• Aucun résultat trouvé

Approximation properties of periodic interpolation by translates of one function

N/A
N/A
Protected

Academic year: 2022

Partager "Approximation properties of periodic interpolation by translates of one function"

Copied!
13
0
0

Texte intégral

(1)

M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

F.-J. D ELVOS

Approximation properties of periodic interpolation by translates of one function

M2AN - Modélisation mathématique et analyse numérique, tome 28, no2 (1994), p. 177-188

<http://www.numdam.org/item?id=M2AN_1994__28_2_177_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

TA MOOÉUSATlONMATl^ATîQUtETAHAlYSEHUMÉmqUE

(Vol. 28, n° 2, 1994, p. 177 à 188)

APPROXIMATION PROPERTIES OF PERIODIC INTERPOLATION BY TRANSLATES OF ONE FUNCTION (*)

by F.-J. DEL vos C)

Communicated by P. J. LAURENT To the memory of Professor Dr. Lothar COLLATZ

Abstract. — In the paper [5] Golomb has derived a Hubert space approach to periodic splines of odd degree on uniform meshes which were studied systematically for the first time by Quade and Collatz [9]. Golomb's approach has been extended to more gênerai methods of periodic interpolation by translates o f a given periodic function g [1, 2, 3, 8]. It is the objective of this paper to investigate approximation properties of these interpolation methods in spaces of periodic functions which are closely related to g and extend the results of [4]. As an application approximation properties of periodic splines of even degree are obtained.

Résumé. —Dans l'article [3] Golomb a présenté une construction hilbertienne des fonctions- spline périodiques de degré impair dans un réseau uniforme, fonctions étudiées systématique- ment pour la première fois par Quade et Collatz [7]. La construction de Golomb a été généralisée pour les méthodes d'interpolation par les translates d'une fonction périodique g. Le but de cet article est d'étudier des propriétés d'approximation des méthodes d'interpolation par les translates de g dans des espaces des fonctions périodiques qui sont associées à la fonction g.

En application, nous déduisons les propriétés d'approximation des f onctions-spline périodiques de degré pair.

1. THE INTERPOLATION METHOD

Let g be a fixed real valued periodic function from the Wiener algebra se'2 K of those continuous periodic functions from <^2 -* which possess an absolutely convergent Fourier series. The inner product of ƒ, g e ^2 ir is defined by

(f, 9) = ^- f2"f(t)g(t)*dt.

2 n Jo

The exponential functions are denoted by ek(t) = exp(ikt), k e Z. If

(*) Manuscript received May, 25, 1993.

O Universitàt Siegen, Lehrstuhl für Mathematik I, Hölderlin-Strasse 3, D-5900 Siegen (Germany).

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/94/02/$ 4.00 Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars

(3)

178 F.-J. DELVOS

g e sé2^ then

g(O= £ (0,e

k

)e

k

(O, £ | (0,

£ = - CÛ jfc = - CO

Let tj = 2 TT/V/z, y e Z, be a uniform mesh depending on n e N. The discrete inner product is given by

The discrete Fourier transform and the finite Fourier transform are related by aliasing :

where j e Z and ƒ e J ^2 TT-

The öas/s functions bp O <y <: n, are obtained via the discrete Fourier transform from the generating function g :

j •),«-;> = X ( ^ ^ + w) ^ + OT(r). (2) We have the fundamental relations

bj(tk) = ej(tk)bj(O) (J.keZ). ( 3 )

We assume that

fey(O)#O(O<j<«) (4) and define

QnifKO = </> e0) + " f <ƒ, et> bk(t)/bk(O) (5) for any ƒ e ^2 7 r.

Discrete Fourier transform yields the interpolation properties

j j (Osj^n). (6)

The space of interpolants is given by (see [2, 3])

vn(g)= (Ug('-h)-g, ^ g ( ' - tn - i ) - 9 ) • O)

We assume that the finite Fourier transform of the generating function

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(4)

g possesses certain properties such that the existence conditions bj(O) # 0 are valid and certain approximation properties can be established.

Let dk, k e Z, be a séquence of real numbers satisfying the following relations

Moreover we assume that

drm^ardm(r,meN), a .-=

r = 1

We consider mainly two cases of generating functions g :

(I) g(O=^dkek(t).

k

(II) 0(f) = £ - ; . s g n (k)dkek(-7T/n)ek(t).

The generating function g defining the interpolation process is independent of the number n of interpolation points in case I while it is dependent in case IL

Trigonométrie interpolation is characterized by the choice

(III) g{t)= £ ek(t)(m= [n/2]).

k = -m

In this case g dépends also on n. We refer to [3] for the proof of the validity of the existence condition.

Two examples are given for possible choices of the séquence (dk).

Example a :

Hère q is a real number greater than 1. If q is even, case I yields periodic odd degree spline interpolation on uniform mesh as studied by Golomb [3]. The generating function is the well known Bernoulli function P q(t ) up to a factor

g(t)= ^k-2rco t ^

The function g is a spline of degree 2 r with deficiency 1, while g(* — tk) — g is a spline of degree 2 r — 1.

If q is odd, then case II yields periodic even degree midpoint spline interpolation on a uniform mesh [3]. The generating function is the shifted

vol. 28, n° 2, 1994

(5)

180 F.-J. DEL VOS

Bernoulli function Pq(t — TTIU) up to a factor

9(0= £ k-2r~l sin (k(t - ir/n)) = i z J I p2 r + 1(f - 7T/«).

* = 1

Example b :

dk = e~bk (JfceN).

Here & is a positive real number. Both cases I and II yield rational trigonométrie interpolation processes (see [2, 3]).

In case I the generating function is related to the Poisson kernel p ( . sinh (b)

r b{t) = 2(cosh (b) - cos (f)) ' g(t)= £ é T ^ c o

In case II the generating function is related to the shifted conjugate Poisson kernel

G ( O = S i n ( 0

2(cosh ( è ) - cos ( f ) ) '

2. UNIFORM BOUNDEDNESS OF THE INTERPOLATION PROJECTORS

T h e W i e n e r algebra sé2 ^ is a dense subalgebra of <^2 «-• ^% v^& B a n a c h space of c o n t i n u o u s periodic functions with respect to the norm (see [6])

II ƒ IL = E

k = - 0 0

Moreover, we have

where

l l / I L = suP (\f(f)\:teR}.

We will first investigate approximation properties of the Fourier partial sum projector which is in some sensé a universal approximation operator. The

M2 AN Modélisation mathématique et Analyse numérique Mathematical Mocielling and Numerical Analysis

(6)

Fourier partial sum projector F n is defined by

m

Fn(f)= £ (f,ek)ek (m= [n/2]).

k=~m

Clearly, Fn is a bounded linear operator on ^2 TT* On the other hand, it is well known that the norms ||Frt||, n G M, are not uniformly bounded. According to the Banach Steinhaus principle [7], Fn(f ), n e N, is not convergent for every continuous periodic function. Therefore it is natural to consider Fn as a bounded linear operator from s&lir into ^2TT- I* follows from the définition of the norms that

Thus, the norms ||F„||, ne /V, are uniformly bounded. Since Fn(ek) = ek{\k\ < n / 2 ) ,

an application of the Banach Steinhaus principle yields uniform convergence lim \\f-Fn(J)\\œ ( f e j /2 r) .

n -> oo

Replacing ^2 v ^Y &&i ^ is not a severe restriction from the practical point of view since se2 ^ contains ail Lipschitz-continuous periodic functions [6] and in particular those functions from ^ T T which are piècewise <x [10].

Next we will establish an analogous resuit for the interpolation projectors Qn, n e N. The interpolation projector Qn is a bounded linear projector from si2 „ into <€2 v with Qn(f) e sé2 v for ƒ e s/2 w.

THEOREM 1 : There is a positive constant c independent of n such that

i.e., the interpolation projectors Qn are uniformly bounded as projectors from s&2

Proof : We start with case I :

Recall that

where 0 <y < «. Since <iy + OT > 0 we obtain

vol. 28, nD 2, 1994

(7)

182

Next remember that

F.-J. DELVOS

Qn(f)(t)= <ƒ,

This implies

\Q„(fHt)\

, ek) bk(t)tbk{Q).

< ƒ , « * > ! •

Since <ƒ, <?,) = £ (ƒ, ey- + WI), we can conclude

s

\Qn(fKO\ *"£

k^Ö s

Thus the assertion holds for case I.

Next we consider case II. Recall that

Since

we obtain

s = 0

bj(t) = £ ( 0 , ej+sn)ej+sn(t).

=Y,~i 'sSn (k)dkek(<rrln)ek{t),

k

dj + sn(- lYem(t)- f] d_j + m(- l)se_sn(t)

where 0 -< j < n.

Due to the properties of the séquence d = (dk) we obtain

\bj(t)\ ^dj+ | dj+sn+ J

S = 1 5 - 1

where 0 < y <c n. This implies

\bj(t)/bj(O)\ ^ (1 +

where t e IR and 0 <: ? < n. Proceeding as in the pro of for case I we can

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(8)

conclude

Thus the assertion holds also for case IL

For completeness we consider also case III (trigonométrie interpolation).

Recall that

g(t)= £ ek{t) (m=

This implies

bj(t) = ej(t) , 0 < ; < n/2 , bj(t) = e_n+j(t), n/2 for odd n and

for even n. Again we have

\bj(t)/bj(O)\ ^ 1 , 0 < y < / t .

Thus the assertion holds also for case III.

To establish uniform convergence of Qn(f ) for ƒ e ^2 -n yia t n e Banach- Steinhaus principle [7] we have to verify uniform convergence of Qn(f ) on a dense subset of <srf2 *•• This will be done in the following section.

3. APPROXIMATION OF THE EXPONENTIALS

The approximation properties of Qn will first be investigated for the exponential functions ey.

THEOREM 2 : For any k e Z the asymptotic error relation

Proof : We consider case I. Then we have

0(0= £ ^ ( 0 = ^ + J 2 4k cos (kt), Le., ^ ( 0 is real valued. This implies Q«(O = Qnif)-

vol. 28, n° 2, 1994

(9)

184 F.-J. DELVOS

Since ëk = e_k and Qn(e0) = eQ we may assume 0 <: k =s n/2. Recall that bk(t)= %dk + snek + sn(t)

Then we obtain

\ek(t)-Qn(ekXO\ = \ek(t)-bk(t)lbk(O)\ =

= \bk{O)-bk{t)e_k{t)\l\bk{O)\

00

« I 2 dk + jdk « £ 2 di[n/2]/4 s (2 aldk) d[nl2] . Thus, the assertation holds for case I.

We consider now case II. Then we have

00

g (f) = £ - 1 .sgn (k)dkek{~ 7T/n)ek(t)= £ 2 dk sin (k{t -

i.e., ^ ( r ) is real v a l u e d w h i c h implies Qn(f) = Qn(f). Since ek= e_k and

= e0 ' again w e m a y assume 0 < k ^ n / 2 . Recall that

bk(t) = - i . ek(t)t £ dk + sn(- If esn(t) -

\ s = 0

Then we obtain

= \ek(t)-bk{t)lbk(Q)\ =

Thus, the assertation holds also for case II.

For the sake of completeness we note that Theorem 2 is trivially true for case III {trigonométrie interpolation) since in this case we have

THEOREM 3 : For any f e sé2 n Qn(f) converges uniformly tof as n tends to infinity :

- 0 (n-oo).

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(10)

Proof : Note that the exponentials form a dense subalgebra of sé2lT. In view of Theorem 1 and Theorem 2 the Banach Steinhaus principle is applicable and yields a proof of Theorem 3.

4. QUANTITATIVE ERROR BOUNDS

We use the séquence d = (dk) to introducé a smooth subspace s&iir of the Wiener algebra s$2 w :

^î^--= \f^^

2lT

: £ \(f,e

k

)\/d

k

^co\ .

t # o ^

Then we can introducé a linear operator D'.^^TT^^ITT being defined by

The space «S/ITT a n^ the operator D are related to the generating function g and the interpolation projector Qn. It is useful to investigate first the approximation properties in s^i-n- of the Fourier partial sum projector

THEOREM 4 : /ƒ ƒ e sé^ then

\\f-Fn{f)\\^=O{d[nl2]) ( 7 1 - 0 0 ) . Proof : Note first that

Fn(D(f)) = D(Fn(f)) (f Then we have

1*1» W2]

i.e., we have

\\f-Fn(f)\\œ^ \\f-Fn(f)\\a^ \\D(f)-Fn(D(f))\\a.d[n/2]. SïnceD(f)e jtfl7r, \\D(f)-Fn(D(f))\\a = o ( l ) ( « - oo ), and the proof of Theorem 4 is complete.

vol. 28, n° 2, 1994

(11)

186 F.-J. DEL VOS

T H E O R E M 5 : If f G2lT then

|| ƒ — Qn(f ) || = (9 (drni2]) (n —> oo ) . Proof: We have

\f(t\-Qn(f)(t)\^ \f(t)-Fn(f)(t)\ + \Fn(f)(t)-Qn(Fn(f))(t)\

+ \Qn(Fn(fMO-Qn(f)(t)\ . In view of Theorem 1 we have

\Qn(Fn(fmO-Qn(fKO\ *c\\f-Fn(f)\\a. This implies

\f(t)-Qn(f)(t)\ ^C\\f-Fn(f)\\a+ \Fn{f){t)-Qn(Fn(f)){t)\

\k\* [n/2]

where C > 0 is a constant.

In view of Theorem 2 we can conclude

\f(t)-Qn(f)(O\ ^

*C\\f-Fn(f)\\a+ ( X \(f,ek)\) .(2a/«l-a2)dk))d[nn]

V0 < | * | «stn/2] /

*C\\f-Fn(f)\\+Çla/a-«2))dm

Now an application of Theorem 4 complètes the proof of Theorem 5.

The approximation properties of the trigonométrie interpolation projector are more closely related to those of the Fourier partial sum projector.

THEOREM 6 : Let Qn be the projector of trigonométrie interpolation. Then for any f e rf^ir tne asymptotic error relation

II ƒ - £ „ < ƒ ) || œ = o holds.

Proof : As in the proof of Theorem 5 we have

\f(t)-Qn(fXt)\ *.\f(t)-Fn(f)(t)\ + \Fn(f)(t)-Qn(Fn(fmt)\

Since Qn is the trigonométrie interpolation projector, we have F•„(/•) = Qn(F•„<ƒ)) .

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(12)

Taking into account Theorem 1 we obtain

where C >- 0 is a constant. Now an application of Theorem 4 complètes the pro of.

As an application we consider

dk = k-q (keN, q e N, <? > 1 ) . Then we have

Le.,

where Dq ƒ dénotes the q-th derivative of ƒ.

THEOREM 7 : For any f e <£%„ with Dq f e jtfl7T the asymptotic error relation

holds.

If q — 2 r, r e N, case I yields the error estimate of Golomb [5] for pdd degree periodic splines.

If# = 2 r + l , r e N , case II extends the error estimate of Golomb to even degree periodic midpoint splines.

REFERENCES

[1] E. W. CHENEY, 1992, Approximation by functions of nonclassical form. In Approximation Theory, Spline Functions and Applications, edited by S. P.

Singh, NATO ASI Series C, 356, 1-18.

[2] F.-J. DEL vos, 1985, Interpolation of odd periodic functions on uniform meshes.

In Delay Equations, Approximation, and Applications (Eds. G. Meinardus, G.

Nümberger), ISNM 74, Birkhàuser Verlag, Basel.

[3] F.-J. DELVOS, 1987, Periodic interpolation on uniform meshes, Journal of Approximation Theory, 39, 71-80.

vol. 28, n° 2, 1994

(13)

188 F.-J. DEL VOS

L4J F.-J. DEL vos, 1985, Convergence of interpolation on by translation, in Alfred Haar Mémorial Volume» Colloquia Mathematica Societatis Janos Bolyai, 49 273-287.

[5] JVL GOLOMB, 1968, Approximation by periodic spline interpolation on uniform meshes, Journal of Approximation Theory, 1, 26-65.

[6] Y. KATZNELSON, 1976, An introduction to harmonie analysis, Dover, New York.

[7] P.-J. LAURENT, 1972, Approximation et optimisation. Herrmann, Paris.

[8] F. LOCHER, 1981, Interpolation on uniform meshes by translates of one function and related atténuation factors, Mathematics of Compilation, 37, 403-416.

[9] W. QUADE and L. COLLATZ, 1938, Zur Interpolationstheorie der reellen periodischen Fimktionen, Preufiische Akademie der Wissenschaften (Math.

Phys. Klasse), 30, 383-429.

[10] G. TOLSTOW, 1976, Fourier Series, Dover, New York.

M2 AN Modélisation mathématique et Analyse numérique Mathematica! Modelling and Numerical Analysis

Références

Documents relatifs

We presented a new method to fit the signed distance function of a given boundary curve of surface by using a simple but efficient PHT-spline (bi- and tricubic piece- wise

Les données pourront être transportées sur n’importe quel support physique (sans exiger un fonctionnement en mode interactif). Avec cette architecture « orientée données »,

Then, the theory is applied to the case of electromagnetic scattering by the so called periodic layered media, I-e- one-dimensional periodic (ID) structures made up of

La convergence (uniforme) de la suite de polyn ˆomes d’interpolation avec les points de Chebyshev peut ˆetre d´emontr´e pour toute

Medien haben einen positiven Einfluss auf den Verlauf des Unterrichts, deshalb sollte man immer mehr Medien benutzen sei es für die Lehrer während des Unterricht oder

Numerical approximation of data : interpolation, least squares

The proof of corollary 1, using elementary harmonic func- tions, does not adapt to axiomatic potential theory. In example 2 we give a proof which does generalise. This proof is

Organization of calculations or processing of data on the observed samples of the process carried out with the help of the representation of algebraic polynomials refers to the