• Aucun résultat trouvé

of The regularity of growth of entire functions whose zeros are hyperplanes

N/A
N/A
Protected

Academic year: 2022

Partager "of The regularity of growth of entire functions whose zeros are hyperplanes"

Copied!
9
0
0

Texte intégral

(1)

The regularity of growth of entire functions whose zeros are hyperplanes

]JAWRENCE GRUlVIAN

University of Minnesota and University of Uppsala

L e t f(z) be an entire f u n c t i o n (of n variables) of finite order ~ a n d n o r m a l t y p e ~.

We t h e n define hr(z) ~- l i m r ~ r -~ In If(rz) [, r > 0 (resp. he(z) = limj,I_~ ~ lu[ -~ In If(uz)], u e C) a n d t h e smallest upper-semicontinuous m a j o r a n t h*(z) = iim~,_~z h,(z') (resp.

h*(z) -~ limz,_~z h~(z)). This is plurisubharmonic a n d satisfies the condition h*(tz) = teh*(z), t > 0, (resp. h * ( u z ) = lufOh*(z), u e C); it is called t h e radial (resp.

circular) indicator function of f.

F o r n = 1, t h e f u n c t i o n h~(z) is continuous, a n d so h * ( z ) = h~(z) (see [4]

or L e m m a 1 below), b u t this is no longer necessarily t h e case for either h*(z) or h*(z) for n > 2, [3]. I n [1], we u n d e r t o o k a s t u d y of t h e relationship b e t w e e n t h e d i s t r i b u t i o n of t h e zeros of f(z) a n d t h e local c o n t i n u i t y of t h e function h*(z).

W e investigate here a condition on t h e zeros which implies t h e global c o n t i n u i t y of

h?(z).

I f t h e f u n c t i o n f(z) as a function of several variables depends o n l y u p o n a single variable, s a y z 1, a n d f(O) ~ O, t h e n h*~(z) = hr(z) a n d t h e two are con- tinuous. The zeros are t h e n presented b y hyperplanes parallel to the h y p e r p l a n e z 1 ---0. W e generalize this result in t h e following way:

THEOREM. Let f(z) be an entire f u n c t i o n of order ~ and normal type ~ such that f(O) r 0 and the zeros of f(z) are hyperplanes. T h e n h*(z) = hr(z) and there are constants T (depending only on a and ~) and ~ (depending only on ~) such that lhr(w) - - hr(w')l <__ Tllw - - w'll ~ for Itwll : IIw'll : 1. I n particular, h*(z) is continuous.

R e m a r k 1. W e will assume, w i t h o u t loss of generality, t h a t we use the Euclidean norm. The value of T depends u p o n the choice of t h e norm, b u t a is i n d e p e n d e n t of t h e n o r m chosen.

(2)

24 L A W I ~ E N C E G~UMA2~"

_Remark 2. I f f(z) is a function of only one of the variables, then elementary considerations show t h a t the exponent we get is rain (1, ~). The ~ we construct can be chosen to be c ~ > m i n ( 1 ] 3 , ~ / ( 2 ~ - ~ 1 ) ) - - ? for any y > 0 .

~emarIc 3. The function h~*(z) does not depend on what point in C" we choose as origin [2], so the assumption t h a t f(0) r 0 does not effect the conclusion t h a t h~(z) is continuous and satisfies the Lipsehitz condition above; b u t i t does of course effect the fact t h a t h~(z)= h~*(z).

The proof will be established b y classical methods pertaining to functions of a single complex variable. We shall first need the following results:

LEM~A 1. Let f(u) be an entire function of a single complex variable and h~(u) its indicator function. T h e n there exists a constant K o (depending on Q and (~) such that

Ih(e '~ - - h(dO')[ < K o [ e ~~ - - d o ' l .

Proof. Let K = max 1(~/2) h(e ~~ see s (Qq)12[ with 10~-- 011 < q < z/~ and 0 1 < 0 < 0 e . Then [4, p. 54]

h(d ~ -- h(ei~ 9 h(e ~~ -- h(e~O,)

s i n e ( 0 - - 0 1 ) -- s i n Q ( 0 2 - 0 1 ) § K(O~ - o ) .

A similar inequality exists for 0 and 02. Choosing 102 -- 011 ~ ~/4~, we get the

desired result. Q.E.D.

LE~MA 2. Let f(u) be holomorphic in the circle ]ut ~ 2eR, u complex, with f(0) = 1, and let ~ be an arbitrary positive number not exceeding 3e/2. Then inside the circle lu] ~ t~ but outside a family of excluded circles the sum of whose radii is not greater than 4~R, posing M(B) = maxl.i= R if(u)l, we have

(

in [f(u) f > -- 2 + In In M ( 2 e B ) .

Proof. The proof is to be found in Levin [4, p. 21].

LEMMx 3. Let the function

f(u)

be of order ~ and type o. Then there exists 6 o (depending only on Q and (~) such that for each choice of the positive numbers (~ and co (with ~ ~ (~o and 0 ~ co ~ 1), there corresponds on each fixed ray arg u = 0 a sequence of intervals rn ~ r ~ (1 ~ d)rn (rn - ~ ~ ) on each of which, for suitable constants T 1 and T~ (depending only on ~ and o) the inequality

(3)

T H E R E G U L A R I T Y O F G R O W T H O F E N T I R E FUI'TCTIOI~S ~vVHOSE Z E R O S A R E IIYPERPLA-XIES 2 5

In

!f(re'+)l

r ~

> [h(e ~~ -

T g ~ - - T 2 6 ( 2 + l n ( 1 +

=+J

= h(e'O) - - g ( 6 , ~o) (1)

is satisfied except perhaps on a set of measure not exceeding o~6r,.

Proof.

Without loss of generality, we m a y assume 0 = 0. There is a sequence of r~-+ oo such t h a t In If(rn)] > [h(1) -- 6]r~. Assume 6 < 1/2e. There exists an R~ such t h a t for r > R~, in

If(reir

< [h(e i~) d- 6Jr -~ [4, p. 71].

By L e m m a 1, for [r _< sin-~(2e6) < K'6, In

[f(re~)] <

[h(1) ~-

(KoK' ~-

1)6]r -~

Let ~,(u)----f(r~+u)/f(rn). Then ~p,(0)- 1 and for

ful <2e6r~,

In I~,(u)I <

(KoK' -}-

2)5(r~ Jr lul)<

Applying L e m m a 2, we see t h a t for }ut _< 6r,,

In ]~,(u)] > - - ( g o K '

J-

2)6(2 -}- In (2e/~o))

(r, -}- 2eSr,) e

outside exceptional circles t h e sum of whose radii is less t h a n ~o6r,/2. Returning to the function

f(u),

wee see t h a t asymptotically

In

If(r)[

> [h(1) -- 6 --

(KoK' +

2)6(2 s In (2e/w))(1 + 2e6)e]r[ (2) is satisfied for (1 -- 6)r~ _< r _< (1 s 6)r, except perhaps for intervals the sum of whose lengths is less t h a n (o6r~. Since

f(u)

is of type o, for 6 sufficiently small (depending only on o),

a I-- (1+6)~ < ( 0 + 1 ) ~ and hence

In

If(r) l

r ~ - > [h(1) -- o6(~ + 1) -- 6 -- (KoK' -}- 2)6(2 -{- In (2e/co)) (1 s 2e6) el

holds wherever (2) holds.

Q.E.D.

L]~M~I.{ 4. I f f(u) is holomorphic in the circle

[u] <

er with f(O)---- 1 and if n(r) is the number of zeros of f(u) of modulus less than r, then n(r) < M(er).

Proof.

This is an easy consequence of Jensen's formula (cf. [4, p. 15]).

L E ~ 5 (Cartan estimate).

Given any number H > 0 and complex numbers th . . . a~v, there is a system of circles in the complex plane the sum of whose radii is 2H such that for all u lying outside these circles, l--[N=1 [U -- a~[ > (Hie) x.

Proof:

See [4, p. 19].

(4)

26 LAWRENCE GRUMAN

L E P T A 6 ( C a r a t h 6 o d o r y i n e q u a l i t y for t h e circle).

I f f(u) morphic on the circle lu[ G R and

is any function holo'

2 r

A(r) --

m a x R e f ( u ) ,

then M(r) <

[A(R) -- R e f(0)] R ~ - - r + If(0)[ (r < n ) . I-I=~

Proof.

See [4, p. 17].

Proof of theorem.

T h e proof, w h i c h is quite long, will be d i v i d e d into several parts.

(i) L e t ~ > 2 be some f i x e d n u m b e r t o be specified l a t e r a n d let s ~ IIw - - w'[]

be so small t h a t

e 1/~ < m i n ~ , ~o ( 3 )

w h e r e L e m m a 3 is satisfied for 6 < ~0- T h e n b y L e m m a 3, b y choosing ~ ~ ~o = e ~/~, we can f i n d a sequence r . - + ~ such t h a t

h~(w)

- - gte , , 1/~ ~1/~) __< r -e in

If(rw) l

for r , < r < (1 q-

el/r

e x c e p t p e r h a p s on a set o f m e a s u r e a t m o s t e:/r T h u s , for r,, s u f f i c i e n t l y large, we h a v e for r , < r _< (1 q-

~/r

in

If(rw)]

in

]f(rw')]

h r ( w ) - - h ~ ( w ' ) - - g(e 1/~, e 11;) - - ~ ~ re re (4) e x c e p t p e r h a p s for a set o f m e a s u r e a t m o s t

~2/$rn.

(ii) Since

f(z)

is of t y p e 0, t h e r e is a c o n s t a n t C > 1 such t h a t

If(z)[ <_ C

e x p (a q- 89

F o r I[~]1 = 1, we d e f i n e t h e f u n c t i o n s

n~(r)

to be t h e n u m b e r of zeros of

f(u~)

for Iul < r . B y L e m m a 4,

n~(r) < l n M ( e r ) < l n C - 4 - (aq-1)e~r~ < ( a q - 1)e~ ~

for r s u f f i c i e n t l y large. I n w h a t follows, we shall always assume t h a t r , is so large t h a t this i n e q u a l i t y holds for r > r,.

I n t h e c o m p l e x line

(uw'),

we c o n s t r u c t c o n c e n t r i c circles Ci~, c e n t e r e d a t t h e origin, o f r a d i a l i n c r e m e n t

6~2/~r,,

w i t h t h e radius of Con being r,~ a n d all t h e radii less t h a n or e q u a l to (1 -}-

el/~)r,.

This defines a set of annuli, a n d at least one of t h e annuli will n o t c o n t a i n " t o o m a n y " zeros of t h e fm~ction

f(uw').

T h e

[ ~1/% ]

n u m b e r of annuli is [6s :/;r,~-~,] (where [] m e a n s " g r e a t e s t integer i n " ) , a n d since

1 1

b y (3), 6el/: > 2, we h a v e

~ > 12e~/:.

Since t h e r e are a t m o s t (o -~- 1)e~ -1--

el/~)'~

zeros inside t h e circle (1 +

e~/r

a t least one of t h e a n n u l i has n o m o r e t h a n (a -~ 1)e~ q-

el/r 1/r <

12(o q-

1)(2er.)~ 1]: = Tae~!r

zeros o f t h e f u n c t i o n

f(uw').

W e shall select one such a n n u l u s a n d designate it ~9..

(iii) L e t t h e zeros of

f(z)

be t h e h y p e r p l a n e s (1 --~.,.N= 1

C~mZ~)

a n d let A~ =

(5)

T H E R E G U L A R I T Y OF G R O W T H O F E I q T I ~ E F U N C T I O N S W H O S E Z E R O S A R E H Y F E R P F ~ A N E S ~ 7

~,~_~ c~,~w~.

L e t H'(1 --Ainu) be t h e p r o d u c t over those indices m for which

f(uw')

has a zero in ~2~ (at m o s t

TacklerS).

B y L e m m a 5, there is a set of circles t h e s u m of whose radii is

~21:r~

such t h a t for all n lying outside these circles,

I I ' l u - IIA,~ I ~ (e21~r,12e) ~

(where Z is t h e n u m b e r of zeros). Since

ll[A~ I ~.

r~(1 q- e~l;) ~ 2r~, for u lying outside these circles

III'(1 - - A~u)l --- [ I ' [ A ~ I I I ' u - - ~ ~-- \ ~ - e ! ~ \ 4 - e / " (5) Thus, we can f i n d a n r, r , ~ r ~ r~(1 q- el/C)r~ for which

rw' E $2~

such t h a t (4) a n d (5) hold simultaneously a n d such t h a t t h e circle Q, centered a t r (in the complex line

(uw'))

of radius

e2lr

is contained in /2,.

L e t us n o w consider such an r.

(iv) W e h a v e

f(rw) : f(rw' -k (w -- w')r).

L e t ~b(u) ~ - f ( r w '

-I- u(w -- w')/e ).

T h e n

r ~ f(rw)

a n d ~(0) :

f(rw'),

a n d r is a holomorphic f u n c t i o n of the single complex variable u, so In ]r is subharmonic; t h u s

In

I f ( r w ) l -

In

If(rw')l =

In l r In Ir ~ m a x { i n lr ~ In lr (6) W e also have

l r 1 6 2 2 4 7

(7)

for

lul <_ r.

(v) L e t D~ --~ ~

c,m(w, -- w~ )/e

a n d let

H(u) :

H"(1 --

A,~r --

Dmu)/(1 -- A~r), where t h e p r o d u c t II" is t a k e n over all indices for which (1 --

A,~r -- D,~u)

has a zero for lu] ~

s2/~r. I f fo(V) ~ f(v(w -- w')/s)

is t h e function f restricted to the complex line

(v(w - - w ' ) ) ,

t h e n t h e n u m b e r s D~ are just t h e reciprocals of the zeros of

fo(v).

W e shall use this fact to get estimates on t h e n u m b e r s D~. W e assume, w i t h o u t loss of generality, t h a t t h e subscripts are so arranged t h a t

1Dml ~_ ID,~,i

for m ~ m'.

L e t

~(u) = r

T h e n y~(u) has no zeros in [u[ ~ e : / ; r ; hence, for

lu) ~e2/;r,

it can be w r i t t e n ~0(u)~ exp/~(u), where #(u) is holomorphic in

Iu[ ~ e2/;'r.

W e h a v e

1

m a x I~(u)l < m a x t~(u)l < m a x m ~ x I~(u)I 9 luT=~21r

--1-1=~

- - I - i =~ ~ I-I =~

Since (1 --

Amr -- Dmu)

has a zero for

]uI ~_ ~2/<r,

]1 --

A~r] -- ]D,~l~2/Zr ~ 0

or

1/e2/Zr <_

ID~]/I1

--A,~r],

so

]1

--D,~u/(1 --A.~r)] ~ ]D,.Ir/ll --A,~rl -- 1

r/s~/~r

~ 1 ~_ 1 for [u I : r b y (3). Thus maxl,/=~:/~l~(u)] ~ maxl.l~l~b(u)]

e x p ( a q - 1)2~r ~ b y (7). Since In IW(u)] = R e # ( u ) for

[u] ~ s2/~r,

we h a v e b y L e m m a 6,

(6)

28 LAVVREIqCE G R U M A ~

2I~ 2er <

m a x {in [~(u)l -- In I~(0)i} < A._.(0)(~ r ) e=/~r - - e r - - I-I=~r

4 ( a + 1)2~r% 1-2/~

--< ( I - - e I-~/~) = T4r%l-2/~"

(vi) Since r = H ( u ) ~ ( u ) ,

(8)

m a x in l r < m a x In !H(u)[ + m a x tn lyJ(u)]

a n d since H ( O ) = 1,

m a x I n

Ir l

- In

Ir i

~ m a x In [~v(u)[ - In l~v(o) l + m a x In

IH(u) I

9 (9) I t r e m a i n s t o e s t i m a t e m a x l u I =~r In ]H(u) [ ---- m a x l . I =~r in I I I"(1 - - A m r - - D m u ) / ( 1 - - A , . r ) l.

I f m is s u c h t h a t (1 A , . u ) h a s a z e r o i n ~2., w e h a v e b y (5)

[ I I ' " ( 1 - - Amr)l ~ \ ~ e /

( w h e r e H " ' is t a k e n o v e r all i n d i c e s in I I " f o r w h i c h t h i s is t r u e ) . H e n c e H ' " ( 1 - - Amr) --< Tael/r ~ e -< Tael~r ~ "

Since ( 1 - - Amr - - D ~ u ) h a s a zero i n Iu] <_e2/~r, s a y a t q~,

(10)

l(1 - - A , . r - - D,.u)[ =

IDmllU

- - q.~T ~ 2e2/;r[D,.[ ~ (1 + 2e2/;rID.,T) a n d

i n [ I I ' " ( 1 - - A , . r - -

D,.u)l < ~'"

111 (1 + 2e2/~'rlD.,t) .

~ o r all o t h e r m i n YI", e i t h e r 1/]Aml <__ r - - e2/;rn o r l/jAm] >_ r + e2/;rn.

I n t h e f i r s t case, ]1 - - A m r I >__ [Amlr - - 1 ~ e21~rnIA.~] a n d since

1 e 2/~

- - < r . ( l + e ' / ; ) < 2 r . , [ 1 - - A . , r ] > - -

IA~I 2

I n t h e s e c o n d ease, ff [Am] < 1/2r.

r

I 1 - - Amr[ >_ 1 - - [A~lr > 1 - - 2r--~ >- 1 - -

(1 + 8 ll~) e 21~

> - -

2 -- 2

b y (3) a n d i f IA..[ > U 2 r . ,

e2/~

fl - - A,.r] >_ 1 - - r ] A . . I >_ e2/;r, IA,.[ ~ ~ - .

(7)

T H E I t E G U L A I t I T Y O F GROWTIt O F E N T I R E F U N C T I O N S WI-IOSE ZEROS ~A.RE Hu 9.9

I n a n y case, for Iu[ < ~r

In ( 1 - A ' r - D'~u) ] In ~lD~lr I

( 1 - -

A.,r) < 1 q- i1 _ A.~r]

< In (1 -}-

2~l-2/~ID,~lr )

for these m.

B y L e m m a 4, there are a t m o s t (a -~ 1)ee2ere values of m for which 1/[A~[ ~ 2r a n d at m o s t ( a - ~ 1)ee2er ~ values o f m for which 1/]D~[ < 2r. I f :[A~] <

1/2r

a n d

ID,~I < 1/2r,

I1 -- Amr -- Dmul > 1 -- IA,,Ir -- IDmle2/~r

> 0 for

tul < e2l~r,

so there are a t m o s t 2(a ~- 1)eQ2er e =

Tsr e

values of m such t h a t (1 --

A,~r -- D,~u)

ha~ a zero for lul ~ s2/~r. Hence

m a x In

lH(u)I ~_ Tasl/;r e

lnte- ~ - ~ ~ In (1 +

2~x-2/CrID~I).

(11)

]ul =~r m = I

(vii) L e t

A(r) =

~[T~e] ~ = ~ In (1 -~

2~l-2/CrIDml).

W e n o w e s t i m a t e this sum, W e choose m 0 so large t h a t

ln C < m / 2

for m > m 0. Since 1/IDol, m = 1, 2 . . . . represents t h e zeros of

fo(V),

we h a v e b y L e m m a 4

1

In

C q- (a -k 1) e ~ ID.,I__ ~ > m

1 m

a n d for m ~ _ m o,

O r [ 2 ( 6 + 8 9 1/e m - l I e = T 6 m - l I e > I D t a I .

T h e n

m. [ T~ re]

A(r) ~ ~, In

(1 ~-

2~I-21r ) + ~,

In (1 + 2eI-2/;ID~lr ) ~ o(r ~) -~ Al(r ) ,

m = l m~rno-~- I

where

L e t y ~ rx -lIe.

(12)

TsrQ

Al(r ) : / ' ] n

(1 +

2ei-2/~x-1/eTj)dx

i

rtt o

I n t e g r a t i n g b y parts, we h a v e

Al(r ) ~ r e f

In (1 -~

2ei-:/~Tdj)d(y -e)

rm ~ -- 1/e

r m , o - - lie

e

T~ -1]e_llefl J f

(1

2el-2]~T6Y-e

: r e {ln (1 -~

2eI-2/~Tsy) 9 y - ] -~ r e 2~i-21~T6y)

T~-- lie

dy

(8)

30 LAWRENCE GRUMAN

and since In (1

-}- 281-21CT6Tf lie) < 2e~-2/r ~[e,

we h a v e

For

since

for

rm ~

--

1 [0

- 1 f 2e 1_ 2/r

A(r) < rO2el-2/r ~ -+- r e

- - J (I -~- 2 e i - 2 / $ T 6 y )

T~ -- 1 [e

Q < I ,

dy + o(~).

rmo " l /q co

f 2el-2/$TY dy < f 2eI-2/$T6y-e

(1 -~

2el-2/r --

(1 -~-

2el-:/;T6y) dy

Ts--I/@

0

oo

f W-- ~

e~(!-2/O(2T6)e (1

~- w--) dw <-

e~(1-2tO(2T6) ~ze cosec Qzr

0

f;w -O/(1 + w)dw--

? g cosec for Q < 1.

f o r ~ : 1,

rm o - I [Q rm o- l/q

f

y(1 +

2.l-2/'T6y)dy ~-2.1-2/$T6 f

- (1 q2

2.'-'/'~.y)J

dy

T.--lle Tn--lle

I{ y "m'-"~ 1

fm~ ]

- -

In

('1

T51]" ]I

+

<_ 2ex-2/~T6 in+ 3e,_~/;TG A-

q

r sufficiently large.

F o r Q > 1,

r m ~ - - 1/~ r m a - - 1/e

f (l+2d-~:;T6y)fdy<--2d-~I;T. f

T~-- I/Q T~-- I/Q

In T 5 -4- In (1 -4-

2ex-2/;T6T51/~)}

(13)

(14)

(14')

__ f y - ~ + ' ] rmo - 1 / q l

dy < 2 ~ x _ 2 / r

y~ - - [1 - -

0J

r.-1/~ ]

2ca-2/; e./1 ~-1 281-2/~ 1 - - q (14")

< - - T6{T5 ~ --rl-Vmo o } < - - T6Ts~

- - @ - - I - - @ - - 1

B y collecting the estimates (4), (6), (8), (9), (11), (12), (13), and (14), (14'), or (14") (as the case m a y be), we h a v e

h.(w) - h.(w') <__ ~(~) ,

(9)

T H E R E G U L A R I T Y O F G R O W T H O F E N T I R E F U N C T I O N S W t I O S E Z E R O S A R E H Y P E R F L A N E S 31

w h e r e k(e) i n v o l v e s t e r m s i n e ~/r e ~-21r a n d f o r ~ < 1, e ~(~-21;) (times l o g a r i t h m i c t e r m s ) . T h u s , f o r ~ > 1, w e c h o o s e $ = 3, a n d f o r ~ < 1, we c h o o s e ~ = 2 -}- 1/~.

T h e n

1 h~(w) - - h,(w') < T e ~ I n - -

w h e r e

B y r e v e r s i n g t h e roles o f w a n d w', w e g e t lhr(w) - - h,(w')l < TIIw - - w'l[ ~-y

f l - - - - m i n 3 , 2 e @ 1 .

f o r a n y ~ > 0 .

Q . E . D . COROLLARY. U n d e r the s a m e hypotheses as i n the theorem, we have

h*(z) = he(z) a n d

[he(w) - - h,(w')[ _< T]lw - - w'lj ~ f o r liwll = Iiw'll = 1 .

P r o o f . h e ( z ) - ~ s u p o h ( z e ~~ [3, p. 288].

O n e is i n t e r e s t e d t o a s k w h a t k i n d o f a f u n c t i o n c a n h a v e a n o n - c o n t i n u o u s i n d i c a t o r . I t is clear, a t a n y r a t e , t h a t s u c h a f u n c t i o n c a n n o t b e c o n s t r u c t e d b y t a k i n g t h e p r o d u c t o f f u n c t i o n s d e p e n d i n g o n o n e v a r i a b l e .

References

1. GRUMAN, L., Entire functions of several variabIes and their asymptotic growth. Ark. Mat.

9 (1971), 141--163.

2. LELONO, P., Fonctions enti~res de type exponentiel dans C n. Ann. Inst. Fourier (Grenoble) 16, 2 (1966), 269--318.

3. --~-- Non-continuous indicators for entire functions of n _> 2 variables and finite order.

Proc. Syrup. Pure Math. 11 (1968), 285--297.

4. LEVIN, B. J-A., Distribution of zeros of entire functions. Translations of Mathematical Mono- graphs, Vol. 5, Amer. Math. Soc., Providence, 1~ l[. (1964).

Received April 5, 1971 Lawrence Gruman

1, rue Lebouis F-75 Paris 14 e France

Références

Documents relatifs

The main step of the proof of Theorem 1.4 is an explicit construction of a meromorphic flat connection whose horizontal sections are given by basic iterated integrals (see (3.7)

Then, also the restriction of σ to almost every straight line parallel to the coordinate axes is absolutely continuous, since it is the composition of two absolutely

In view of the proof of Theorem 2.1 and as a consequence of Theorem 3.1, here we obtain a family of functions, depending on a real parameter, µ, in the Laguerre-Pólya class such

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

— In this paper, we give a complete solution of the problem : t ( If the zeros of an entire function of exponential type are known to include a given sequence of positive

However as mentioned for general convex domains the conjecture remains largely open, in [18] we developed methods that prove the conjecture for convex domains with low Aviles

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention