaftertheirpublication–anaspectoftenneglectedintheevaluation ofbibliometricindicators.Toshowthis,westudyhowtheabilityofthedifferentmetricstoidentifytheMilestoneLetters changeswithpaperage.

Aplethoraofquantitativemetricsexistandcouldbestudiedinprinciple.Ourfocushereisnarrowedtometricsthatrely onadiffusionprocessontheunderlyingnetworkofcitationsbetweenpapersandtheircomparisonwithsimplecitation count.Thefivemetricsconsideredinthisworkarethus:thecitationcount,PageRank(introducedbyBrin&Page,1998), CiteRank(introducedbyWalker,Xie,Yan,&Maslov,2007),rescaledcitationcount(introducedbyNewman,2009),and novelrescaledPageRank.PageRankisaclassicalnetworkcentralitymetricwhichcombinesarandomwalkalongnetwork linkswitharandomteleportationprocess.Themetrichasbeenappliedtoabroadrangeofreal-worldproblems(Ermann, Frahm,&Shepelyansky,2015;Franceschet,2011;Gleich,2015forareview),includingrankingacademicpapers(Chen,Xie, Maslov,&Redner,2007;Yaoetal.,2014),journals(Bollenetal.,2006;González-Pereira,Guerrero-Bote,&Moya-Anegón, 2010)andauthors(Nykl,Jeˇzek,Fiala,&Dostal,2014;Radicchi,Fortunato,Markines,&Vespignani,2009;Yan&Ding,2009) (seeWaltman&Yan,2014forareviewoftheapplicationsofPageRank-relatedmethodstobibliometricanalysis).

Toovercomethewell-knownPageRank’sbiastowardoldnodesincitationdata(detailedlystudiedbyChenetal.,2007; Mariani,Medo,&Zhang,2015),theCiteRankalgorithmintroducesexponentialpenalizationofoldnodes,resultingina nodescorethatwellcapturesthefuturecitationcountincreaseofthepapersand,forthisreason,canbeconsideredasa reasonableproxyfornetworktraffic,asshownbyWalkeretal.(2007).However,weshowbelowthatCiteRankscoredoesnot allowonetofairlycomparepapersofdifferentage.RescaledcitationcountandrescaledPageRankarederivedfromcitation countandPageRankscore,respectively,byexplicitlyrequiringthatpaperscoreisnotbiasedbyage–theadoptedrescaling procedureisconceptuallyclosetothemethodsrecentlydevelopedbyRadicchietal.(2008),Newman(2009),Radicchiand Castellano(2011),Newman(2014),RadicchiandCastellano(2012b),RadicchiandCastellano(2012a),Crespo,Ortu ˜no-Ortín, andRuiz-Castillo(2012)andKaur,Ferrara,Menczer,Flammini,andRadicchi(2015)tosuppressbiasesbyageandfieldin theevaluationofacademicagents.Wefindthattherankingsproducedbytherescaledscoresareindeedconsistentwiththe hypothesisthattherankingsarenotbiasedbyage.

WefindthatPageRankcancompeteandevenoutperformrescaledPageRankinidentifyingoldmilestonepapers,but completelyfailstoidentifyrecentmilestonepapersduetoitstemporalbias.CiteRankcancompeteandevenoutperform rescaledPageRankinidentifyingrecentmilestonepapers,butmarkedlyunderperformsinidentifyingoldmilestonepapers duetoitsbuilt-inexponentialpenalizationforolderpapers.Indicatorsbasedonsimplecitationcountareoutperformedby rescaledPageRankforpapersofeveryage.ThisleadsustotheconclusionthatrescaledPageRankisthebest-performing metricoverall.WithrespecttopreviousworksbyChenetal.(2007),DunaiskiandVisser(2012),Fiala(2012)andDunaiski etal.(2016)thatclaimedthesuperiorityofnetwork-basedmetricsinidentifyingimportantpapers,ourresultsclarifythe essentialroleofpaperageindeterminingthemetrics’performance:rescaledPageRankexcelsandPageRankperformspoorly inidentifyingMLsshortaftertheirpublication,andtheperformanceofthetwomethodsbecomescomparableonly15years aftertheMLsarepublished.QualitativelysimilarresultsarefoundforanalternativelistofAPSoutstandingpaperswhich onlyincludesworksthathaveledtoNobelprizeforsomeoftheauthors(thelistisprovidedintheTableS2).

Ourresultsindicatethatnetworkcentralityandtime-balancearetwoessentialingredients–thoughneglectedbypopular bibliometricindicatorssuchastheh-indexforscholars(Hirsch,2005)andimpactfactorforjournals(Garfield,1972)–for aneffectivedetectionofsignificantpapers.Thissetsanewbenchmarkforarticle-levelmetricsandquantitativelysupport theparadigmthatconsideringthewholenetworkinsteadofsimplecitationcountcanbringsubstantialbenefitstothe rankingofacademicagents.Inabroadercontext,ourresultsshowthatadirectrescalingofPageRankscoresisaneffective

(3)

methodtosolvethePageRank’swell-knownbiasagainstrecentnetworknodes.Weemphasizethatwhilescientificpapers arethefocusofthiswork,theaddressedresearchquestionisgeneralandcanemergewhenestimatingtheimportanceof anycreativework–suchasmovies(Spitz&Horvát,2014;Wassermanetal.,2015)–forwhichquantitativeimpactmetrics andexpert-basedsignificanceassessmentsaresimultaneouslyavailable.Thepotentialbroaderapplicationsandpossible limitationsofourresultsarediscussedintheDiscussionsection.

2. Metrics

Weconsiderfivearticle-levelmetrics:citationcountc,PageRankscorep,CiteRankscoreT,rescaledPageRankscoreR(p), andrescaledcitationcountR(c).

2.1. Citationcount

WedenotebyAthenetwork’sadjacencymatrix(Aijisoneifnodejpointstonodeiandzerootherwise).Citationcount

(referredtoasindegreeinnetworkscienceliterature,seeNewman,2010)isoneofthesimplestmetricstoinfernode centralityinanetwork,beingsimplydefinedasci=



jAijforanodei.Citationcountisthebuildingblockofthemajority

ofmetricsforassessingtheimpactofsinglepapers,authors,journals(forareviewofcitation-basedimpactindicatorssee Waltman,2016).

2.2. PageRank

ThePageRankscorevectorwasintroducedbyBrinandPage(1998),andcanbedefinedasthestationarystateofa processwhich combinesarandomwalkalongthenetworklinks andrandomteleportation.Ina directedmonopartite networkcomposedofNnodes,thevectorofPageRankscores{pi}canbefoundasthestationarysolutionofthefollowing

setofrecursivelinearequations p(n+1)i



j:kout j >0 Aij p(n)j kout j +˛



j:kout j =0 p(n)j N + 1−˛ N , (1) wherekout j :=



lAljistheoutdegreeofnodej,˛istheteleportationparameter,andnistheiterationnumber.Eq.(1)

repre-sentsthemasterequationofadiffusionprocessonthenetwork,whichconvergestoauniquestationarystateindependently oftheinitialcondition(seeBerkhin,2005forthemathematicaldetails).ThePageRankscorepiofnodeicanbeinterpreted

astheaveragefractionoftimespentonnodeibyarandomwalkerwhowithprobability˛followsthenetwork’slinksand withprobability1−˛teleportstoarandomnode.Throughoutthispaper,weset˛=0.5whichistheusualchoiceforcitation data(Chenetal.,2007).

2.3. CiteRank

TocorrectthePageRank’sstrongtemporalbiasincitationnetworks,theCiteRankalgorithm(introducedbyWalkeretal., 2007)introducesadhocpenalizationforoldernodes.TheCiteRankscoreTisdefinedsimilarlyasPageRank;differentlyfrom PageRank,inCiteRankequationstheteleportationprobabilitydecaysexponentiallywithpaperagewithacertaintimescale .AccordingtoWalkeretal.(2007)andMaslovandRedner(2008),thischoiceoftheteleportationvectorisintendedto favortherecentnodesandthusleadtoascorethatbetterrepresentspapers’relevanceforthecurrentlinesofresearch. UsingthesamenotationasEq.(1),thevectorofCiteRankscores{Ti}canbefoundasthestationarysolutionofthefollowing

setofrecursivelinearequations Ti(n+1)=˛



j:kout j >0 Aji Tj(n) kout j +˛



j:kout j =0 Tj(n) N +(1−˛) exp(−(t−ti)/)



N j=1exp(−(t−tj)/) , (2)

wherewedenotebytithepublicationdateofpaperiandtthetimeatwhichthescoresarecomputed.Throughoutthispaper

weset˛=0.5and=2.6years,whicharetheparameterschosenbyWalkeretal.(2007).Theperformanceofthealgorithm forothervaluesoftheparameterisdiscussedinthecaptionofFig.E.10,inAppendixE.Weshowbelowthatexponential penalizationofoldernodesisnoteffectiveinremovingPageRank’sbias,andproposeinsteadarescaledPageRankscoreR(p) whoseaveragevalueandstandarddeviationdonotdependonpaperage.

2.4. RescaledPageRankandrescaledcitationcount

TocomputetherescaledPageRankscoreR(p)foragivenpaperi,weevaluatethepaper’sPageRankscorepiaswellasthe

meani(p)andstandarddeviationi(p)ofPageRankscoreforpaperspublishedinasimilartimeasi.Timeisnotmeasured

indaysoryears,butinnumbernofpublishedpapers;afterlabelingthepapersinorderofdecreasingage,i(p)andi(p)are

(4)

computedoverpapersj∈[i−p/2,i+p/2].Theparameterprepresentsthenumberofpapersintheaveragingwindow

ofeachpaper.1TherescaledscoreR

i(p)ofpaperiisthencomputedas

Ri(p)=pi−i(p)

i(p) . (3)

ValuesofR(p)largerorsmallerthanzeroindicatewhetherthepaperisout-orunder-performing,respectively,withrespect topapersofsimilarage.Ri(p)representsthez-score(Kreyszig,2010)ofpaperiwithinitsaveragingwindow.Forthesake

ofcompleteness,wehavealsotestedasimplerrescaledscoreintheformR(ratio)i (p)=pi/i(p);however,R(ratio)(p)failsto

produceatime-balancedrankingduetothefactthat(p)/(p)stronglydependsonpaperage(seeAppendixCfordetails).In addition,wetestedarescaledscoreR(year)(p)basedonEq.(3)where

i(p)andi(p)arecomputedoverthepaperspublished

inthesameyearaspaperi.WefoundthatwhileR(year)(p)isabletosuppresslargepartofPageRank’stemporalbias,its

rankingismuchlessinagreementwiththehypothesisofunbiasedrankingthantherankingbyR(p)(seeAppendixCfor details).Forthisreason,weuseanaveragingwindowbasedonnumberofpublicationsandnotonrealtime.Thischoiceis alsosupportedbythefindingsbyNewman(2009)andParoloetal.(2015)whichsuggestthattheroleoftimeincitation networksisbettercapturedbythenumberofpublishedpapersthanbyrealtime.

Wedefinetherescaledcitationcountanalogouslyas Ri(c)=ci−i(c)

i(c) , (4)

wherei(c)andi(c)representthemeanandthestandarddeviationofccomputedoverpapersj∈[i−c/2,i+c/2].

CitationcountrescalingwasusedbyNewman(2009)andNewman(2014)toidentifypapersthataccruemorecitationsthan expectedforpapersofsimilarageunderthehypothesisofpurepreferentialattachment.

Thechoiceofthesizeofthetemporalwindowdeservessomeattention:ifthesizeofthetemporalwindowistoolarge, onewouldfallagaininatime-biasedrankingthatisoneoftheissuesthatmotivatethepresentpaper.Ontheotherhand, ifwechooseatoosmallaveragingwindow,thepaperswouldbeonlycomparedwithfewotherpapersandtheresulting scoreswouldbetoovolatile.Throughoutthispaper,wesetc=p=1000;werefertoAppendixDforfurtherdetailson

thedependenceofrankingpropertiesontheaveragingwindowsize.WestressthattherankingsbyR(c)andR(p)areonly weaklydependentoncandp(seeFig.D.9),andthecorrelationbetweentherankingsbyR(p)obtainedwithdifferent

valuesofPageRank’steleportationparameter˛isclosetoone(Spearman’srankcorrelationcoefficientbetweentherankings obtainedwith˛=0.5and˛=0.85isequalto0.98).Theseresultsindicatethattheproposedrescalingmetricsarerobustwith respecttovariationsoftheirparameters.

3. Results

We analyzed the network composed of L=4,672,812 citations among N=449,935 papers published in APS journals (1893–2009). The dataset was directly provided by the APS following our request at the webpage http://journals.aps.org/datasets,andwasalsostudiedby,amongothers,Medo,Cimini,andGualdi(2011).

3.1. Timebalanceoftherankings

BeforecomparingtheperformancesofthefivemetricsinrecognizingtheMilestoneLetters(MLs),wewanttodetermine whetherthemetricsarebiasedbyageand,ifyes,thentowhichextent.InagreementwithRadicchietal.(2008)andRadicchi andCastellano(2011),weassumethatafairrankingofscientificpapersshouldbetime-balancedinthesensethatoldand recentpapersshouldbeequallylikelytoappearatthetopoftherankingbythemetric.Caveatsandpossibleweakpointsof thisassumptionareexaminedintheDiscussionsection.

Toassessthedegreeoftimebalanceofthefivemetrics,weperformastatisticaltestsimilartothoseproposedbyRadicchi andCastellano(2011)andRadicchiandCastellano(2012b).WedividethepapersintoS=40differentgroupsaccordingto theirageand,foreachmetric,wecomputethenumbern˛(z)oftop-zNpapersbythemetricforeachagegroup˛,and

quantitativelycomparetheresultinghistogram{n˛(z)}withtheexpectedhistogram{n(0)˛ (z)}underthehypothesisthatthe

rankingistemporallyunbiased.Wesetz=0.01;resultsforothersmallvaluesofzarequalitativelysimilar.

Fig.1Ashowsthattheobservedvaluesofn(0.01)forPageRankarefarfromtheirexpectedvaluesunderthehypothesisof unbiasedranking.Forinstance,n1(0.01)/n(0)1 (0.01)=4.62fortheagegroupthatcontainstheoldestN/40papers,asopposed

ton40(0.01)=0fortheagegroupcomposedofthemostrecentN/40papers.Toquantifythedegreeoftimebalanceofametric,

wecomparethestandarddeviationoftheobservedhistogram{n˛(0.01)}withtheexpectedstandarddeviation0under

thehypothesisofunbiasedranking.Foraperfectlyunbiasedranking,thenumbern(0)˛ ofnodesfromagegroup˛inthetop-z

1Inordertohavethesamenumberofpapersineachaveragingwindow,adifferentdefinitionofaveragingwindowisneededfortheoldestandthe mostrecentp/2papers,forwhichwecomputeiandioverthepapersj∈[1,p]andj∈(N−p,N],respectively.

(5)

Fig.1.Timebalanceofthenetwork-basedmetrics.Panels(A,C,E)showthehistogramofthenumberofpapersfromeachpaperagegroupinthetop-1% oftherankingbyPageRankscorep,rescaledPageRankscoreR(p)andCiteRankscoreT,respectively(agegroup1andagegroup40containtheoldestand mostrecentN/40papers,respectively).Thehorizontalblacklinerepresentstheunbiasedvaluen(0)(0.01)=0.01N/40;thegray-shadedarearepresentsthe interval[n(0)

0,n(0)+0]with0givenbyEq.(5).Panels(B,D,F)showthecumulativedistributionsofPageRankscorep,rescaledPageRankscoreR(p) andCiteRankscoreT,respectively,fordifferentagegroups.

bytherankingobeysthemultivariatehypergeometricdistribution(Radicchi&Castellano,2012b).Therefore,weexpecton averagen(0)(z)=zN/Stop-zNpapersforeachset,withthestandarddeviation

0(z)=



zN S



1−1S



(1−z)NN1, (5)

Theobservedstandarddeviation(z)iscomputedas

(z)=







1 S S



˛=1 (n˛−n(0)˛ ) 2 . (6)

Theratio/0betweenobservedandexpectedstandarddeviationquantifiesthedegreeoftimebalanceoftheranking–

weexpectthisratiotobeclosetoorlowerthan(duetofluctuations)oneforanunbiasedranking,andsignificantlylarger thanoneforarankingbiasedbyage.Toquantifytowhichextenttheobservedvaluesof/0−1areconsistentwiththe

hypothesisofunbiasedranking,werunasimulationwhere0.01Npapersarerandomlyassignedtooneamong40groups, andcomputethestandarddeviationdevoftheobserveddeviationrand/0−1accordingtoEq.(6).With105realizations,

weobtaindev=0.11.Wealwaysexpresstheobservedvaluesof/0−1asmultiplesofdevinthefollowing.

Weobtain/0−1=12.91=117.36devforPageRank,whichindicatesthattherankingisheavilybiased.Theheavybiasof

PageRankscoreisalsorevealedbyacomparisonofitsdistributionfornodesfromdifferentagegroups,whichshowsaclear advantageforoldnodes(Fig.1B).Fig.1CshowsthattherankingbytheR(p)scoreisingoodagreementwiththehypothesis thattherankingisunbiased;wefind/0−1=0.16=1.45dev.ThetimebalanceofrescaledPageRankscoremanifestsitself

inthecollapseofthedistributionsoftheR(p)scorefordifferentagegroupsonauniquecurve,whichmeansthattheR(p) scoreallowsustocomparepapersofanyageonthesamescale(Fig.1D).Inasimilarway,therescalingproceduresuppresses thetemporalbiasofcitationcount[/0−1=0.10=0.91devforR(c)ascomparedto/0−1=6.01=54.64devforc,see

Fig.2].WeobserveaqualitativelysimilarsuppressionoftimebiasfordifferentchoicesofthenumberSofagegroups(not shownhere).

Withrespecttothehistogram obtainedwithR(p), thehistogram{n˛(0.01)}obtainedwiththeCiteRankalgorithm

(withtheparameterschosenbyMaslovandRedner(2008))presentsmuchlargerdeviationfromthehistogramexpected under the hypothesis of time-balanced ranking (see Fig. 1E). As a result, the value of /0 obtained for CiteRank

(/0−1=1.75=15.91devwiththeparameterschosenbyWalkeretal.(2007))islargerthanthevalueobtainedforR(p).

ThedistributionsofCiteRankscoreTfordifferentagegroupsdonotcollapseonasinglecurve(seeFig.1F),whichisdirectly duetothebuilt-inexponentialdecayoftheteleportationterm.ThefailureofCiteRankinproducingatime-balancedranking iswellexemplifiedbythebehaviorofthescoredistributionforthemostrecentagegroup,whoseminimumscore(i.e.,

(6)

Fig.2.Timebalanceofthecitation-basedmetrics.Panels(A,B)showthehistogramofthenumberoftop-1%papersforeachpaperagegroupintheranking bycitationcountcandrescaledcitationcountR(c),respectively.Panels(C,D)showthecumulativedistributionsfordifferentagegroupsofcitationcount candrescaledcitationcountR(c),respectively.

thesmallestscorevaluesuchthatP(>T)deviatesfromone)ismuchlargerthanfortheotherdistributions,duetoalarger teleportationterm.ThesefindingsshowthatCiteRankscoredoesnotallowustofairlycomparepapersofdifferentage.

Thevaluesof/0−1forthefivemetricsaresummarizedinTable1.

3.2. IdentificationoftheMilestoneLetters

Intheprevioussection,wehaveshownthattherankingsbytherescaledmetricsR(p)andR(c)areconsistentwiththe hypothesisthattherankingisnotbiasedbypaperage.Whiledifferentworkshaverecentlyemphasizedtheimportanceof removingthebiasbyageofcitation-performancemetricsforafairrankingofscientificpublications(Radicchi&Castellano, 2011;Radicchietal.,2008)andresearchers(Kaur,Radicchi,&Menczer,2013),thepossiblepositiveeffectsoftime-balanced rankingswithrespecttobiasedrankingsremainlargelyunexplored.

Chenetal.(2007)analyzedtheAPSdatasetandfoundthatPageRankisabletorecognizeoldpapersthatareuniversally importantforphysics.TheyalsonotedthatPageRankisbasedonadiffusionprocessthatdriftstowardsoldpapers(see Marianietal.,2015forageneralanalysisofthisaspect)and,asaconsequence,itinevitablyfavorsoldpapers.Sincethe rescalingprocedurethatweproposesolvesthisissue,itisthusplausibletoconjecturethatwithrespecttothePageRank algorithm,rescaledPageRankallowsustoidentifyseminalpapersearlier.

Inthissection,weusetheAPSdatasetandthelistofMilestoneLetters(MLs)chosenbyeditorsofPhysicalReviewLetters (seeSupplementaryTableS1forthelistofMLs)toaddressthetwofollowingresearchquestions:

Table1

Thefiveconsideredmetricsandtheirbiasbyage.Thedifference/0−1quantifieshowmuchthehistogramofthenumberoftop-1%papersbythe metricdeviatesfromthehistogramexpectedunderthehypothesisofrankingnotbiasedbyage(seethemaintext).Thevaluesof/0−1areexpressedas multiplesoftheirexpectedvaluedev=0.11forarandomrankingofthepapers(computedasexplainedinthemaintext).Valuesof/0−1smallerthan 2dev=0.22arereportedinboldcharacters.

Metric Properties /0−1

Citationcountc Localmetric 54.64dev

PageRankscorep Network-basedmetric 117.36dev

CiteRankT Network-basedmetric,time-aware 15.91dev

RescaledPageRankR(p) Network-basedmetric,time-aware 1.45dev

RescaledcitationcountR(c) Localmetric,time-aware 0.91dev

(7)

Fig.3. Metrics’performanceinrankingthemilestoneletters(listedintheSupplementaryTableS1)asafunctionofpaperage.(A)Dependenceofthe averagerankingratio ¯r onpaperage.(B)Dependenceoftheidentificationratef0.01onpaperage.(C)Dependenceofthenormalizedidentificationrate ˜f0.01 onpaperage.

1.IsthereasignificantgapbetweentheperformanceofrescaledPageRankandPageRankinidentifyingtheMLsshortafter publication?Ifthereisasubstantialgap,doesitclosedownafteracertainnumberofyearsafterpublication?

2.Donetwork-basedindicatorsoutperformindicatorsbasedonsimplecitationcountinrecognizingtheMLs?

TocomparetherankingpositionsoftheMLsbythefivedifferentmetrics,therankingofMilestoneLetteriiscomputed tyearsafteritspublication.Wecalculatetheratioofi’srankingpositionri(s,t)bymetricsandi’sbestrankingposition

min

s {ri(s,t)}among allconsideredmetrics.Tocharacterizetheoverallperformanceof metricsinrankingtheMLs,we

averagetherankingratiooveriandobtain ¯r(s,t)(seeFforcomputationdetails).Theresultingquantityisreferredtoasthe averagerankingratioofmetricsfortheMilestoneLetterstyearsaftertheirpublication.Agoodmetricisexpectedtohave aslow ¯r(·,t)aspossible–theminimumvalue ¯r(·,t)=1isonlyachievedbyametricthatalwaysoutperformstheothers inrankingthemilestonepapersofaget.Notethattheaveragerankingratioreducestoaveragerankingpositionifwedo notnormalizetherankingpositionri(s,t)bymin

s {ri(s,t)}.However,theaveragerankingpositionofthetargetpapersbya

certainmetricisextremelysensitivetotherankingpositionsoftheleast-citedtargetpapers,asopposedtotherobustness oftheaveragerankingratiowithrespecttoremovaloftheleast-citedpapersfromthesetoftargetpapers(seeAppendix Afordetails).ThispropertymotivatestheuseofrankingratiotocomparetherankingpositionsoftheMLsbythedifferent metrics.

Thedependenceof ¯r(s,t)onpaperagetmeasuredinyearsafterpublicationisshowninFig.3A.Duetothesuppression oftimebias,rescaledPageRankscoreR(p)hasalargeadvantagewithrespecttotheoriginalPageRankscorepforpapersof smallage.SincethePageRankalgorithmisbiasedtowardsoldnodes,theperformancegapbetweenR(p)andpgradually decreaseswithageandvanishes18yearsafterpublication.Bycontrast,theCiteRankalgorithmexponentiallypenalizesolder nodesand,asaconsequence,theperformancegapbetweenR(p)andTisminimalforrecentpapers,andCiteRankscoreTcan evenoutperformR(p)duringthefirstsixyearsafterpublication.WhenpaperagebecomessufficientlylargerthanCiteRank’s temporaltimescale(=2.6yearshere,aschosenbyWalkeretal.(2007)andMaslovandRedner(2008)),olderpapersare stronglypenalizedbytheCiteRank’steleportationtermand,asaresult,CiteRankismarkedlyoutperformedbyrescaled PageRank.ThesamebehaviorisobservedalsoforothervaluesofCiteRanktime-decayparameter(seeAppendixE).The localmetricscandR(c)areoutperformedbyR(p)inrankingtheMLsofeveryage,whichindicatesthatnetworkcentrality bringsasubstantialadvantageinrankinghighlysignificantpaperswithrespecttosimpleandrescaledcitationcount.

Whiletheaveragerankingratio ¯r takesintoaccountalltheMLs,itisalsointerestingtomeasuretheage-dependence oftheidentificationratesofthemetrics,definedasthefractionfx(t)ofMLsthatwererankedamongthetopxNpapersby

themetricwhentheyweretyearsold2(seeFig.3B).RescaledPageRankR(p)andCiteRankscoreTmarkedlyoutperform

theothermetricsinidentifyingthemilestonepapersinthefirstyearsafterpublication.TheperformancegapbetweenR(p) andthecitation-basedindicatorscandR(c)remainssignificantduringthewholeobservationlapse.Analogouslytowhat weobservedfortheaveragerankingratio,theperformancegapbetweenR(p)andpgraduallydecreaseswithpaperage andvanishes15yearsafterpublication,whichissimilartothecrossingpointat18yearsafterpublicationobservedforthe averagerankingratio.CiteRankhasasmalladvantagewithrespecttorescaledPageRankinthefirstyearsafterpublication, whereasforolderpapersCiteRank’sidentificationratedropstothevalueachievedbysimplecitationcountc.

Itisworthtoobservethatthetemporalbiasofacertainmetricaffectsthebehaviorofboth ¯r(t)andf0.01(t)forthat

metric:asweobserveinAppendixB,ametricbiasedtowardsold(likePageRank)orrecentpapers naturallyperforms betterinidentifyingoldorrecentMLs,respectively.Onenaturalwaytounderstandthiseffectistoconsideranormalized identificationrate ˜f0.01(t)(hereafterabbreviatedasNIR),suchthatthecontributionofeachidentifiedMLiofaget(i.e.,aML

rankedinthetop0.01Noftheranking)to ˜f0.01(t)issmallerthanoneifthemetricfavorspapersthatbelongtothesameage

groupaspaperi(seeAppendixFforthemathematicaldefinition).Inotherwords,whenevaluatingtheperformanceofa

2Theidentificationrateisrelatedtorecall,astandardmeasureintheliteratureofrecommendationsystems(etal.,2012).

(8)

Fig.4.Metrics’performanceinrankingtheAPSpapersthatledtoNobelprizeforsomeoftheauthors,listedintheSupplementaryTableS2.Thefigurehas beenrealizedwiththesameprocedureusedforFig.3.(A)Dependenceoftheaveragerankingratio ¯r onpaperage.(B)Dependenceoftheidentification ratef0.01onpaperage.(C)Dependenceofthenormalizedidentificationrate ˜f0.01onpaperage.Weobserveabehaviorinqualitativeagreementwiththat observedinFig.3.

givenmetric,thenormalizedidentificationrate ˜f0.01(t)takesintoaccountboththetemporalbalanceandtheidentification

powerofthemetric.Thebehaviorof ˜f0.01(t)forthefivemetricsisshowninFig.3C.Afteraninitialincreasingtrendforallthe

metrics,thenormalizedidentificationrateofbothpandcdeclineduetotheirtemporalbias;bycontrast,thesamequantity remainsrelativelystableforbothR(p)andR(c).Accordingto ˜f0.01(t),rescaledPageRankoutperformsCiteRankforpapersof

everyage.ThisisduetothefactthattherankingbyCiteRankisnotunbiasedand,asaconsequence,CiteRank’sperformance isoftenpenalizedbytheNIRforsmallagetduetothealgorithm’sbiastowardsrecentnodes.

OuranalysisassumesthataMLshouldberankedashighaspossiblebyagoodmetricforscientificsignificance.Onthe otherhand,manyoutstandingcontributionstophysicsarenotincludedinthelistofMLs.Toshowthatourresultsalso holdforanalternativechoiceofgroundbreakingpapers,weconsideralistof67APSpapersthatledtoNobelPrizeforsome oftheauthors(seeSupplementaryTableS1forthelistofpapers).Theresultsforthislistofbenchmarkpapersareshown inFig.4andarequalitativelysimilartothoseshowninFig.3,whichindicatesthatourfindingsarerobustwithrespectto modificationsofthebenchmarkpapers’list.

WhileFig.3concernsthemetrics’performanceaveragedoverthewholesetofMLs,theSupplementaryMovieshowsthe simultaneousdynamicsoftherankingpositionsbypandR(p)ofallindividualMLsforthefirst15yearsafterpublication.3

ThemovieshowsthatrescaledscoreR(p)hasaclearadvantagewithrespecttoPageRankscorepinthefirstyearsafter publicationformostoftheMLs.AstheMLsbecomesufficientlyold,theirpositionintheplanegraduallytendstoconverge tothediagonalwheretherankingpositionbypisequaltotherankingpositionbyR(p),whichisinagreementwiththe crossingbetweenPageRank’sandrescaledPageRank’sperformancecurvesobservedinFig.3AandB.

Inprinciple,onemightconsideracomparisonofthefinalrankingpositions(i.e.,therankingpositionscomputedonthe wholedataset)ofthetargetpapersbyacertainmetric(Dunaiskietal.,2016;Dunaiski&Visser,2012)insteadofthe age-dependentevaluationofthemetricsintroducedabove.Butthiskindofcomparisonwouldmissourkeypoint–thestrong dependenceofmetrics’performanceonpaperage.Inaddition,thestrongdependenceofmetrics’performanceonpaperage showninthissectionmakestheoutcomeofsuchevaluationstronglydependentontheagedistributionofthetargetpapers weaimtoidentify.ThisissueisdiscussedinAppendixBandpotentiallyconcernsanyperformanceevaluationcarriedouton afixedsnapshotofthenetwork.Bycontrast,theoutcomespresentedinthisparagraph(howwelldothedifferentmetrics performasafunctionofpaperage)arelittlesensitivetotheexactagedistributionofthetargetpapers.

3.3. ToppapersbyPageRankandrescaledPageRank

TogetanintuitiveunderstandingofthepropertiesofPageRankanditsrescaledversion,itisinstructivetolookatthe top-15papersaccordingtopandR(p)computedonthewholedataset,reportedinTables2and3,respectively.Although onlyoneMLappearsinthetop15byp(ranked6th,seeTable2),amongthenon-MLstherearepapersofexceptional significance,suchastheletterthatproposedthepopularEinstein–Podolsky–Rosenexperiment(ranked7th);thepaper thatintroducedafundamentaltoolinmany-bodysystems,Slater’sdeterminant(ranked5th);thepaperthatpresentedthe famousexactsolutionofthetwo-dimensionalIsingmodel(ranked8th).ThisconfirmsthatPageRankishighlyeffective infindingrelativelyoldpapersofoutstandingsignificance–referredtoas“scientificgems”byChenetal.(2007)–which hasledtotheinterpretationofPageRankscoreasa“lifetimeachievementaward”forapaper(Maslov&Redner,2008). Nevertheless,themostrecentpaperinTable2isfrom1981–28yearsoldwithrespecttothedataset’sendingpointin2009. Inthetop-15byR(p),wefindbotholdpapers(theoldestisfrom1964,45yearsoldin2009)andrecentpapers(the mostrecentisfrom2002,7yearsoldin2009).Fouroutof15top-papersareMLs,whichisanadditionalconfirmationofthe qualityoftherankingbyR(p).WeemphasizethatwhilebothPageRankandrescaledPageRankfeatureprominentpapers

3Accordingly,onlythe73MLsthatareatleast15yearsoldattheendofthedatasetareincludedinthemovie.

(9)

Table2

Top-15papersintheAPSdataasrankedbyPageRankscorep(asterisksmarktheMilestoneLetters).

Rank(p) Rank(R(p)) p(×10−5) R(p) Title Year Journal

1 1 43.32 29.96 Self-consistentequationsincludingexchangeand

correlationeffects(W.Kohn,L.Sham)

1965 Phys.Rev. 2 36 40.77 24.57 Theoryofsuperconductivity(J.Bardeen,L.Cooper,J.

Schrieffer)

1957 Phys.Rev.

3 8 35.88 28.58 Inhomogeneouselectrongas(P.Hohenberg) 1964 Phys.Rev.

4 115 24.74 18.64 Stochasticproblemsinphysicsandastronomy(S. Chandrasekhar)

1943 Rev.Mod.Phys.

5 137 23.57 17.78 Thetheoryofcomplexspectra(J.Slater) 1929 Phys.Rev.

6 21 23.46 26.53 *Amodelofleptons(S.Weinberg) 1967 Phys.Rev.Lett.

7 130 22.80 18.05 Canquantum-mechanicaldescriptionofphysical realitybeconsideredcomplete?(A.Einstein,B. Podolsky,N.Rosen)

1935 Phys.Rev.

8 140 22.67 17.73 Crystalstatistics.I.Atwo-dimensionalmodelwithan order-disordertransition(L.Onsager)

1944 Phys.Rev. 9 15 22.64 27.44 Self-interactioncorrectiontodensity-functional

approximationsformany-electronsystems(J.Perdew)

1981 Phys.Rev.B 10 335 22.39 13.17 Absenceofdiffusionincertainrandomlattices(P.

Anderson)

1958 Phys.Rev. 11 16 21.25 26.88 Scalingtheoryoflocalization:absenceofquantum

diffusionintwodimensions(E.Abrahams)

1979 Phys.Rev.Lett. 12 110 20.67 18.83 Effectsofconfigurationinteractiononintensitiesand

phaseshifts(U.Fano)

1961 Phys.Rev. 13 82 19.36 20.86 Ontheconstitutionofmetallicsodium(E.Wigner,F.

Seitz)

1933 Phys.Rev. 14 210 18.32 15.44 Ontheinteractionofelectronsinmetals(E.Wigner) 1934 Phys.Rev.

15 315 18.25 13.53 Cohesioninmonovalentmetals(J.Slater) 1930 Phys.Rev.

Table3

Top-15papersintheAPSdataasrankedbyrescaledPageRankscoreR(p)(asterisksmarktheMilestoneLetters).

Rank(p) Rank(R(p)) p(×10−5) R(p) Title Year Journal

1 1 43.32 29.96 Self-consistentequationsincludingexchangeand

correlationeffects(W.Kohn,L.Sham)

1965 Phys.Rev. 63 2 11.35 29.63 *Bose–Einsteincondensationinagasofsodiumatoms

(K.Davisetal.)

1995 Phys.Rev.Lett. 16 3 17.74 29.34 Self-organizedcriticality:anexplanationofthe1/f

noise(P.Bak,C.Tang,K.Wiesenfeld)

1987 Phys.Rev.Lett. 115 4 8.60 29.16 *Largemasshierarchyfromasmallextradimension(L.

Randall)

1999 Phys.Rev.Lett. 29 5 14.99 29.01 Patternformationoutsideofequilibrium(M.Cross) 1993 Rev.Mod.Phys. 112 6 8.66 28.97 Statisticalmechanicsofcomplexnetworks(R.Albert,

A.-L.Barabási)

2002 Rev.Mod.Phys.

181 7 7.11 28.95 Reviewofparticleproperties(K.Hagiwaraetal) 2002 Phys.Rev.D

3 8 35.88 28.58 Inhomogeneouselectrongas(P.Hohenberg) 1964 Phys.Rev.

99 9 9.35 28.58 EvidenceofBose–Einsteincondensationinanatomic gaswithattractiveinteractions(C.Bradleyetal.)

1995 Phys.Rev.Lett. 59 10 11.65 28.11 Efficientpseudopotentialsforplane-wavecalculations

(N.Troullier,J.Martins)

1991 Phys.Rev.B 53 11 12.11 27.88 *Teleportinganunknownquantumstateviadual

classicalandEinstein-Podolsky-Rosenchannels(C. Bennettetal.)

1993 Phys.Rev.Lett.

281 12 5.99 27.85 *Negativerefractionmakesaperfectlens(J.Pendry) 2000 Phys.Rev.Lett. 216 13 6.59 27.59 Tevscalesuperstringandextradimensions(G.Shiu,

S.-H.Tye)

1998 Phys.Rev.D 17 14 17.54 27.47 Diffusion-limitedaggregation,akineticcritical

phenomenon(T.Witten)

1981 Phys.Rev.Lett. 9 15 22.64 27.44 Self-interactioncorrectiontodensity-functional

approximationsformany-electronsystems(J.Perdew, A.Zunger)

1981 Phys.Rev.B

intheirtop-15,thedetailedperformanceanalysisdescribedintheprevioussectionisessentialinordertofullyunderstand thebehaviorofthetwometrics.

4. Discussion

MotivatedbytherecentpublicationofthelistofMilestoneLettersbythePhysicalReviewLetterseditors,weperformed anextensivecross-evaluationofdifferentdata-drivenmetricsofscientificimpactofresearchpaperswithrespecttotheir

(10)

abilitytoidentifypapersofexceptionalsignificance.WestudiedthenetworkofcitationsbetweenpapersinthePhysical Reviewcorpus,whichisrecognizedtobeacomprehensiveproxyforscientificresearchinphysics(Radicchi&Castellano, 2011;Radicchietal.,2009;Redner,2005).Themainassumptionofouranalysisisthatalthoughnotallthemostimportant papersinthePhysicalReviewcorpusarecoveredbytheMilestoneLetterslist,agoodpaper-levelmetricisexpectedtorank theMilestoneLettersashighaspossibleduetotheiroutstandingsignificance.Wefindaclearperformancegapbetween network-basedmetrics(p,R(p),T)andlocalmetricsbasedonlyonthenumberofreceivedcitations(c,R(c)).Thisfinding suggeststhattheuseofcitationcountstorankscientificpapersissub-optimal;additionalresearchwillbeneededtoassess whethernetwork-basedarticle-levelmetricscanbeusedtoconstructauthor-levelmetricsmoreeffectivethanthecurrently usedmetrics–suchasthepopularh-indexintroducedbyHirsch(2005)–thatareonlybasedoncitationcountsandneglect networkcentrality.

WehaveshownthattheproposedrescaledPageRankR(p)suppressesPageRank’swell-knownbiasagainstrecentpapers muchbetterthantheCiteRankalgorithmdoes.Asaresult,theproposedrescaledPageRankR(p)providesasuperior per-formancethanPageRankandCiteRankinrankingrecentandoldmilestonepapers,respectively.Therearestilltwopossible rankingerrors–falsepositivesandfalsenegatives–thathavenotbeenaddressedinthismanuscript.Youngpapersatthe topoftherankingbytherescaledPageRankmaybefalsepositivesbecausethecitationspurtthattheyhaveexperienced maystopwhichwilleventuallyforcethemoutoftheranking’stopaswellasoutfromthegroupofpossiblyhighly signifi-cantpapers.Bycontrast,theso-called“sleepingbeauties”thatreceivealargepartofcitationslongaftertheyarepublished (Ke,Ferrara,Radicchi,&Flammini,2015)arelikelytobeunder-evaluatedbytherescaledPageRank.Assessingtheextent towhichfalsepositivesandfalsenegativesaffecttherankingbyrescaledPageRank,andbyotherrelevantmetricsaswell, goesbeyondthescopeofourpaperyetitconstitutesamuchneededstepinfutureresearch.Theanalysisoflargerdatasets whichincludepapersfromdiversefieldsisanothernaturalnextstepforfutureresearch.Asdifferentacademicdisciplines adoptdifferentcitationpractices(Bornmann&Daniel,2008),therescalingprocedureproposedinthispapermayneedto beextendedtoalsoremovepossiblerankingbiasesbyacademicfield.

Theassumptionsbehindourdefinitionoftimebalanceandthecomputationoftherescaledscoresdeserveattention aswell.InagreementwithRadicchietal.(2008)andRadicchiandCastellano(2011),thedefinitionoftimebalanceofa rankingadoptedinthisarticlerequiresthatthelikelihoodthatapaperisrankedatthetopbyatime-balancedmetricis independentofpaperage.Ourdefinitionofrankingtimebalanceisimplicitlybasedontheassumptionthatthenumberof highlysignificantpapersgrowslinearlywithsystemsize.WhilethisassumptionseemsreasonableforthePhysicalReview corpuswhosejournalsapplystrictacceptancecriteriaforsubmittedpapers,itmightneedtobereconsideredwhenanalyzing largerdatasetswhichincluderecentlyemerginghigh-acceptancejournals–bothmega-journals(Björk.,2015)andpredatory journals(Xiaetal.,2015).Inotherwords,theexponentialgrowthofthenumberofpublishedpapers(Redner,2005;Sinatra, Deville,Szell,Wang,&Barabási,2015;Wang,Song,&Barabási,2013)doesnotnecessarilycorrespondtoanexponential growthofthenumberofhighlysignificantpapers.Theissueisdelicate(seeSarewitz,2016forarecentinsight)andwill needtobeaddressedinfutureresearchonbibliometricindicators.

Animportantgeneralquestionremainsopen:whichinherentpropertiesofanetworkdetermineifPageRank-likemethods willoutperformlocalmetricsornot?Weconjecturethatincitationnetworks,theobservedsuccessofnetwork-based metricsinidentifyinghighlysignificantpapersmightberelatedtothetendencyofhigh-impactpaperstociteother high-impactpapers,asfoundbyBornmann,deMoyaAnegón,andLeydesdorff(2010).Despiterecentefforts(Fortunato,Bogu ˜ná, Flammini,&Menczer,2008;Ghoshal&Barabási,2011;Marianietal.,2015;Medo,Mariani,Zeng,&Zhang,2015),which networkpropertiesmakethePageRankalgorithmsucceedorfailremainsalargelyunexploredproblemwhichwewill furtherinvestigateinfutureresearch.

Ourworkconstitutesaparticularinstanceofageneralmethodology–thecomparisonoftheoutcomesofquantitative variableswithaground-truthestablishedbyexperts–whichcanbeappliedformetric evaluationinseveralkindsof systems,suchasmovies(Spitz&Horvát,2014;Wassermanetal.,2015)orthenetworkofscientific authors(Radicchi etal.,2009).Inthedomainofresearchevaluation,thismethodologyisparticularlyrelevantsincebibliometricindicesare increasinglyusedinpractice–oftenuncriticallyandinquestionableways(Hicksetal.,2015;Wilsdon,2015)–andscholars fromdiversefieldhaveproducedaplethoraofpossibleimpactmetrics(VanNoorden,2010),especiallythoseaimedat assessingresearchers’productivityandimpact.Motivatedbytheresultsobtainedinthisarticle,weencouragethecreation oflistsofgroundbreaking papersalsoforotherscientific domains,whichcanleadtoaricherunderstandingandmore accuratebenchmarkingofquantitativemetricsforscientificsignificance.Ourfindingsconstituteabenchmarkfor article-levelmetricsofscientificsignificance,andcanbeusedasabaselinetoassesstheperformanceofnewindicatorsinfuture research.

Fromapracticalpointofview,improvingtheeffectivenessofpaperimpactmetricshasthepotentialtoimprovenotonly thecurrentbibliometricpractices,butalsoourabilitytodiscoverrelevantpapersinonlineplatformsthatcollectacademic papersanduseautomatedmethodstosortthem.Inthisrespect,ourfindingssuggestthatrescaledPageRankcanbeusedas anoperationaltooltoidentifythemostsignificantpapersonagiventopic.Supposethataresearcherentersanewresearch fieldandwantstostudythemostimportantworksinthatfield.Ifweprovidehim/herwiththetoppapersasrankedby PageRank,theresearcherwillonlyknowtheoldestpapersandwillnotbeinformedaboutrecentlinesofresearch.Onthe otherhand,byprovidinghim/herwiththetoppapersasrankedbyrescaledPageRank,he/shewillknowbotholdsignificant papersandrecentworksthathaveattractedconsiderableattention,leadingtoamorecompleteoverviewofthefield.To allowresearcherstoexperiencethebenefitsofatime-balancedrankingmethod,wedevelopedaninteractiveWebplatform

(11)

whichisavailableattheaddresshttp://www.sciencenow.info.Inthisplatform,userscanbrowsetherankingsoftheAPS papersbyR(p)yearbyyear,investigatethehistoricalevolutionofeachpaper’srankingpositionbyR(p),andcheckthe rankingpositionsandthescoresofeachresearcher’spublications.

5. Conclusions

Wepresentedadetailedanalysisoftheperformanceofdifferentquantitativemetricswithrespecttotheirabilityto identifytheMilestoneLettersselectedbythePhysicalReviewLetterseditors.Ourfindingsindicatethat:(1)adirectrescaling ofcitationcountandPageRankscoreisaneffectivewaytosuppressthetemporalbiasofthesetwometrics;(2)rescaled PageRankR(p)isthebest-performingmetricoverall,asitoutperformsPageRankandCiteRankinidentifyingrecentandold milestonepapers,respectively,anditoutperformscitation-basedindicatorsforpapersofeveryage.Thepresentedresults indicatethatthecombinationofnetworkcentralityandtimeholdspromiseforimprovingsomeofthetoolscurrentlyused torankscientificpublications,whichcouldbringvaluablebenefitsforquantitativeresearchassessmentanddesignofWeb academicplatforms.

Acknowledgements

We wishtothankGiulioCimini,MatthieuCristelli,LucianoPietronero,Zhuo-MingRen,Ming-ShengShang,Andrea Tacchella,GiacomoVaccario,AlexandreVidmerandAndreaZaccariaforinspiringdiscussionsandusefulsuggestions.We arealsogratefultothetwoanonymousrefereesfortheirinsightfulcommentswhichhelpedustoimprovethelevelofthe discussioninsomesectionsofthemanuscript.ThisworkwassupportedbytheEUFET-OpenGrantNo.611272(project Growthcom).Theauthorsdeclarethattheyhavenocompetingfinancialinterests.

Authorcontributionstatement

Conceivedanddesignedtheanalysis:ManuelSebastianMariani;MatúˇsMedo;Yi-ChengZhang Collectedthedata:ManuelSebastianMariani;MatúˇsMedo

Contributeddataoranalysistools:ManuelSebastianMariani;MatúˇsMedo Performedtheanalysis:ManuelSebastianMariani

Wrotethepaper:ManuelSebastianMariani;MatúˇsMedo AppendixA. Averagerankingpositionvs.averagerankingratio

WeshowherethattheaveragerankingpositionoftheMLsisextremelysensitivetotherankingpositionofthe least-citedMLs,whereastheaveragerankingratioisstablewithrespecttoremovaloftheleast-citedMLs.Forsimplicity,inthis Appendixweconsidertherankingscomputedonthewholedataset.Informulas,theaveragerankingposition ¯rraw(s)ofthe

MLsbymetricsisdefinedas ¯ rraw(s)=M1



i∈M ri(s), (A.1)

whereri(s)denotestherankingpositionofpaperibymetricsnormalizedbythetotalnumberofpapers:ri=1/Nandri=1

correspondtothebestandtheworstpaperintheranking,respectively.

InSection3.2,wementionthatlittle-citedpaperscanbiastheaveragerankingpositionofthetargetpapersbyacertain metric.Toillustratethispoint,considerfirstthefollowingidealexample.ConsidertwotargetpapersAandB.PaperAis ranked10thbymetricM1and1000thbymetricM2,whereaspaperBisranked20,000bymetricM1and15,000bymetricM2.

Theaveragerankingpositionforthesetofpapers{A,B}isequalto10,005andto8000formetricM1andM2,respectively.

Thismeansthataccordingtoaveragerankingposition,metricM2outperformsmetricM1,despitehavingnotbeenableto

placeanyofthetwopapersinthetop-100.

AqualitativelysimilarsituationoccursalsointheAPSdataset,asthefollowingexampleshows.Themilestoneletter “ElementNo.102”[Phys.Rev.Lett.1.1(1958):18]iscitedonlyfivetimeswithintheAPSdata.ItsrankingpositionbyR(p) (r(R(p))=0.22)isthusmuchlargerthantheMLs’averagerankingpositionrraw¯ (R(p))=0.016byR(p).OnlyfewMLsare littlecited–forinstance,onlyfouroutof87MLsarenotamongthetop-10%papersbycitationcount.Towhichextent dotheselittle-citedpapersaffect ¯rrawforthedifferentmetrics?Bydenotingwith ¯rraw(R(p))theaveragecomputedonthe

subsetof83MLswhichdoesnotincludethefourleast-citedMLs,weobtain ¯rraw(R(p))=0.009,whichissmallerthan ¯

rraw(R(p))=0.016byafactoraround1.8.Theeffectisevenlargerforcitationcount:wehave ¯rraw(c)=0.009againstthe

originalvalue ¯rraw(c)=0.020–theratiobetweenthetwoaveragesislargerthantwo.

Byusingtheaveragerankingratio,weonlycomparetherankingwithinthechosensetofmetricsforeachindividual paperand,asaconsequence,theaverageisstablewithrespecttoremovaloftheleast-citedMLs.Thiscanbeillustrated byagainexcludingthefourleast-citedMLsfromthecomputationof ¯r(R(p)),andbycomparingthecorrespondingvalues ¯r(R(p))oftheaveragerankingratiowiththevaluescomputedoveralltheMLs.Amongthefivemetrics,thelargestvariation

(12)

Fig.B.5. Valuesoftheaveragerankingposition ¯rraw(panelA)andoftheaveragerankingratio ¯r(panelB)oftheMLsforthefivemetricscomputedonthe wholedataset(1893–2009);theerrorbarsrepresentthestandarderrorofthemean.

isobservedforPageRank,forwhich ¯r(p)/¯r(p)=1.03i.e.,theremovaloftheleast-citedMLshasonlyasmalleffectonthe

averagerankingratiosforthefivemetrics.

AppendixB. Assessingthemetrics’performanceonthewholedataset

Fig.B.5Ashowsthevaluesoftheaveragerankingposition ¯rraw(s)forthefivemetricscomputedonthewholedataset:

accordingto ¯rraw(s),PageRankandrescaledPageRankoutperformtheothermetrics.

WhiletheaveragerankingpositionoftheMLsisasimplequantitytoevaluatethemetrics,someMLsarerelativelylittle citedand,asaresult,theirlowrankingpositioncanstronglybiastheaveragerankingposition.WerefertoAppendixAfor adetaileddiscussionofthisissue.Tosolvethisproblem,wedefinedtherankingratiointhemaintext.Fig.B.5Bshowsthe measuredvaluesoftheaveragerankingratio ¯r basedontherankingscomputedonthewholedataset.Thissimplemeasure wouldsuggestthatR(p)and,toalesserextent,pandcoutperformR(c)andCiteRank.Giventhesmallgapbetweenpand R(p),onemightbetemptedtoconcludethattherescalingproceduredoesnotbringsubstantialbenefitsintheidentification ofsignificantpapers.However,therankanalysispresentedinFig.B.5includesthecontributionofbotholdandrecentMLs, whereasacloseinspectionrevealsthatthemetricsperforminadrasticallydifferentwaydependingontheageofthetarget papers,asshowninFig.3anddiscussedinSection3.2.

Thispointcanbealsoillustratedbyusingtherankingscomputedonthewholedataset.Toshowthis,wedividethe87MLs intothreeequally-sizedgroupsofMLsaccordingtotheirage.ByconsideringonlytheoldestM/3=29MLsastargetpapers, weobtain ¯r(p)=1.1whereas ¯r(R(p))=5.5.Bycontrast,byconsideringonlytheM/3mostrecentMLsastargetpapers,we obtain ¯r(p)=7.3whereas ¯r(R(p))=1.7.WhilethisresultshowsaclearadvantageofPageRankandrescaledPageRankfor theoldestandforthemostrecentMLs,respectively,thereexistsafundamentaldifferencebetweentheperformancegaps observedfortheoldestandthemostrecentMLs.ThebiasofPageRanktowardsoldnodes(Fig.1A)makesitindeedeasier forthemetrictofindoldsignificantpapers.Ontheotherhand,rescaledPageRankdoesnotbenefitfromanybiasinranking themostrecentMLsastherankingbythemetricisnotbiasedbypaperage(Fig.1C).Itisthuscrucialtorealizethatwhen wecomputetherankingsonthewholedataset,thevalueoftheaveragerankingratiobythemetricsdependsontheage distributionoftheimportantpapersthatweaimtoidentify.Wereweusingtherankingscomputedonthewholedataset forevaluationandwereweonlyconsideringtheoldest(mostrecent)29MLsastargetpapers,wewouldhaveconcluded thatPageRank(rescaledPageRank)isbyfarthebest-performingmetric.Theseobservationsdemonstratethatanevaluation ofthemetricsbasedonthewholedatasetisstronglybiasedbytheagedistributionofthetargetitemsand,forthisreason, unreliableasatooltoassessmetrics’performance.

AppendixC. Alternativerescalingequations

Eq.(3)forcestherescaledscoreRi(p)ofapaperitohavemeanvalueequaltozeroandstandarddeviationequaltoone,

independentlyofitsage(i.e.,independentlyofi).Fig.2Cshowsthatthisrescalingissufficienttoachieveatime-balanced rankingofthepapers.WeconsidernowasimplerescalingintheformR(ratio)i (p):=pi/i(p).Whilethemeanvalueofthis

scoreisequaltoone,onecanshowthatitsstandarddeviationisgivenby 

R(ratio)i (p)

=



Ei

(R(ratio)i (p))2

−Ei

R(ratio)i (p)

2=

Ei[p2 i] i(p)2 −1= i(p) i(p), (C.1)

whereEi[·]denotestheexpectationvaluewithintheaveragingwindowofpaperi.Fig.C.6showsthat(p)/(p)strongly

depends onnode age in the APS dataset. As a result, the ranking by R(ratio)(p) is strong biased towards old nodes

(/0−1=79.81dev).

(13)

Fig.C.6.Dependenceof(p)/(p)onpaperage;thevaluesof(p)and(p)arecalculatedoverthepapers’averagingwindows.

Fig.D.7.Numberofpaperswhoseaveragingwindowcontainslessthanfivepapersthatreceivedatleastcmincitationsasafunctionof.For≥1000, eachpaperiscomparedwithatleastfivepaperscitedatleastfivetimes.

WealsoconsideredavariantofourmethodwheretherescaledscoresarestillcomputedwithEq.(3),buti(p)andi(p)

arecomputedoverthepaperspublishedinthesameyearaspaperi.TheresultingrescaledscoreR(year)(p)producesaranking

thatismuchlessinagreementwiththehypothesisofunbiasedranking(/0−1=15.55dev)thantherankingbyR(p).For

thisreason,thedefinitionofpapers’averagingwindowadoptedinthemaintextisbasedonnumberofpublicationsand notonrealtime.However,R(year)(p)isstillpreferabletotheoriginalscoreswhentheaimistocomparepapersofdifferent

age.AlsonotethatR(year)(p)mightbepreferableifoneisinterestedinarankingofthepaperswhereeachpublicationyear

isrepresentedbythesamenumberofpapers,apartfromstatisticalfluctuations.

AppendixD. DependenceofthepropertiesoftherankingsbyR(c)andR(p)onthetemporalwindowsize

Asdescribedinthemaintext,therescaledscoresRi(c)andRi(p)ofacertainpaperiareobtainedbycomparingits

scorewiththescoresofthenodesthatbelongtoits“averagingwindows”j∈[i−c/2,i+c/2]andj∈[i−p/2,i+p/2],

respectively.Tomotivatethechoicep=c=1000adoptedinthemaintext,westartbyobservingthatthesizeofthe

averagingwindowshouldbeneithertoolargenortoosmall.Alargewindowwouldincludepapersofsignificantlydifferent age,whichwouldturnouttobeineffectiveinremovingthetemporalbiasesofthemetrics.4Ontheotherhand,wewant

candptobesufficientlylargetoavoidthatsomepapersareonlycomparedwithlittle-citedpapers,whichislikelyto

happenforasmallwindowduetotheskewedshapeofthecitationcountdistributionMedoetal.(2011).

Tounderstandthepossibledrawbacksofatoosmallaveragingwindow,wecomputethenumberN(cmin)ofpaperswhose

averagingwindowscontainlessthanfivepapersthatreceivedatleastcmincitations.TheresultsareshowninFig.D.7.For

≤800,theaveragingwindowsofanonzeronumberofpapershavelessthanfivepaperswithatleastfivereceivedcitations. Werestrictourchoicetotherange≥1000,forwhichnopaper’saveragewindowhaslessthanfivepaperscitedatleast fivetimes.

4NotethattherankingbyR(p)isperfectlycorrelatedwiththerankingbypforp=N.

(14)

Fig.D.8.Leftpanel:Deviation/0−1fortherankingbyrescaledcitationcountR(c)asafunctionofcfordifferentvaluesofz.Rightpanel:Deviation /0−1fortherankingbyrescaledPageRankscoreR(p)asafunctionofpfordifferentvaluesofz.Thehorizontalblacklinemarkstheexpectedvalue /0−1=0foranunbiasedranking.

Fig.D.9.Spearman’srankingcorrelationbetweentherescaledscoreR()andtherescaledscoreR(=1000)usedinthemaintext.

Toevaluatetheabilityoftherescalingproceduretosuppressthebiasofthemetrics,weestimatethedeviation/0−1

ofthestandarddeviationratio/0fromtheexpectedvalue(one)foranunbiasedranking(seethemaintextfordetails).

Fig.D.8reportsthebehaviorofthedeviation/0−1asafunctionofpandcfordifferentselectivityvaluesz.Theupward

trendsofFig.D.8suggestthatinordertoreducetheratio/0,itisconvenienttochoosepandcassmallaspossible.

Hence,thechoicec=p=1000allowsustoobtainanhistogramclosetotheexpectedunbiasedhistogram–/0values

areclosetooneforallthevaluesofzrepresentedinthefigure–and,atthesametime,toavoidthatsomenodesareonly comparedwithlittlecitednodes,asdiscussedaboveforD.7.

Animportantobservationisthatthecorrelationsbetweentherankingsobtainedwithdifferentvaluesofandthe rankingobtainedwith=1000areclosetoone(Fig.D.9),which meansthattherescalingprocedureisrobustagainst variationoftheaveragingwindowsizescandp.

AppendixE. DependenceofCiteRankperformanceonitsparameter

Fig.E.10showsthedependenceoftheaveragerankingratio ¯ronpaperage,forfivedifferentvaluesofCiteRankparameter .ThefigureshowsthatthebehaviorofCiteRank’sperformancestronglydependsonthechoiceofitsparameter.Whenthe parameterissmall(panelA,=1year),CiteRankperformanceisoptimal(lowestaveragerankingratio)forveryrecent papers,andgraduallyworsenswithpaperage.Asincreases(movingfrompanelAtoE),theminimumpointofCiteRank’s averagerankingratiograduallyshiftstowardoldernodes.When issufficientlylarge(panelE,=16 years),CiteRank behaviorisqualitativelysimilartothatofPageRank,anditsperformancegraduallyimproveswithpaperage–thisisindeed consistentwiththefactthatT→pinthelimit→∞.

AppendixF. Dependenceofrankingratioandidentificationrateonpaperage

ToassesstherankingofeachMilestoneLettertyearsafteritspublication,wecomputetherankingseacht=183days (resultsfordifferentchoicesoftarequalitativelysimilar).Ateachcomputationtimet(c),onlytheN(t(c))papers(withtheir

links)publishedbeforetimet(c)areconsideredforthescores’andrankings’computation,andeachMLcontributestothe

(15)

Fig.E.10.Dependenceoftheaveragerankingratio ¯ronpaperage,forfivedifferentvaluesofCiteRankparameter.

rankingratio ¯r(s,t)correspondingtoitsagetattimet(c).Thisprocedureallowsustosavecomputationaltimewithrespect

tocomputingtherankingsofeachMLexactlytyearsafteritspublication,becauseitrequiresfewerrankingcomputations. Informulas,theaveragerankingratio ¯r(s,t=kt)fort-yearsoldpapersisdefinedas

¯ r(s,t=kt)= 1 M(t)



t(c)



i∈M ı

(t(c)t i)/t,k



× r(s,i;t(c)) mins{r(s,i;t(c))}, (F.1)

whereweusedk=0.5,1,1.5,2,...forFig.3B;intheequationabove,r(s,i;t(c))denotestherankingpositionofMLiattimet(c)

accordingtometrics,M(t)denotesthenumberofMLsthatareatleasttyearsoldattheendofthedataset, xdenotesthe largestintegersmallerthanorequaltox,ı(x,y)denotestheKroneckerdeltafunctionofxandy.Hence,ateachcomputation timet(c),eachMLipublishedbeforetimet(c)givesacontribution ˆr(s,i;t(c))totheaveragerankingratio ¯r(s,t=kt)for

papersofaget(c)t

i.Similarly,theidentificationratefx(t)iscomputedas

fx(s,kt)=M(t)1



t(c)



i∈M ı

(t(c)t i)/t,k



×(r(s,i;t(c))x), (F.2)

where(r(s,i;t(c))x)isequaltooneifpaperiisamongthetopxN(t(c))papersintherankingbymetricsattimet(c),equal

tozerootherwise.

(16)

Todefinethenormalizedidentificationrate(NIR)ofametric,ateachcomputationtimet(c)wedividetheN(t(c))papers

into40groupsaccordingtotheirage,analogouslytowhatwedidinSection3.1toevaluatethetemporalbalanceofthe metrics.TheNIRofmetricsisthendefinedas

˜fx(s,kt)= M(t)1



t(c)



i∈M ı

(t(c)t i)/t,k



×(r(s,i;t(c))x)y(n(s,i;t(c))), (F.3)

wherey(n(s,i;t(c)))isadecreasingfunctionofthefractionn(s,i;t(c))ofnodesthatbelongtothesameagegroupofnodeiand

arerankedamongthetopxN(t(c))bymetrics.Denotingbyn

0(i;t(c))=1/40theexpectedvalueofn(·,i;t(c))foranunbiased

ranking,wesety(n(s,i;t(c)))=(n(s,i;t(c))/n0(i;t(c)))−1ifn(s,i;t(c))>n

0(i;t(c))(i.e.,ifthemetrictendstofavorpapersthat

belongtothesameagegroupaspaperi),whereas y(n(s,i;t(c)))=1ifn(s,i;t(c))n

0(i;t(c)).AccordingtoEq.(F.3),ifthe

identifiedMLbelongstoanagegroupwhichisover-representedintopxN(t(c))bythefactoroffour,itonlycountsas1/4in

thenormalizedidentificationrate.

AppendixG. Supplementarydata

Supplementarydata associated withthis article can befound, in the online version, at http://dx.doi.org/10.1016/ j.joi.2016.10.005.

References

Berkhin,P.(2005).Asurveyonpagerankcomputing.InternetMathematics,2(1),73–120.

Björk.,B.-C.(2015).Havethe“mega-journals”reachedthelimitstogrowth?PeerJ,3,e981.

Bollen,J.,Rodriquez,M.A.,&VandeSompel,H.(2006).Journalstatus.Scientometrics,69(3),669–687.

Bornmann,L.,&Daniel,H.-D.(2008).Whatdocitationcountsmeasure?Areviewofstudiesoncitingbehavior.JournalofDocumentation,64(1),45–80.

Bornmann,L.,deMoyaAnegón,F.,&Leydesdorff,L.(2010).Doscientificadvancementsleanontheshouldersofgiants?Abibliometricinvestigationofthe

ortegahypothesis.PLoSONE,5(10),e13327.

Brin,S.,&Page,L.(1998).Theanatomyofalarge-scalehypertextualwebsearchengine.ComputerNetworksandISDNSystems,30(1),107–117.

Chen,P.,Xie,H.,Maslov,S.,&Redner,S.(2007).Findingscientificgemswithgoogle’spagerankalgorithm.JournalofInformetrics,1(1),8–15.

Cimini,G.,Gabrielli,A.,&Labini,F.S.(2014).Thescientificcompetitivenessofnations.PLOSONE,9(12),e113470.

Crespo,J.A.,Ortu ˜no-Ortín,I.,&Ruiz-Castillo,J.(2012).Thecitationmeritofscientificpublications.PloSone,7(11),e49156.

Dunaiski,M.,&Visser,W.(2012).Comparingpaperrankingalgorithms.InProceedingsoftheSouthAfricanInstituteforComputerScientistsandInformation

TechnologistsConference(pp.21–30).ACM.

Dunaiski,M.,Visser,W.,&Geldenhuys,J.(2016).Evaluatingpaperandauthorrankingalgorithmsusingimpactandcontributionawards.Journalof

Informetrics,10(2),392–407.

Egghe,L.(2006).Theoryandpracticeoftheg-index.Scientometrics,69(1),131–152.

Ermann,L.,Frahm,K.M.,&Shepelyansky,D.L.(2015).Googlematrixanalysisofdirectednetworks.ReviewsofModernPhysics,87(4),1261.

Fiala,D.(2012).Time-awarepagerankforbibliographicnetworks.JournalofInformetrics,6(3),370–388.

Fortunato,S.,Bogu ˜ná,M.,Flammini,A.,&Menczer,F.(2008).Approximatingpagerankfromin-degree.InAlgorithmsandmodelsfortheweb-graph(pp.

59–71).Springer.

Franceschet,M.(2011).Pagerank:Standingontheshouldersofgiants.CommunicationsoftheACM,54(6),92–101.

Garfield,E.(1972).Citationanalysisasatoolinjournalevaluation.Science,178(4060),471–479.

Ghoshal,G.,&Barabási,A.-L.(2011).Rankingstabilityandsuper-stablenodesincomplexnetworks.NatureCommunications,2,394.

Gleich,D.F.(2015).Pagerankbeyondtheweb.SIAMReview,57(3),321–363.

González-Pereira,B.,Guerrero-Bote,V.P.,&Moya-Anegón,F.(2010).Anewapproachtothemetricofjournals’scientificprestige:TheSJRindicator.

JournalofInformetrics,4(3),379–391.

Hicks,D.,Wouters,P.,Waltman,L.,deRijcke,S.,&Rafols,I.(2015).Bibliometrics:TheLeidenManifestoforresearchmetrics.Nature,520,429–431.

Hirsch,J.E.(2005).Anindextoquantifyanindividual’sscientificresearchoutput.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof

America,102(46),16569–16572.

Kaur,J.,Radicchi,F.,&Menczer,F.(2013).Universalityofscholarlyimpactmetrics.JournalofInformetrics,7(4),924–932.

Kaur,J.,Ferrara,E.,Menczer,F.,Flammini,A.,&Radicchi,F.(2015).Qualityversusquantityinscientificimpact.JournalofInformetrics,9(4),800–808.

Ke,Q.,Ferrara,E.,Radicchi,F.,&Flammini,A.(2015).Definingandidentifyingsleepingbeautiesinscience.ProceedingsoftheNationalAcademyofSciences,

112(24),7426–7431.

King,D.A.(2004).Thescientificimpactofnations.Nature,430(6997),311–316.

Kinney,A.L.(2007).Nationalscientificfacilitiesandtheirscienceimpactonnonbiomedicalresearch.ProceedingsoftheNationalAcademyofSciences,

104(46),17943–17947.

Kreyszig,E.(2010).Advancedengineeringmathematics.JohnWiley&Sons.

Lawrence,P.A.(2008).Lostinpublication:Howmeasurementharmsscience.EthicsinScienceandEnvironmentalPolitics,8,9–11.

Liebowitz,S.J.,&Palmer,J.P.(1984).Assessingtherelativeimpactsofeconomicsjournals.JournalofEconomicLiterature,22(1),77–88.

Lü,L.,Medo,M.,Yeung,C.H.,Zhang,Y.-C.,Zhang,Z.-K.,&Zhou,T.(2012).Recommendersystems.PhysicsReports,519(1),1–49.

Mariani,M.S.,Medo,M.,&Zhang,Y.-C.(2015).Rankingnodesingrowingnetworks:Whenpagerankfails.ScientificReports,5

Maslov,S.,&Redner,S.(2008).Promiseandpitfallsofextendinggoogle’spagerankalgorithmtocitationnetworks.TheJournalofNeuroscience,28(44), 11103–11105.

Medo,M.,Cimini,G.,&Gualdi,S.(2011).Temporaleffectsinthegrowthofnetworks.PhysicalReviewLetters,107(23),238701.

Medo,M.,Mariani,M.S.,Zeng,A.,&Zhang,Y.-C.(2015).Identificationandmodelingofdiscoverersinonlinesocialsystems.,arXivpreprintarXiv:1509.01477.

Molinari,J.-F.,&Molinari,A.(2008).Anewmethodologyforrankingscientificinstitutions.Scientometrics,75(1),163–174.

Narin,F.(1976).Evaluativebibliometrics:Theuseofpublicationandcitationanalysisintheevaluationofscientificactivity.Washington,DC:Computer Horizons.

Newman,M.(2010).Networks:Anintroduction.OxfordUniversityPress.

Newman,M.E.J.(2009).Thefirst-moveradvantageinscientificpublication.Europhys.Lett.,86(6),68001.

Newman,M.E.J.(2014).Predictionofhighlycitedpapers.Europhys.Lett.,105(2),28002.

Nykl,M.,Jeˇzek,K.,Fiala,D.,&Dostal,M.(2014).Pagerankvariantsintheevaluationofcitationnetworks.JournalofInformetrics,8(3),683–692.

Parolo,P.D.B.,Pan,R.K.,Ghosh,R.,Huberman,B.A.,Kaski,K.,&Fortunato,S.(2015).Attentiondecayinscience.JournalofInformetrics,9(4),734–745.

(17)

Pinski,G.,&Narin,F.(1976).Citationinfluenceforjournalaggregatesofscientificpublications:Theory,withapplicationtotheliteratureofphysics.

InformationProcessing&Management,12(5),297–312.

Radicchi,F.,&Castellano,C.(2011).Rescalingcitationsofpublicationsinphysics.PhysicalReviewE,83(4),046116.

Radicchi,F.,&Castellano,C.(2012a]).Areverseengineeringapproachtothesuppressionofcitationbiasesrevealsuniversalpropertiesofcitation

distributions.PLoSONE,7(3),e33833.

Radicchi,F.,&Castellano,C.(2012b]).Testingthefairnessofcitationindicatorsforcomparisonacrossscientificdomains:Thecaseoffractionalcitation

counts.JournalofInformetrics,6(1),121–130.

Radicchi,F.,Fortunato,S.,&Castellano,C.(2008).Universalityofcitationdistributions:Towardanobjectivemeasureofscientificimpact.Proceedingsof

theNationalAcademyofSciences,105(45),17268–17272.

Radicchi,F.,Fortunato,S.,Markines,B.,&Vespignani,A.(2009).Diffusionofscientificcreditsandtherankingofscientists.PhysicalReviewE,80(5),056103.

Redner,S.(2005).Citationstatisticsfrom110yearsofphysicalreview.PhysicsToday,58,49.

Sarewitz,D.(2016).Thepressuretopublishpushesdownquality.Nature,533(7602),147–147.

Sinatra,R.,Deville,P.,Szell,M.,Wang,D.,&Barabási,A.-L.(2015).Acenturyofphysics.NaturePhysics,11(10),791–796.

Spitz,A.,&Horvát,E.-Á.(2014).Measuringlong-termimpactbasedonnetworkcentrality:Unravelingcinematiccitations.PLoSOne,9(10),e108857.

VanNoorden,R.(2010).Metrics:Aprofusionofmeasures.Nature,465(7300),864–866.

VanRaan,A.F.J.(2005).Fatalattraction:Conceptualandmethodologicalproblemsintherankingofuniversitiesbybibliometricmethods.Scientometrics,

62(1),133–143.

Walker,D.,Xie,H.,Yan,K.-K.,&Maslov,S.(2007).Rankingscientificpublicationsusingamodelofnetworktraffic.JournalofStatisticalMechanics:Theory

andExperiment,2007(06),P06010.

Waltman,L.(2016).Areviewoftheliteratureoncitationimpactindicators.JournalofInformetrics,10(2),365–391.

Waltman,L.,&Yan,E.(2014).Pagerank-relatedmethodsforanalyzingcitationnetworks.InMeasuringscholarlyimpact.pp.83–100.Springer.

Wang,D.,Song,C.,&Barabási,A.-L.(2013).Quantifyinglong-termscientificimpact.Science,342(6154),127–132.

Wasserman,M.,Zeng,X.H.T.,&Amaral,L.A.N.(2015).Cross-evaluationofmetricstoestimatethesignificanceofcreativeworks.Proceedingsofthe

NationalAcademyofSciences,112(5),1281–1286.

Weingart,P.(2005).Impactofbibliometricsuponthesciencesystem:Inadvertentconsequences?Scientometrics,62(1),117–131.

Werner,R.(2015).Thefocusonbibliometricsmakespaperslessuseful.Nature,517(7534),245.

Wilsdon,J.(2015).Weneedameasuredapproachtometrics.Nature,523(7559),129–129.

Xia,J.,Harmon,J.L.,Connolly,K.G.,Donnelly,R.M.,Anderson,M.R.,&Howard,H.A.(2015).Whopublishesin“predatory”journals?Journalofthe

AssociationforInformationScienceandTechnology,66(7),1406–1417.

Yan,E.,&Ding,Y.(2009).Applyingcentralitymeasurestoimpactanalysis:Acoauthorshipnetworkanalysis.JournaloftheAmericanSocietyforInformation

ScienceandTechnology,60(10),2107–2118.

Yao,L.,Wei,T.,Zeng,A.,Fan,Y.,&Di,Z.(2014).Rankingscientificpublications:Theeffectofnonlinearity.ScientificReports,4,6663.

Zhou,J.,Zeng,A.,Fan,Y.,&Di,Z.(2015).Rankingscientificpublicationswithsimilarity-preferentialmechanism.Scientometrics,1–12.

Figure

Fig. 1. Time balance of the network-based metrics. Panels (A, C, E) show the histogram of the number of papers from each paper age group in the top-1%
Fig. 2. Time balance of the citation-based metrics. Panels (A, B) show the histogram of the number of top-1% papers for each paper age group in the ranking by citation count c and rescaled citation count R(c), respectively
Fig. 3. Metrics’ performance in ranking the milestone letters (listed in the Supplementary Table S1) as a function of paper age
Fig. 4. Metrics’ performance in ranking the APS papers that led to Nobel prize for some of the authors, listed in the Supplementary Table S2
+5

Références

Documents relatifs

In the present work we find an analytical expression for the expected PageRank value in a scale free growing network model as a function of the age of the growing network and the age

In this article we describe the first steps of the annotation process of specific irony activators in TWITTIR O ` - UD , a treebank of Italian tweets annotated with fine-grained

наиболее эффективным оказался полностью асинхронныи алгоритм, в котором итерации PageRank выполняются одновременно. Применение библиотеки TRAM

In order to provide a realistic assessment of reuse in Linked Open Data, we exploited a large number of datasets by way of the LOD Laundromat (described in Section 3.1) from which

We conducted two types of experiments: in the first type we evaluate the quality of the solution produced by the greedy algorithm by measuring the approxi- mation ratio on

However, special cases exist for which the example from Theorem 1 does not work, as for instance the case of discounted-cost MDPs with a fixed discount factor [Ye11, HMZ10] for which

Très facile de manipuler ; il suffit de créer des pages web qui pointent vers son site pour augmenter artificiellement son score !.. Olivier Guibé Historique et motivation

Très facile de manipuler ; il suffit de créer des pages web qui pointent vers son site pour augmenter artificiellement son score !.. Olivier Guibé Historique et motivation