• Aucun résultat trouvé

Coalescence criteria for porous materials with small-scale voids

N/A
N/A
Protected

Academic year: 2021

Partager "Coalescence criteria for porous materials with small-scale voids"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: cea-02339078

https://hal-cea.archives-ouvertes.fr/cea-02339078

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

small-scale voids

J. Hure, V. Gallican, K. Nielsen

To cite this version:

J. Hure, V. Gallican, K. Nielsen. Coalescence criteria for porous materials with small-scale voids. 16th

European Mechanics of Materials Conference, Mar 2018, Nantes, France. �cea-02339078�

(2)

Coalescence criteria for porous materials

with small-scale voids

J´er´emy HURE1, Valentin GALLICAN1, Kim Lau NIELSEN2

1Department of Materials for Nuclear Applications

French Alternative Energies and Atomic Energy Commission

2Department of Mechanical Engineering - Section of Solid Mechanics

Technical University of Denmark (DTU) 16thEuropean Mechanics of Materials Conference

(3)

From the Nuclear Industry: Irradiated materials

PWR,(Edwards et al., 2003) Fast reactor,(Garner et al., 2002)

Austenitic stainless steels irradiated by high-energy particles:

◦ Creation of crystalline defects in the microstructure

(4)

Some examples of porous materials with small-scale voids

From the Nuclear Industry: Irradiated materials

PWR,(Edwards et al., 2003) Fast reactor,(Garner et al., 2002)

Austenitic stainless steels irradiated by high-energy particles:

◦ Creation of crystalline defects in the microstructure

◦ Under specific conditions: Nanovoids (5nm . R . 100nm)

(5)

From the Nuclear Industry: Irradiated materials

(Ding et al., 2016) (CEA - DMN/SEMI/LM2E Microscopy team)

Nanovoids are observed to contribute to the fracture of the material through classical mechanisms of ductile fracture:

◦ Void growth to coalescence

(6)

Some examples of porous materials with small-scale voids

From the Nuclear Industry: Irradiated materials

(Ding et al., 2016) (CEA - DMN/SEMI/LM2E Microscopy team)

Nanovoids are observed to contribute to the fracture of the material through classical mechanisms of ductile fracture:

◦ Void growth to coalescence

◦ Small dimples on fracture surfaces

(7)

With interface stresses (Dormieux & Kondo, 2010)

Void/Matrix interface ⇒ 2D plasticity 3 2σ 2D D : σ 2D D ≤ γ 2

with 2D yield stress γ.

Lengthscale: l = γ

σ0

⇒ Γ = γ

(8)

Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects With interface stresses

(Dormieux & Kondo, 2010)

Void/Matrix interface ⇒ 2D plasticity 3 2σ 2D D : σ 2D D ≤ γ 2

with 2D yield stress γ.

Lengthscale: l = γ σ0 ⇒ Γ = γ σ0R 0 0.5 1 1.5 2 0 T = 1, m = 0.1, f = 0.01 0.2 0.4 0.6 0.8 1 1.2 1.4 Σeq σ0 Eeq Γ0= 0 Γ0= 0.25 Γ0= 0.5 (Scherer et al.)

(9)

With strain-gradient plasticity (e.g., Fleck & Hutchinson, 2001) Hardening due to strain-gradient

˙

Ep2= ˙ε2p+ l2ε˙p,iε˙p,i

Lengthscale l related to the presence of GND’s.

Υ = l

R (Niordson, 2008)

For both models: qualitatively similar observations ...

◦ Hardening

◦ Delayed softening

(10)

Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects

0 0.5 1 1.5 2 0 T = 1, m = 0.1, f = 0.01 0.2 0.4 0.6 0.8 1 1.2 1.4 Σeq σ0 Eeq Γ0= 0 Γ0= 0.25 Γ0= 0.5

(Scherer et al.) (Niordson, 2008)

Analytical homogeneized yield criteria for porous materials with size effects, under the assumption of isotropy:

◦ Growth regime: (Wen et al., 2005), (Monchiet & Bonnet, 2013),

(11)

0 0.5 1 1.5 2 0 T = 1, m = 0.1, f = 0.01 0.2 0.4 0.6 0.8 1 1.2 1.4 Σeq σ0 Eeq Γ0= 0 Γ0= 0.25 Γ0= 0.5

(Scherer et al.) (Niordson, 2008)

Analytical homogeneized yield criteria for porous materials with size effects, under the assumption of isotropy:

◦ Growth regime: (Wen et al., 2005), (Monchiet & Bonnet, 2013),

(Dormieux & Kondo, 2010), (Monchiet & Kondo, 2013), ...

(12)

Coalescence criterion for porous materials with small-scale voids

Yield criterion in the coalescence regime for nanoporous material

◦ Relevant for large porosity: localization of plastic flow between voids

Key parameters: Void aspect ratio:

W = h

R Ligament length:

χ = R

L

Thomason analysis (1985) to be re-done accounting for:

◦ Interface stresses

◦ Strain-gradient plasticity

(13)

Yield criterion for nanoporous material F (Σ, ...)

Homogenisation and limit analysis (Rigid-non hardening solid)

◦ RVE homogenisation with appropriate boundary conditions

Σ = 1 volΩ Z Ω σ dΩ D = 1 volΩ Z Ω d dΩ

◦ Limit analysis (Dormieux & Kondo, 2010)

Σ : D ≤ Π(D) = infv∈κ(D) 1 vol(Ω) Z Ωm σ0dV Meq dV + Z Sint γdV MS,eqdS 

where κ(D) is a subset of velocity field compatible with D and verifying the property of incompressibility

◦ Effective yield criterion for porous RVE

Σ = ∂Π(D)

∂D

(14)

Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

(15)

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Geometry and boundary conditions

◦ Cylindrical void in cylindrical unit-cell

(16)

Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Constitutive equations: Rigid / Perfect plasticity

◦ Matrix: Isotropic von Mises criterion (3D yield stress σ0)

3

2σD: σD≤ σ

2 0

◦ Void/Matrix interface: Isotropic von Mises criterion (2D yield stress γ)

3 2σ 2D D : σ 2D D ≤ γ 2

Homogenisation and limit analysis

Π(D) = infv∈κ(D) 1 vol(Ω) Z Ωm σ0dV Meq dV + Z Sint γdV MS,eqdS 

(17)

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Trial velocity field kinematically admissible, incompressible

◦ Proposed by (Keralavarma & Chockalingham, 2016):

         vKCr (r, z) = 3HD33 4h  1 −z 2 h2   L2 r − r  vKCz (r, z) = 3HD33 2h  z − z 3 3h2 

(18)

Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Estimation of the coalescence stress (isotropic, axisymmetric loading):

 Σ33 σ0  c = r 6 5 " b ln 1 χ2 + p b2+ 1 −pb2+ χ4+ b ln b +pb 2+ χ4 b +√b2+ 1 !# +√2Γ 3 p 1 + 3χ4 with b2=1 3+ α 1 3 5 8W2χ2, α = [1 + χ 2− 5χ4+ 3χ6]/12.

Can be extended to account for anisotropy and shear: ⇒ see (Gallican & Hure, 2017)

(19)

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Estimation of the coalescence stress (isotropic, axisymmetric loading):

 Σ33 σ0  c = r 6 5 " b ln 1 χ2 + p b2+ 1 −pb2+ χ4+ b ln b +pb 2+ χ4 b +√b2+ 1 !# +√2Γ 3 p 1 + 3χ4 with b2=1 3+ α 1 3 5 8W2χ2, α = [1 + χ 2− 5χ4+ 3χ6]/12.

Can be extended to account for anisotropy and shear: ⇒ see (Gallican & Hure, 2017)

How good is this analytical coalescence criterion ?: ⇒ Comparison to Numerical limit-analysis

(20)

Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

◦ Numerical limit-analysis simulations: Standard finite element

simulations, coalescence boundary conditions, no geometry update, perfectly plastic von Mises matrix and interface

0 1 2 3 4 0.2 0.3 W = 3 0.4 0.5 Isotropic 0.6 0.7 0.8 Σ33/σ0 χ Γ = 0 Γ = 0.5 Γ = 1

(21)

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

◦ Numerical limit-analysis simulations: Standard finite element

simulations, coalescence boundary conditions, no geometry update, perfectly plastic von Mises matrix and interface

0 1 2 3 4 5 0 0.1 W = 3 0.2 0.3 0.4 0.5 0.6 0.7 Σ33/σ0 Σsh/σ0 χ = 0.4, Γ = 0 χ = 0.4, Γ = 1 χ = 0.6, Γ = 0 χ = 0.6, Γ = 1 2

 for elongated spheroidal voids W  1

2

(22)

Homogenization of porous material with strain-gradient plasticity

Yield criterion for porous strain-gradient material F (Σ, ...) = 0

Similar framework as for the case of interface stresse

◦ Fleck & Willis version of strain gradient plasticity

˙ E2p= ˙ε 2 p+ L 2 Dε˙ 2 ij,kε˙ 2 ij,k

◦ Extension of Hill-Mandel lemma (Azizi et al., 2014):

Σ : D = 1

volΩ Z

∂Ω

[Tivi+ tijdij]dS

for periodic boundary conditions

◦ Extension of Limit analysis theorem (Fleck & Willis, 2009)

Σ : D = infv∈κ(D) 1 vol(Ω) Z Ω σ0 r 2 3dijdij+ L 2 Ddij,kdij,kdV

where κ(D) is a subset of velocity field compatible with D and verifying the property of incompressibility

(23)

material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Trial velocity field (Morin et al., 2015)        vMr (r, z) = HD33 h2 (h − z)  L2 r − r  vMz (r, z) = HD33 h2 2hz − z 2

Estimation of the coalescence stress (isotropic, axisymmetric loading):

 Σ33 σ0  c = 2 W2χ2 Z W χ 0 dz Z 1 χ q α(r, z) +L2 Dβ(r, z)rdr with α(r, z) = 4 3(W χ − z) 2 1 r4 + 3  +1 3  1 r− r 2 and β(r, z) = 16 r6(W χ − z) 2 + 3 r4 + 7

(24)

Homogenization of porous material with strain-gradient plasticity

Yield criterion in the coalescence regime for porous strain-gradient material

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...)

Trial velocity field (Morin et al., 2015)        vMr (r, z) = HD33 h2 (h − z)  L2 r − r  vMz (r, z) = HD33 h2 2hz − z 2

Estimation of the coalescence stress (isotropic, axisymmetric loading):

 Σ33 σ0  c = 2 W2χ2 Z W χ 0 dz Z 1 χ q α(r, z) +L2 Dβ(r, z)rdr with α(r, z) = 4 3(W χ − z) 2 1 r4 + 3  +1 3  1 r− r 2 and β(r, z) = 16 r6(W χ − z) 2 + 3 r4 + 7

How good is this analytical coalescence criterion ?: ⇒ Comparison to Numerical limit-analysis

(25)

F (Σ, σ0, γ, ...) or Σ33= G(σ0, γ, ...) Numerical limit-analysis simulations:

◦ Cubic-unit cell with pediodic boundary conditions

◦ Coalescence boundary conditions

◦ Fleck-Willis strain-gradient material without hardening

◦ Coalescence boundary conditions

0 2 4 6 W = 1 8 10 12 0 0.1 0.2 0.3 0.4 0.5 Σ33/σ0 LD/L Sim. χ = 0.4 Sim. χ = 0.6 Model χ = 0.4 Model χ = 0.6 0 2 4 6 W = 2 8 10 12 0 0.1 0.2 0.3 0.4 0.5 Σ33/σ0 LD/L Sim. χ = 0.4 Sim. χ = 0.6 Model χ = 0.4 Model χ = 0.6

The model captures well the increase of coalescence stress as LD increases

◦ One parameter needed to account for unit-cell shapes (cylindrical vs.

(26)

Coalescence criteria for porous materials with small-scale voids

Accounting for interface stresses:

 Σ33 σ0  c = r 6 5 " b ln 1 χ2 + p b2+ 1 −pb2+ χ4+ b ln b +pb 2+ χ4 b +√b2+ 1 !# +√2Γ 3 p 1 + 3χ4

Accounting for strain-gradient plasticity (Fleck-Willis):

 Σ33 σ0  c = 2 W2χ2 Z W χ 0 dz Z 1 χ q α(r, z) +L2 Dβ(r, z)rdr

From coalescence criterion to yield criterion in the coalescence regime (axisymmetric loading conditions)

F (Σ) =Σeq σ0 +3 2 Σm σ0 −3 2  Σ33 σ0  c ≤ 0

(27)

A hybrid yield criterion for porous material exhibiting size effects: ◦ Growth criterion Fg(Σ, α, Γ) ≤ 0 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 6 7 8

(28)

Coalescence criterion for porous materials with small-scale voids

A hybrid yield criterion for porous material exhibiting size effects:

◦ Growth criterion Fg(Σ, α, Γ) ≤ 0 ◦ Coalescence criterion Fc(Σ, α, Γ) ≤ 0 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 6 7 8

Complete homogenized model:

◦ Adding evolution laws

(29)

Numerical implementation of the constitutive equations:

◦ Strain-gradient plasticity: qualitative agreement to be further validated

0 0.5 T = 1, m = 0.1, f = 0.01 1 1.5 2 0 0.5 1 1.5 2 Σeq σ0 Eeq Conv. R0/LD= 4.0 R0/LD= 2.5 R0/LD= 2.0 (Niordson, 2008)

Hardening and delayed softening observed as R/LD decreases

Références

Documents relatifs

ددعلا 12 218 و ةههههههههقطنبم ةيحلاههههههههصإا ةههههههههكرلحا طاههههههههشن لوههههههههح

L’originalité de la méthode « FIC-EBC » de domaine fictif présentée ici et publiée dans [28] pour des problèmes elliptiques consiste à utiliser le maillage cartésien du

But such a good agreement would not be obtained for Tvergaard (2015a)’s simulations of initially elliptic cylindrical voids, since they evidence a large effect of the initial void

El Harfi et al., 1996, se base sur la stratigraphie du bassin de Ouarzazate pour identifier deux phases tectoniques majeures : la première à l’Eocène supérieur – Oligocène, avec

4.4 Effects of the mass density, of the initial radius, of the initial porosity and of the flow stress level, on the porosity evolution for dynamic expansion under plane

In agreement with experimental data, we found that introducing triazole moiety into multibranched chromophores substantially modifies their optical behavior due to

2: R´esultats obtenus par la m´ethode ESPRIT appliqu´ee sur le partiel 2 des signaux d’acc´el´eration mesur´es sur la harpe suivant les 3 configurations d’´etude : (1) toutes

Para contestar a esta pregunta, examinaremos el modelo teórico que la filosofía política realista tiene de las relaciones internacionales y veremos, de la mano