• Aucun résultat trouvé

Sendai virus particle production: A more detailed role of F and HN through, namely, their association with M.

N/A
N/A
Protected

Academic year: 2022

Partager "Sendai virus particle production: A more detailed role of F and HN through, namely, their association with M."

Copied!
12
0
0

Texte intégral

(1)

Article

Reference

Sendai virus particle production: A more detailed role of F and HN through, namely, their association with M.

SHEVTSOVA, Anastasia, ESSAIDI, Manel, ROUX, Laurent

Abstract

The Paramyxovirus membrane associated proteins are composed of two integral membrane glycoproteins, HN (H, G) and F, and of a matrix protein (M) carpeting the membrane inner layer. For Sendai virus (SeV), F and M have been proposed to form a complex at the endoplasmic reticulum that further migrates to the cell periphery where it represents a nucleation site for viral assembly completion (Essaidi-Laziosi et al., 2013). HN is recruited in the assembly complex once expressed at the cell surface. In contrast to F and M, HN appears dispensable for virus particle production. However, upon F suppression, concomitant HN suppression restricts viral particle production much more severely than F suppression alone, suggesting that HN plays a role as well. In this study, we demonstrate that the transmembrane and cytoplasmic regions of F are sufficient to promote virus particle production and incorporation of a foreign protein in viral particles. We further identify in the F cytoplasmic tail the site of interaction with M. We next confirm HN participation in viral particle production and we provide genetic evidence for a participation [...]

SHEVTSOVA, Anastasia, ESSAIDI, Manel, ROUX, Laurent. Sendai virus particle production: A more detailed role of F and HN through, namely, their association with M. Virus Research , 2015, vol. 199C, p. 31-41

DOI : 10.1016/j.virusres.2015.01.010 PMID : 25613008

Available at:

http://archive-ouverte.unige.ch/unige:46742

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

ContentslistsavailableatScienceDirect

Virus Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / v i r u s r e s

Sendai virus particle production: A more detailed role of F and HN through, namely, their association with M

Anastasia Shevtsova-Horoz

1

, Manel Essaidi-Laziosi

1

, Laurent Roux

DepartmentofMicrobiologyandMolecularMedicine,FacultyofMedicine,UniversityofGeneva,Switzerland

a r t i c l e i n f o

Articlehistory:

Received12November2014 Accepted9January2015 Availableonline19January2015

Keywords:

Sendaivirus

Virusparticleassembly Matrixproteininteractions

Mutantvirusandphenotypicreversion Deepsequencing

a b s t r a c t

TheParamyxovirusmembraneassociated proteinsarecomposedoftwointegralmembrane glyco- proteins,HN(H,G)andF,andofamatrixprotein(M)carpetingthemembraneinnerlayer.ForSendaivirus (SeV),FandMhavebeenproposedtoformacomplexattheendoplasmicreticulumthatfurthermigrates tothecellperipherywhereitrepresentsanucleationsiteforviralassemblycompletion(Essaidi-Laziosi etal.,2013).HNisrecruitedintheassemblycomplexonceexpressedatthecellsurface.IncontrasttoF andM,HNappearsdispensableforvirusparticleproduction.However,uponFsuppression,concomitant HNsuppressionrestrictsviralparticleproductionmuchmoreseverelythanFsuppressionalone,suggest- ingthatHNplaysaroleaswell.Inthisstudy,wedemonstratethatthetransmembraneandcytoplasmic regionsofFaresufficienttopromotevirusparticleproductionandincorporationofaforeignprotein inviralparticles.WefurtheridentifyintheFcytoplasmictailthesiteofinteractionwithM.Wenext confirmHNparticipationinviralparticleproductionandweprovidegeneticevidenceforaparticipation ofMintheprocess.WefinallyderiveobservationsthatmayprovideamechanismbywhichtheviralC proteinparticipatesinviralparticleproductionbymediatingHN–Minteraction.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Sendai virus (SeV)is an envelope virusthat belongs tothe Paramyxovirusfamily.Twoglycoproteins,HNandF,protrudefrom theenvelope forming spikes composedof HN tetramers and F trimers.Thematrixprotein(M)carpetstheinnersideoftheenve- lopeforminga twodimensionalorganizedarrayas seenatthe innersurface oftheinfectedcell(BuechiandBachi,1982).This arrayofMisthoughttoplayacentralroleinvirusparticleassem- bly,condensingthetwo glycoproteinsinpatches–which serve asattachmentsitesfortheviralnucleocapsids–andcompleting thereadytobudassemblycomplex.Moreover,Massociationwith Finthecytoplasmhasbeenrecentlyrecognized.Indeed,inthe casewhereFisrestrictedtotheendoplasmicreticulum,follow- ingmutationofaTYTLE/5Amotifinitscytoplasmictail,Mlevel isreducedatthecellperipheryleadingtoablockadeofviralpar- ticleproduction(Essaidi-Laziosietal.,2013).Thiscrucialroleof theFcytoplasmictailhasbeenotherwiserecentlydocumented (StoneandTakimoto,2013).Ontheotherhand,HNwasproposed

Correspondingauthor.Tel.:+41792796531.

E-mail addresses: shevtsova.anastasia@gmail.com (A. Shevtsova-Horoz), essaidimanel@gmail.com(M.Essaidi-Laziosi),laurent.roux@unige.ch(L.Roux).

1 Theseauthorshavecontributedequallytothedevelopmentofthisstudy.

tojointheassemblycomplexattheplasmamembranethrougha SYWSTmotifpresentinitscytoplasmictail(Takimotoetal.,1998).

Indeed,themutationofSYWST(substitutedwithAFYKD,thecor- respondingpeptideinmeaslesvirusHcytoplasmictail)induced accumulationofHNattheplasmamembrane,withoutincorpora- tioninviralparticles(Fouillot-CoriouandRoux,2000).Theroleof thethreemembraneassociatedproteinshasbeenrecentlyrevisited inexperimentswheretheyweresuppressedbysiRNAtechnology, individually, orin concertforHN and F(Gosselin-Grenetetal., 2010).Intheseexperiments,ForMindividualsuppressionledto similarmoderatebutsignificantdecreasesofvirusparticleproduc- tion.ThiscontrastedwithHNsuppressioneffect,confirmingHN dispensabilityforvirusparticleproduction(Portneretal.,1974, 1975;StrickerandRoux,1991;Fouillot-CoriouandRoux,2000).

Despitethiswellestablishedfact,FandHNconcomitantsuppres- sions ledtothelargestdropinvirusparticleproduction, larger thanthatobservedafterFsuppressionalone(Gosselin-Grenetetal., 2010).Theseresultsraisedquestionsabouttherespectiveroleof thetwoglycoproteinsandpointedtoyetlesswelldescribedfea- tures,namelytheirinteractionwithM.

ThepresentstudyshowsthattheFcytoplasmictailandtrans- membranedomainaresufficienttodriveparticleproductionandto allowincorporationofaforeignproteininvirusparticle.Secondly, itallowsidentificationofamotifinFcytoplasmictailpronetointer- actwithM.Thirdly,itconsolidatesthesurprisingobservationof http://dx.doi.org/10.1016/j.virusres.2015.01.010

0168-1702/©2015ElsevierB.V.Allrightsreserved.

(3)

HNparticipationinvirusparticleproductionunderFlevelrestric- tion,althoughHNappearstotallydispensableinnormalconditions.

Finally,itprovidesgeneticevidenceofMparticipationinHNincor- porationinvirusparticles.Inthisrespect,itpointstothepossibility thatHN–Minteractionbemediatedbyathirdparty,namelythe viralC protein,proposedpreviouslytoparticipate,amongother functions,in virusparticleformation (Kurotaniet al., 1998). In theend,theresultspresentedgiveamoredetailedpictureofSeV particleformationandopennewlinesofresearchthatmayhelp reconcilingpreviousdataconcerningtheroleoftheCproteins.

2. Materialsandmethods 2.1. Cellsandvirusinfection

MDCK and LLCMK2 cells were maintained in DMEM (Dul- becco’sModifiedEagleMedium,Gibco-Invitrogen)supplemented with5% fetal calf serum (FCS, Brunshwing) and penicillin and streptomycinantibiotics(Gibco).BSRT7cellsobtainedfromK.K.

Conzelmann (Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians-University,Munich, Buchholz et al., 1999) were grown in GMEM (BHK-21 Glasgow minimum essential medium, Gibco-Invitrogen) with 5% FCS and a mix of peni- cillin/streptomycinantibiotics(Gibco)andtreatedwith0.5␮g/ml ofGeneticin(Gibco)onceeverytwopassages.MDCKandLLCMK2 celllinesexpressing␣-gfptsiRNAhave beendescribedindetail before(Mottet-Osmanetal.,2007).Allcelllinesweremaintained at37Cunder5%CO2 atmosphere.Forinfection,DMEMdiluted Sendaivirus(SeV)stocks(multiplicityofinfection ∼=10)were addedtothecellsandadsorbedduring1hat33C.Cellswerethen washedoncewithDMEMand2%FCS-DMEMmediumwasadded.

Cellswerethenincubatedforappropriatetimeperiodat33C.After 24–48hofinfection(seelegendsoffigures)cellsandsupernatants werecollectedandusedforfurtherinvestigation.Virusparticles wereobtainedbypelletingtheclarifiedsupernatantsthrough25%

glycerol–Tris–NaCl–EDTAcushionat13Krpmat4Cfor30min.

2.2. Constructionoffull-lengthcDNAplasmids

SeV full-length cDNA genomes were generated from FL5 throughinhousestandardmolecularcloningstrategiesasprevi- ouslydescribed(Mottet-Osmanetal.,2007).ThecDNAconstructs recombinant rSeV-Fg, rSeV-HNg,rSeV-Fg-HNg are as described previously(Mottet-Osmanetal.,2007;Gosselin-Grenetetal.,2010;

Essaidi-Laziosietal.,2014).Fordenominationsimplificationthe gfpt(standingforgreenfluorescentproteintarget)sequencewas indicated by “g”. rSeV-HNAFYKD was generated by site directed mutationofthesequenceencodingtheSYWSTpeptideusingan insertflankedbytwouniquecloningsites,ClaI(intheFgene)and ApaI(intheLgene).ThesupplementalgenesencodingtheFor HNcytoplasmictailfusedtotheBiotppolypeptide(derivedfrom pcDNA6/BioEase-DEST,Invitrogenlifetechnologies)aredescribed inEssaidi-Laziosietal.(2013),withmodificationsimplyingaddi- tionsoftheC1–23peptideandHAtag(seetextofSection3forfurther explanations).ThedTomatoprotein(TMT)encodinggenewasfrom Shaneretal.(2004).ThegeneencodingtheHAofH1N1influenza viruswasobtainedfromthelaboratoryofLaurentKaiser(Faculty ofMedicine,UniversityofGeneva,Switzerland).Thesesupplemen- talgeneswereinsertedintheuniqueMluIrestrictionsiteflanked bythegene-startandgene-endsequencesoftheadditionaltran- scriptionunitinsertedbetweentheMandFgenespresentinFl5.

SchematicrepresentationsoftherSeVgenomespreparedinthis paperwereshowninFigs.1,4A,5,7A,S1A,S2AandS3A.Allpre- paredrSeVcDNAconstructsweresequencedforattheleastthe modifiedregionsinvolved(seeTable1forfurtherinformation)or

Table1

PrimarydescriptionofHNAFYKDviruses.

No. Virusdescriptiona Phenotypeb Motifsequencec

wt wt/NF-Crescued wt SYWST

1 HNAFYKD/NF-Crescued Mutant AFYKD

2 HNAFYKD/NF-Crescued/ASG-G0passsaged Mutant AFYKD 3 HNAFYKD/NF-Crescued/ASG-G3passaged Revertant AFYKV 4 HNAFYKD/NF-Crescued/ASG-G4passaged Revertant AFYKV

aViruseswereobtainedthroughstandardrescueproceduresasdescribedinSec- tion2ofthispaperandofthepaperscitedhereafter.NF-C:asinFouillot-Coriouand Roux(2000).ME-L:asinManelEssaidi-Laziosietal.,2014.ASG-G:asinGosselin- Grenetetal.(2010).

bPhenotypeisestablisheduponinfectionofLLCMK2cellsandanalysisofthelevel ofincorporationofHNinvirusparticles:mutant=highlyrestrictedHNincorporation relativetowildtype(wt).

c SequenceanalysisoftheHNgeneonlyandoutlineofaminoacidsequenceinthe motif10aa14oftheHNcytoplasmictail.Numberofpassagesnotpreciselyrecorded.

intotalitywhenindicated.Theyallobeytheruleofsix(Calainand Roux,1993).

SupplementaryFigs.S1–S3canbefound,intheonlineversion, athttp://dx.doi.org/10.1016/j.virusres.2015.01.010.

2.3. Recombinantvirusrescueandvirusstockproduction

RescueofrecombinantSendaiviruses(rSeV’s)formfull-length cDNAgenomeswasperformedasdescribedinMottet-Osmanetal.

(2007).Shortly,FL5cDNAandpTM1basedplasmidsexpressingthe N,P/CstopandPviralproteinswereusedtotransfectBSRT7cells.

After48hours,transfectedcellswereincubatedwith1.5␮g/mlof acetylatedtrypsinin a mediumlacking FCS.Twenty-fourhours later,cellswerecollectedandinjectedinto9day-oldembryonated chickeneggs.After3daysofincubationat33C,allantoicfluid(AF) wascollected.Thepelletof1mlofAFwasanalyzedonSDS-PAGE tocheckforthepresenceofvirusafterCoomassiebluestaining.

TitrationofvirusstockswasdoneasdescribedbeforeSugitaetal.

(1974).

2.4. Antibodies

ForWesternblotdetection,rabbitpolyclonalantibodies␣-HN,

␣-N,␣-MandantiFcytoplasmictail(␣-Fc)havebeendescribed (␣-HNSDS, ␣-NSDS, ␣-MSDS (Tuffereau and Roux, 1988; Mottet- Osmanetal.,2007;Mottetetal.,1996).Monoclonalanti-HAtag isfromCovance(#16B12).Polyclonalrabbitanti-H1N1HAprotein (A/California/14/2009)isfromSigma–Aldrich(SAB3500059).Anti- dTMTisfromChemiconInternational(#AB3216).Thebiotinylated fusedproteinsweredetectedwithStreptavidin-HRP(Pierce).For immune-fluorescencestaining,␣-HN(cloneM68)and␣-F(clone M38)mousemonoclonalantibodieswereobtainedfromAllenPort- ner(StJude Children’s ResearchHospital,Memphis,Tennessee) andratmonoclonalanti-HA(Clone3F10,Rocheref11867423001).

TRITC-conjugateddonkeyanti-ratIgG(JacksonImmunoResearch) andAlexa488conjugatedgoatanti-mouseIgG(Invitrogen)were usedassecondaryantibodies.

2.5. Westernblotanalysis

Westernblotswereperformedaccordingtostandardprotocol.

Viralproteins,aftermigrationin12.5%acrylamideSDS-PAGEgel, weretransferredontopolyvinylidenedifluoridemembrane(PVDF, Millipore)usingTrans-BlotSDTransferCell(Biorad).Proteinswere visualizedusingthePNR2106ECLWesternBlottingDetectionSys- tem(Amersham).BlotimagingwasdoneusingaFujifilmLAS-40.

(4)

Fig.1. SchematicrepresentationofrSeV’sexpressingH1N1HAordTMT(TMT)inthecontextofconditionallysuppressedFandHN.1.OutlineoftherSeVgenomewithits sixgenesflankedbythegenomicpromoter(GP)andthecomplementoftheantigenomicpromoter(AGPc,nottoscale).TheFandHNgenesharborthegfptsequenceattheir 5end(blackbox),astargetsforsiRNAsuppression.2.OutlineofrSeV-HA-Fg/HNgvirus.Asin1,butwiththesupplementalgeneencodingH1N1HA.InFopenreadingframe (ORF),thesignalpeptideisshown(Fs,inmagenta).Theecto-(gray),trans-membrane(red)andcytoplasmicdomains(green)arehighlighted.NotethatHAandFaretypeI glycoproteins.Theschematicrepresentationsoftheirnon-cleaved(HA0orF0)andcleaved(HA1andHA2orF1andF2)formsareindicatedinthelowerrightframe.Arrows indicatecleavagesite.Hydrophobicpeptideisshownasasmallgreenrectangle.Yellowlinessymbolizedisulfidebonds.3.OutlineofrSeV-HAFt-Fc-Fg/HNgvirus.Asin2., exceptthatthetrans-membraneandcytoplasmicdomainsofFreplacetheHAcorrespondingdomains.4.OutlineofrSeV-TMT-Fg/HNgvirus.Asin2butageneencodingthe tomatoprotein(TMT,orange)isinsertedasasupplementalgene.5.rSeV-TMTFt-Fc-Fg/HNgvirus.Asin4,withtheFsignalpeptide(Fs),transmembrane(Ft)andcytoplasmic (Fc)domainsfusedtothedTMTORFasindicated.Onlyhighlightedparts(whiteonblack)ofthevirusdenominationsareusedforannotationsofthevirusesinfiguresand text.

2.6. Isotopicradio-labelingofcells

After 16h of infection, cells were overlaid with FCS free mediumcontaining1/10ththeamountofmethionineandcysteine and 30␮Ci/ml of 35S-methionine and 35S-cysteine (Pro-mix- [35S]-Amersham,Biosciences).Twenty-fourhourslater,cellsand supernatantswerecollectedandusedforSDS-PAGEgelanalysis.

RadioactiveproteinswerethendetectedusingTyphoonFLA7000 Phospho-Imager(GEHealthcare).

2.7. Streptavidinagarosepull-downassays

Pull down with streptavidin agarose resins was performed accordingtothemanufacturer’sinstructions(PierceStreptavidin Agarose Resins, Thermo-Scientific) and as previously described (Essaidi-Laziosietal.,2013).Briefly,cellswereinfectedwithviruses expressingBiotpfusedtoForHNcytoplasmictails(represented inFigs.6-A,7-A,S1-AandS2-A)andincubatedinDMEMsupple- mentedwithbiotin1mg/ml(Sigma–Aldrich).Infectedcellswere washed three times withphosphate buffered saline(PBS), col- lected30hpost-infectionandlysedinNaCl10mM,Tris–HClpH 8.050mM,NP400.6%.Thecellularextractswerethenincubated with20␮lofstreptavidinagarosefor2hat4C.Pulled-downpro- teinswerepelletedandwashedfivetimeswithNaCl150mM,EDTA 5mM,50mMTris–HClpH7.8,NP402%.Finally,theboundcom- plexeswereelutedwithSDSPAGEsamplebufferandanalyzedby Westernblotting.

2.8. Immune-fluorescencestainingandconfocalmicroscopy

Immune-fluorescenceanalysiswasperformedaccordingtothe protocol previously described in details (Essaidi-Laziosi et al., 2013).Briefly, MDCK cells were grown on sterilized coverslips coatedwithpoly-lysine(Sigma).After24hofincubationinfected cells were washed with 20mM Hepes pH7.5-buffered DMEM and fixedwith4% PFA15min atroomtemperature. In case of surfaceimmunofluorescence(surfaceIF)stainingprimaryandsec- ondary antibodies were added on the PFA-fixed cells and for total immunofluorescence(total IF)staining, cells wereperme- abilizedusingmethanol(−20C)beforestaining.Washingusing

PBSfollowedanyincubation.ThenucleuswasstainedwithDAPI (Boehringer Mannheim GMBH). Stained cells were mounted in Fluoromount-G(SouthernBiotech).Confocal microscopeLSM700 (CarlZeiss)via63×/1.4oilimmersionobjectivewasusedtotake imagesandZensoftwarefortheacquisitionandthentheanalysis andtreatmentofconfocalimages.

2.9. Analysisofrevertantviruses

Foranalysisofspontaneousreversion,viralRNAwasextracted fromallantoicfluid byTrizol(Life Technology)accordingtothe manufacturer’sinstructions.Reversetranscriptionwascarriedout withM-MLVreversetranscriptase(Promega).ViralgenomecDNA wasamplifiedbyPCR usingspecificprimers(primersequences available upon request).TheRT-PCR productwasthen purified (QiagenDNAgelextractionkit),fullysequencedandanalyzedusing theApplied Biosystemssoftware.Alternatively,1␮mofpurified viralRNAwasused fordeepsequencing.Librarieswerepooled andsequencedonanIlluminaGenomeAnalyzerGAIIx(Illumina).

Obtainedresults(reads)werevisualizedbyIntegrativeGenomics Viewer(IGV).PlasmidscontainingfulllengthcDNAsequencesof rSeV-wtandrSeV-HNAFYKDwereequallysequenced(seeTable2).

3. Results

3.1. TheFcytoplasmictail(+trans-membraneregion)isfully competentforvirusparticleproductionandglycoprotein incorporationintovirion

IftheFcytoplasmictail(Fc)representsaminimalrequirement forSeVparticleproduction,thenaproteinexpressingthisdomain intherightconformationshouldbesufficienttoreplaceF.Corol- lary,onewouldpredictthatthisproteinbeitselfincorporatedin particles.Atfirst,arSeV-Fg/HNgvirus,inwhichtheFandHNpro- teinsareopentosuppressionbysiRNAtechnology(seeSection2) wasconstructed,carryingthesupplementalH1N1influenzahea- magglutinin/neuraminidase(HA0)gene(Fig.1,line2).Inasecond versionofthisconstruct,theFtransmembrane(Ft)andcytoplas- mic(Fc)regionsreplacedtheoriginalHAcorrespondingregions, creatingHAFt-Fc (Fig. 1,line 3).Fig.2 shows that the two HA0

(5)

Table2

Summaryofthegenotypicandphenotypicanalysisofwildtype,mutatedvirusesandrevertantvirusesobtainedspontaneouslyorafterserialpassages.

No. Virusdescriptiona Phenotypeb Motifsequencec SequenceinMd Sequencingfeaturese

aa192 aa239

1 wt/ME-L wt SYWST Leu Arg Classic,HN/M

2 wt/NF-C wt SYWST Leu Arg Classic,HN/M

3 HNAFYKD/ME-L Mutant AFYKD Leu Arg Classic,HN/M

4 HNAFYKD/NF-C* Mutant AFYKD Leu Arg Classic,HN/M

5 HNAFYKD/NF-Crescued/ASG-G1 Revertant SYFKA Leu Arg Classic,HN/M

6 HNAFYKD/NF-Crescued/ASG-G2 Revertant SFYKN Arg Arg Classic,HN/M

7 HNAFYKD/NF-Crescued/ASG-G3 Revertant AFYKV Leu Gly Classic,HN/M

8 HNAFYKD/NF-Crescued/ASG-G4 Revertant AFYKV Leu Gly Classic,HN/M

9 HNAFYKD/NF-Crescued/ASP5* Revertant AFYKG His Arg Deep,total

10 HNAFYKD/NF-Crescued/ASclP6* Revertant AFYKG His Arg Deep,total

11 AScDNArescued* Mutant AFYKG Leu Arg Deep,total

aVirusdescriptionasinlegendtoTable1withtheadditionofviralcDNAandvirusespreparedbyAnastasiaShevtsova(AS).

b Phenotype:asinTable1.

c Sequenceanalysis:asinTable1.

d ThesequencehasbeenextendedtotheMgene,andtwopositions(aa192and239)havebeenoutlined.

eSequencingfeaturesrefertothemethodologyused.Classic:regularsequencingcoveringtheMandHNgenes(seeSection2).Deep:deepsequencingextendingoverthe entiregenome,beitofarescuedvirusorofafulllengthcDNApreparedforvirusrescue.“P5”and“clP6”forvirusesNo.9and10refertothenumberofserialpassagesin eggsstartingfromaviruswithcontrolledAFYKDgenotypeandphenotype(seetext).clP6:PlaquepurifiedvirusesfromtheP6virus.

Fig.2. RoleofFcytoplasmicandtrans-membranedomainsforformationofandproteinincorporationintoSeVparticles.MDCKcellsconstitutivelyexpressingornotanti gfptsiRNA(+/-␣-gfptsiRNA)weremock-infectedorinfectedwiththeindicatedrSeV’s(seefig.1).Cellularextracts(A–C)andvirusparticles(D–F)wereanalyzedbyWestern blotsusingindicatedantibodies.G.Quantification(ImageJsoftware)ofthelevelofvirusparticleproductionisfromthreeindependentexperimentsdoneinconditionsof expression(blackbars)orsuppression(graybars)ofHNandFglycoproteins.VirusparticlelevelsweretakenastheNlevelsinviralparticlesnormalizedtothelevelsof intracellularN.TheyareexpressedasapercentageofthosefoundinconditionsofHNandFexpression,takenas100%.pvaluesareindicated.

(6)

proteins(andHA1)areexpresseduponinfectionwiththesetwo viruses(Fig.2B,lanes5–8).WhenHAharborsthetransmembrane andcytoplasmicregionsofSeV-F(HAFt-Fc),itcanbedetectedwith

␣-Fcantibodiesaswell(Fig.2A,lanes7and8).Thisexpressionis equivalentwhetherendogenousHNandFproteinsareexpressed orsuppressed(−/+␣-gfptsiRNA).AsfortheSeVproteins, their expressionisnotaffectedbytheexpressionofthesesupplemen- talproteins(forF,compareinFig.2A,lane3with5and7;forHN, NandMseeFig.2C).Moreover,FandHNlevelsrespondwellto suppression(comparelanes−/+inFig.2AandC,lanesFg/HNg), althoughthecorrespondingdropinviralparticleproductiondoes notexceed70%(Fig.2G,Fg/HNg),alimitationprobablylinkedto thecelltypeusedinthisseriesofexperiments(MDCKasopposed toLLCMK2).Ofnote,HAandHAFt-Fcaredetectedinvirusparticles (Fig.2DandE).Finally,expressionofHAFt-Fccontributesrescuing thehighestvirusproductionuponFandHNsuppression(Fig.2F, comparelanes7–8withlanes3–4,or5–6,andFig.2G).Fig.2Galso showsthatnormalHA,byitself,hasalreadyaboostingeffecton virusproductioninconditionofHNandFsuppression(graybars).

BecauseinfluenzavirusHAappearstoparticipatebyitselftoSeV particleproduction,likelybecauseitsharessomepropertieswithF, wenextusedaproteinthatshouldnotshareanyfeaturewithviral glycoproteins.ThegeneencodingdTomatoprotein(dTMT,seeSec- tion2)wastheninsertedasasupplementalgene,assuch(Fig.1, TMT),ormodifiedsothattheproteinharborstheFtransmembrane andcytoplasmicdomains(Fig.1,TMTFt-Fc).Also,theFN-tersignal peptide(Fs)wasaddedatthedTMTN-ter,toaddresstheproteinto ERandtotheexociticpathway.Fig.3Bshowsthatbothversionsof dTMTareexpressedininfectedcells(lanes5–8),withappropriate PAGEmigrationfeatures.TMTFt-Fcisalsodetectedby␣-Fcantibod- ies,whichdonotdetectdTMT(Fig.3A,lanes5–8).TMTFt-Fclevels, relativetothatofF,appearlowerthanthoseoftheHAFt-Fc(Fig.2A, lanes7and8).SeVproteins,however,areproperlyexpressedor suppressedwhenevertheyshould(Fig.3C).FandHNsuppression leadstosignificantdecreasesinvirusparticleproduction(Fig.3F, comparelanes3and4).Virusparticleproductionappearsnottobe affectedbyTMTexpression(Fig.3F,lanes5and6),butisslightly increasedbytheexpressionofTMTFt-Fc(Fig.3F,comparelanes6–8).

Thiseffect,althoughnotsubstantial,isconfirmedbystatisticalanal- ysis(Fig.3G).ThemodesteffectpromotedbyTMTFt-Fcmayresult fromitsreducedpresenceinthecell,likelyduetoafasterturnover.

Thislikelyexplainsalsothelackofitsdetectioninvirusparticles (Fig.3E).

Inconclusion,ectopicexpressionoftheFtransmembraneand cytoplasmicdomainsappearssufficienttopartlycompensatefor FandHNsuppressionintheviralparticleproduction,suggesting thattheinteractionsinvolvedinthisprocessonlyconcernsthese portionsoftheprotein.Inagreement,withthisconclusion,these twodomainsaresufficienttoleadtoquantitativeincorporationof aheterologousproteinlikeinfluenzaHA.

3.2. AregionoftheFcytoplasmictailproximaltothe transmembraneregionisinvolvedininteractionwithM

InapreviousstudybyFouillot-CoriouandRoux(2000),theF cytoplasmictail(of42 aa long)couldbetruncatedfromits 15 C-terproximalaminoacidswithoutaffectingvirusparticlepro- ductionandFincorporationintheseparticles.Thisresultsuggested thatcondensationofthetruncatedFintheassemblycomplex–a tasklikely devotedtoM–wasnotaffected.Asmutationofthe

24TYTLE20 motifinthis cytoplasmictail, essentialforviruspar- ticleproduction,didnotdisruptF–Minteraction(Essaidi-Laziosi etal.,2013),itbecameplausiblethatthepointofM–Fcytoplas- mictailinteractionwouldlayintheregionflankedbyTYTLEand the transmembraneregion (see Fig. 4A, aa 25–42). The penta- peptide39SMLMG35wasthenmutatedto5A(Fig.4,C-Fcmut1)and

interactionwithMassessedaspreviouslyreported(Essaidi-Laziosi etal.,2013).Fcytoplasmictailinfusionwithapeptideproneto biotinylationinsitu(Biotp)wasexpressedfromasupplemental SeVgene(Fig.4A,C-Fcconstructs).Mpulldownassayswerethen testedusingstreptavidinbeads.Previously,thismethodallowedus toverifytheconservationofM-FcTYTLE/5Ainteraction(Essaidi- Laziosietal.,2013).Inthepresentstudy,wefurtheraddedaC1–23 peptideandaHAtagattheN-terminalsideofthecytoplasmictail (Fig.4A,C-Fcwt).C1–23originatesfromtheSeV-CproteinN-terand representsanaddresstotheinnersideoftheplasmamembrane (Marqet al.,2007).Asexpected, C1–23 broughtthecytoplasmic tailtothecellperiphery,aconditionthatapparentlyimprovedits interactionwithM(Fig.S1,seealsoSection4).Ascontrols,regular infectionsnotexpressingthebiotinylatedFcytoplasmictail(Fig.4, Fg)orexpressingthecytoplasmictailofthemeaslesvirusHpro- teins(Fig.4,Hc)wereused.Analysisofthecytoplasmictailcarrying themutationTYTLE/5A(Fig.4A,C-Fc5A)wasalsorepeated.Fig.4B andCshowsthat,aspreviouslypublished,TYTLE/5Amutationdid notcancelinteractionwithM(C-Fc5A).Inthisseriesofexperiments, bindingofC-Fc5AtoMwasratherboosted.Thiscontrastedwiththe reducedMpulldownbyC-Fcmut1,suggestingthatthisportionof thecytoplasmictailhaslostitsinteractionwithM.

3.3. HNdoesparticipatetoSeVparticleformationinconditionsof Frestriction

The largerdropof virusparticleproduction upon F and HN suppression(exceedingthat followingFsuppressionalone)was interpretedastheHNparticipationinconditionsofreducedFlevel (Gosselin-Grenetet al.,2010).Alternatively, HN co-suppression couldproduceahigherviralglycoproteinturnover,resultingin amoreefficientFdepletion.ToresolvethisuncertaintyHNwas replacedbyHNAFYKD,excludedfromviralparticle(Fouillot-Coriou and Roux, 2000), hence likely not to participate in viral parti- cle formation.A recombinantSeV wasthenproduced encoding HNAFYKDinthecontextofanFgeneopentosuppression(Fig.5, rSeV-Fg/HNAFYKDanddescriptionofalltherSeV’susedintheexper- iment). Eachinfectionwasstudiedinnormal conditions(Fig.6,

−␣-gfptsiRNA)orinconditionsofeffectiveproteinsuppression (Fig.6,+␣-gfptsiRNA).Viralparticleproductionwasrecordedby direct 35S-labeled viral proteins analysispurified from thecell supernatants(Fig.6A).Intracellularviralproteinsweremonitored byWesternblotsusingappropriateantibodies(Fig.6B).Totalradi- olabelledcellextractswerealsodirectlyanalyzedbySDS-PAGE servingasloadingcontrols(Fig.6C).Fig.6A,lanes3and4,show restrictionofVPproductionuponFsuppression.Assownprevi- ously,this restrictionincreases upondual suppressionofF and HNsothatVPproteinsarebarelydetected(lane8).Interestingly, similarrestrictionsareseenuponFsuppressionaloneinthepres- enceofHNAFYKD (lane10). So,for VPproduction, expressionof HNAFYKDisequivalenttosuppressionofHN.Notethat,asexpected frompreviousresults,HNAFYKDexpressioninconditionsofnormal Fexpression,doesnotperturb VPproduction(lanes11and12).

Intheend,inconditionsofFsuppressionalone,butwithexpres- sionofanon-functionalHNAFYKD,thenegativesynergisticeffect thatsuppressionofbothglycoproteinsexertsonvirusproductionis reproduced.ThisratherconfirmstheHNparticipationinviruspro- ductionwhenFisreduced;whenFisfullyexpressed,HNremains fullydispensable.

3.4. EvidenceforMinvolvementinHNincorporationintovirion

InthemodelofSeVassembly(Essaidi-Laziosietal.,2013),HN isrecruitedattheplasmamembranebyinteractionwithafraction ofMthatisfoundbydefaultatthatlocation.Thisrecruitmentdoes nottakeplacewhentheHNcytoplasmictail10SYWST14motifis

(7)

Fig.3.RoleofFcytoplasmicandtrans-membranedomainsinincorporationofavirallyirrelevantprotein(dTMT)intoSeVparticles.AsinFig.2exceptthattheanalyzed virusesarethosedescribedinFig.1,lines1,4and5withappropriateantibodies.␣-TMT:anti-tomatoproteinantibody.InpanelG,pvaluesareindicated.

changedforAFYKD(Fouillot-CoriouandRoux,2000).Onthisbasis, itwashypothesizedthatSYWSTisdirectlyinvolvedinMinterac- tion.SimilarexperimentsasthosedescribedinFig.4weretherefore setupforHNcytoplasmictail.Inafirstseriesofexperimentsapep- tidecontainingonlytheHNcytoplasmictail(HNc)fusedtoBiotp failedtoshowanypulldownofM(Fig.S2B,HNcwt).Additionof theC1–23peptidetotheHNcconstructbroughtthecytoplasmic tailtotheplasmamembrane(Fig.S2C,HNcwt-C)andimprovedthe efficiencyofMpulldown(Fig.S2B,HNcwt-Clanes).Becauseitwas previouslyshownthatadeletionofthefirstN-ter10aminoacidsof HNchadnodeleteriouseffectonHNincorporationintoviruspar- ticles(Fouillot-CoriouandRoux,2000),twomotifsdownwardsof SYWSTwerenextmutated(17SGSTT21and24SGWE28)intoalanine tocreateHNcmut1-CandHNcmut2-Crespectively(Fig.7A).Noneof thethreemutantsexhibitedadecreasedabilitytopulldownM.It isparticularlysurprisingthatevenmutationHNcAFYKD-C,known tobeassociatedwithlackofHNincorporationinvirusparticles, appearstoperformbetterthanHNcwt-C.Intheend,notonlythe datadonotsupportthenotionthattheSYWSTmotifparticipatesin HN–Minteraction,butalsonomotifofinteractionappearstoexist intheHNcytoplasmictail.Consequently,lackofHNincorporation intovirusparticlecanapparentlynotbeexplainedbyadefectof HNinteractionwithM(inthelimitofthemotifstestedhere).

Confronted with this conundrum, we developed another approachbasedonnaturalselectionofHNAFYKDphenotypicrever- tants. We rationalized that poor HN incorporation into viral particleswouldcertainlylowerviralfitness, afitnessthatcould onlyimprovewithviruspassages.Besides,asthemutationinvolves

5aminoacids(ofwhichtherelevantoneswerenotknown),rever- sionwouldnowtargettherelevantsite(s).Andlastbutnotleast, theprobabilitythat reversionwouldinvolvea siteontheputa- tiveproteininteractingwithHNwaspossible.In fact,sequence data limited to themutated region had shown increased vari- abilitycorrelatingwithviruspassages(Fig.S3B).Itwastherefore not surprising that two out of three repeatedly passaged SeV- HNAFYKD virusesexhibitedrevertant phenotypes(Fig.S3C,lanes 3and 4),in contrasttoSeV-HNAFYKD analyzed just afterrecov- eryfromcDNA(lane1).Interestingly,sequenceanalysisshowed thatthetworevertantvirusescarriedthesubstitutionAFYKDto AFYKV(Table 1).Thisresultwasfully consistent,butcontribu- tionoftheputativeinteractingMproteinwasnotaddressed.More SeV-HNAFYKDviruses,includingrandomlypassagedviruses,were consideredwithsequence analysis extendingtotheMgene as well(Table2).Moreover,arSeV-HNAFYKDvirus,justobtainedfrom rescue,wasrepeatedlypassedinacontrolledwayuntilthepheno- typicreversionwasobserved(Fig.8AandB).ThefulllengthcDNA plasmidusedforrescue(notshown),therescuedvirusgenome (Fig.8A,wtandTable2,No.3)andthephenotypicrevertantvirus genomes(Fig.8AandB,Table2,No.9,P5andNo.10,P6)were submittedtodeepsequencing.Theresultsofthedeepsequencing areshowninTables3and4.Onlythesequencedatathatdiffer fromthoseoftherSeV-HNAFYKDareoutlined,i.e.theremainingof theentiregenomesequencewasfoundunchanged.Interestingly, theAFYKDmotif,whichlikelyprovokesalossoffitness,showed signsofvariabilitywithminorchangescomparedtotheoriginal ateverysinglenucleotideposition.Onlyinposition44,thechange

(8)

Fig.4.InteractionsoftheFcytoplasmictailwithMprotein.(A)SchematicrepresentationsofrecombinantSeV’sharboringendogenousFproteinopentoconditional suppressionby␣-gfptsiRNAandadditionaltranscriptionunits(line1)expressingtheFcytoplasmictail(Fc,green)initswt(Fcwt,line2)ormutated(Fc5AandFcmut1,lines 4and5)configurations.Fcisfurtherfusedtoapeptide(Biotp,yellow)opentobiotinylation,toaHAtag(HA,gray)andtoa23aminoacidpeptideoriginatingfromthe SeVCproteinN-terminus(C1–23,purple).IntheFcsequence(line3,highlightedingreen),motifs24TYTLE20and39SMLMG35aresubstitutedby5alaninestocreateC-Fc5A

andC-Fcmut1respectively(lines4and5).Lightgreen:partofFcthatcanberemovedwithoutaffectingglycoproteinincorporationinviralparticleandvirionproduction (Fouillot-CoriouandRoux,2000).Hc(red/green,line6),cytoplasmictailofmeaslesvirusHproteinfusedtoBiotp,usedascontrol.(B)Anti-gfptsiRNAexpressingMDCKcells wereinfectedwiththeindicatedvirusesinmediumsupplementedwithbiotin.Sixtyhourspostinfectioncellularextractswerepreparedandincubatedwithstreptavidin agaroseresinstopulldownFcfusedtoBiotp(seeSection2).Leftpanelsandrightpanels:Westernblotanalysisofpulldownsamplesandcellularextracts,respectively,probed with␣-Mantibodiesandstreptavidin-HRP.Fg:Fgvirus,seeFig.5,line2.(C)QuantificationoftheratioofMproteintoBiotp’susingImageJsoftwarefrom2independent experiments.pvaluesareindicated.

A44GbecamepredominantandledtoanaminoacidchangeD14G (Table3).TheotherchangeobservedconcernstheMORF,where, atnucleotideposition574,aTtoAchangewasevident(93%ofthe reads),leadingtoaL192Haminoacidchange(Table4).Notethatthe

positionssurroundingthemutationshownovariabilityatall,100%

ofthereadscorrespondtothoseoftherSeV-HNAFYKDparentstrain.

Table2presentsasummaryofallthesequencingdataandmany featuresareremarkable.Allrevertantvirusescarryamutation(s)of

Table3

DeepsequencingresultsoftheHNAFYKDviruses:AFYKDmotifhighlighted.HNAFYKDandclP6asinTable2virusesNo.3and10,respectively.ForHNAFYKD,the%oftotalnumber ofreadsforthepositionshighlightedis>99%(notshown).

HNAFYKD

NtpositioninHNORF 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

ntsequence G C G T T C T A C A A G G A T

aasequence A10 F11 Y12 K13 D14

%totalread inclP6

A 1 1 1 1 2 1 2 75 7 82 87 17 12 4 3

C 2 96 3 2 2 92 4 5 81 8 7 3 3 5 6

G 96 2 95 6 3 2 2 5 6 1 3 73 80 83 11

T 1 1 1 90 93 4 91 13 1 7 2 5 3 6 80

clP6 ntsequence G C G T T C T A C A A G G G T

aasequence A10 F11 Y12 K13 G14

Boldvaluesarestressingthehighpercentageofthemajorgenomespecies.

(9)

Fig.5. SchematicrepresentationofrSeV’susedtoconfirmtheroleofHNinvirusparticleformation.1.OutlineoftheparentalSeVgenomewithits6genesflankedbythe genomicpromoter(GP)andthecomplementoftheantigenomicpromoter(AGPc).2.OutlineofrSeV-Fgvirus.TheFtranscriptionunitisflankedbythestart/stoptranscription signals/).InFopenreadingframe(ORF),theecto-(gray),trans-membrane(red)andcytoplasmic(green)domainsareshown,withthe24TYTLE20motifoutlined.Inthe5 noncodingregionofthegene,thesequencederivedfromthegreenfluorescentproteingeneservingastargetforsiRNAbasedsuppressionisshown(gfpt,black).3.Outline ofrSeV-HNgvirus.AsfortheFgenein2.DomainsofHNORFaswellasgfptareoutlinedusingthesamecolorcodeasin2.TheHNcytoplasmicdomaincarriesthewildtype motif10SYWST14.4.OutlineofrSeV-Fg/HNgvirus.BothFandHNgenesaretargetedwithgfptsequence.5.OutlineofrSeV-Fg/HNAFYKDvirus.Asin2,buttheSYWSTmotif isreplacedwithAFYKD.6.OutlineofrSeV-HNAFYKDvirus.Asin3,withtheSYWSTmotifisreplacedwithAFYKDandwithoutgfptintheFgene.Virusdenominations,asin Fig.1.

Fig.6. HNAFYKDbehavesasHNsuppressioninthenegativesynergypromotedbyF suppression.LLCMK2cellsconstitutivelyexpressingornotantigfptsiRNA(+/−␣- gfptsiRNA)wereinfectedwithindicatedviruses(seeFig.5).Sixteenhourspost- infection,theinfectedcellswereradiolabelledwith35S-methionineandcysteine (seeSection2).(A)AutoradiogramofvirusparticlesamplesanalyzedbySDS-PAGE.

(B)CellularextractsanalyzedbyWesternblotusing␣-HN,-F,-Nand-Mantibodies.

(C)AutoradiogramofcellularextractsanalyzedbySDS-PAGE.

theAFYKDmotif.Withoneexception(No.5,whichexhibited4out of5mutationspresentinthemutatedAFYKDmotif,regainingthe SYwtmotif),alltherevertantvirusescarryasecondsitemutationin theMprotein,targetingeitherLeu192orArg239.Basedonthedeep sequencingresultsofP5andP6(forwhichnoothermutationscould bedetectedintheentiregenome),aviralcDNAwasconstructed thatonlycarriedthemutationAFYKGmotif(No.11).cDNANo.11 yieldedaHN AFYKGviruswithaconserved mutantphenotype, stronglysuggestingthatthemutationLeu192HisinMwasrespon- sibleforphenotypicreversionoftheHNAFYKGP5andP6viruses.

Intheend,therevertantvirusanalysisbroughtinterestinginfor- mationsupportingalinkbetweenHNandMforHNincorporation intoviralparticle,aswellasitprovidedamoredetaileddescription oftheSYWSTmotif(importanceofSY,seemoreinSection4).

4. Discussion

Insummary,thisstudyprovidesafewdifferentsetsoforiginal informationconcerningtheprocessofSeVparticleassemblyand production.Ingeneral,itmakesampleuseofsupplementalpro- teinexpressionandillustratesthepossibilitiesoftheintegrated suppressioncomplementationsystem(ISCS)toperformviralpro- teinstructure/functionanalysisinthecontextoftheviralinfection.

At this point, it is fair to point to the major drawback of this approach,whichresidesintheimpossibilitytogenerallysuppress morethan95%ofthesiRNAtargetedprotein.Ontheotherhand,this methodologyallowsexpressionofsupplemental(complementing) proteinstolevelscorrespondingtothoseoftheotherviralpro- teinsand inthesame“context”.By this,one refersnotonlyto thegeneralcontextofaninfection(incomparisontoviralprotein expressionresultingfromplasmidtransfection),butmoreprecisely tothesamemolecularmechanismsand tothesamesubcellular topography,featuresthatarenotfullyappreciatedyetforParamyx- oviruses,butarebetterdescribedforpositivestrandRNAviruses (VanKuppeveldetal.,2010).

Thecriticalinvolvement ofFwastargeteddowntoitscyto- plasmicandtransmembranedomains.Ectopicexpressionofthese twodomainswasenoughtorestoreasignificantpartofthedrop inparticleproductionthatfollowsFandHNsuppression.Inview ofthefactthatthecytoplasmictailaloneappearstocontainthe siteofFinteractionwithM,onewouldtendtoconcludethatthe transmembraneregionmaynotbecritical.Interestingly,influenza virusHA appeared topartiallyrescue thedrop ofviral particle

(10)

Fig.7. InteractionofHNcytoplasmictailwithMprotein.(A)SchematicrepresentationofrecombinantSeV’sharboringendogenousHNproteinopenedtoconditionalsup- pressionandadditionaltranscriptionunitsexpressingtheHNcytoplasmictail(HNc,blue)initswt(HNcwt-C)ormutated(HNcAFYKD-C,HNcmut1-C,HNcmut2-C)configurations.

Biotp,HAandC1–23,asinFig.4.Inline3,theHNcsequence(highlightedinblue)motifs10SYWST14and17SGSTT21and24ASGWE28whichweresubstitutedwithAFYKDand5 alaninestocreateHNcAFYKD-C,andHNcmut1-CandHNcmut2-Crespectively.Lightblue:partofHNcthatcanberemovedwithoutaffectingglycoproteinincorporationinviral particleandvirionproduction(Fouillot-CoriouandRoux,2000).(B)AsinFig.4,butwiththeindicatedviruses.

productioncausedbyFandHNsuppression.Whetherthisreflects partialfunctional similarity of SeV F and influenza HA, and/or partiallackofspecificityintheinteractionsrequiredforthepro- cessremainsopen;noprimarysequencesimilaritybetweenSeV-F (42aa)andH1N1HA(16aa)cytoplasmictailscouldpossiblybe identified.Regardless,inthesamewaytheHNcytoplasmicand transmembraneregionsallowedmeaslesvirusH (typeIIglyco- protein)uptakeintoSeVparticle(Essaidi-Laziosietal.,2014),the correspondingdomainsofF(typeIglycoprotein)favoredincorpo- rationofaglycoproteinofthesametype.Uptakeofheterotypic glycoproteinsinSeVparticlesappearsthentorequirethehomo- typiccytoplasmic and trans-membranedomains, in accordance withthehumanparainfluenza3(HPIV3)requirementtobesub- typedbythehumanparainfluenza2(HPIV2)glycoproteins(Tao etal.,2000).Thisrequirement,however,maydependonthesource

oftheheterotypicproteins,sinceHPIV3couldbereadilysubtyped withthehumanparainfluenza1(HPIV1)glycoproteins without substitution(Taoetal.,1998).

TheresolutionoftheapparentparadoxicalroleofHNinvirus particleformationreceivedfurtherclarificationwiththeHNAFYKD expressionaccompanyingFsuppression.Inthissituation,anega- tivesynergyforvirionproductionwascreatedbetweenpresence ofthenon-functionalHNAFYKDandFsuppression,similartothat observed upon simultaneous suppression of both proteins. The coherenceofthetwosetsofdatafirmlyvalidatesthenotionof partialandunilateralredundancyofthetwoproteinsinviruspar- ticleformation,afindingthatwasalreadymadeusingthevirallike particle(VLP)system(Sandersonetal.,1993,1994).WhenFcan fullyreplaceHN,thislattercanonlypartiallysubstituteforF.The higherdeficitinviralparticleproductioncreatedbyFsuppression

Table4

DeepsequencingresultsoftheHNAFYKDviruses:criticalpositionsintheMproteinarehighlighted.AsinTable3butthepositionsaroundleucine192inMareshown.These highlightedpositionsaretheonlypositionsshowingvariationintheentireviralgenome.

HNAFYKD

NtpositioninMORF 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

ntsequence G C A G A C C T T G C A T T G

aasequence A190 D191 L192 A193 L194

%totalread inclP6

A 0 0 100 0 100 0 0 97 0 0 0 100 0 0 0

C 0 100 0 0 0 100 100 0 0 0 100 0 0 0 0

G 100 0 0 100 0 2 0 0 0 100 0 0 0 0 100

T 0 0 0 0 0 0 0 3 100 0 0 0 100 100 0

clP6 ntsequence G C A G A C C A T G C A T T G

aasequence A190 D191 H192 K193 G194

Boldvaluesarestressingthehighpercentageofthemajorgenomespecies.

Références

Documents relatifs

Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis... All

This paper reports that the apparently unmodified N-terminal sequence of the Sendai virus C protein (MPSFLKKILKLRGRR. .; letters in italics represent hydrophobic residues;

The Sendai virus V protein is a nonstructural trans-frame protein in which a highly conserved cys-rich Zn 2/ -binding domain is fused to the N-terminal half of the P protein via

At 12 h p.i., all the Phe 170 of the C protein (and C H also contains Phe at infected cultures contain roughly similar amounts of viral this position), it appears that the

SeV strains containing wild-type or various mutant C proteins were examined for their ability (i) to induce an antiviral state (i.e., to prevent the growth of vesicular stomatitis

Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.. ISENI, Frédéric,

mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral

Stocks containing this DI genome were then generated by multiple passages in embyonated chicken eggs (Methods and materials), and each passage was tested for its ability to activate