• Aucun résultat trouvé

Crystallographic Study of an Adenovirus-Induced Protein Crystal in KB cells: a structural model

N/A
N/A
Protected

Academic year: 2021

Partager "Crystallographic Study of an Adenovirus-Induced Protein Crystal in KB cells: a structural model"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00015153

https://hal.archives-ouvertes.fr/hal-00015153

Submitted on 23 Feb 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Crystallographic Study of an Adenovirus-Induced Protein Crystal in KB cells: a structural model

Alain Lifchitz, Alexandre Rimsky, Gérard Torpier, Pierre Boulanger

To cite this version:

Alain Lifchitz, Alexandre Rimsky, Gérard Torpier, Pierre Boulanger. Crystallographic Study of an

Adenovirus-Induced Protein Crystal in KB cells: a structural model. Acta Crystallographica Section

B, Structural Science, Crystal Engineering and Materials, International Union of Crystallography,

1975, 31, pp.441-445. �10.1107/S0567740875002981�. �hal-00015153�

(2)

Aeta Cryst. (1975). B31, 441

Crystallographic Study of an Adenovirus-Induced Protein Crystal in KB Cells:

a Structural Model

441

BY A. LIFCHITZ AND A. RIMSKY

Laboratoire de Minkralogie et de Cristallographie associO au CNRS, Universitk de Paris VI, Tour 16, 4 Place Jussieu, 75230 Paris Cedex 05, France

AND G. TORPIER AND P. A. BOULANGER

UnitO de Recherches n ° 102 de Virologic Mol~culaire de I ' I N S E R M , 2 Place de Verdun, 59045 Lille Cedex, France (Received 19 June 1974; accepted 18 September 1974)

The physical parameters of a protein crystal induced by adenovirus type 5 in KB cells were determined from images of positively contrasted, sectioned intranuclear crystals. Fourier transforms of digitized images showed that the net appearing on transverse sections of the crystals, thus far considered as hexagonal, was in fact pseudohexagonal, rectangular. The three-dimensional characteristics of the crys- tal unit cell were: ao=630, bo = 1200, Co=900 A; ~= ~'= 90, //= 95-5 °. The space group was P21. The asymmetric unit of the crystal was found to consist of a tubule centred by a densely stained tubular filament; its calculated molecular weight was 130 x 106 Daltons. A three-dimensional model was recon- structed from the crystallographic data.

Introduction

Intranuclear proteinic crystalline inclusions have been observed in cells infected with adenovirus type 5 (Leuchtenberger & Boyer, 1957; Morgan, Godman, Rose, Howe & Huang, 1957; Morgan, Godman, Breitenfeld & Rose, 1960) and type 2 (Weber & Stich, 1969; Henry, Stifkin, Merkow & Pardo, 1971; Henry

& Atchison, 1971). In previous studies we have de- scribed the electron microscopic and biochemical characteristics of these crystalline bodies (Torpier &

Petitprez, 1968; Boulanger, Torpier & Biserte, 1970):

they consist of parallel tubules arranged on a crystal- line lattice. From the ultrastructural data and from the results of biochemical and immunological studies on infected KB cell extracts and of immunofluorescent staining (Torpier & Boulanger, 1971) we have proposed a hypothetical model for this crystal (Boulanger, Tor- pier & Biserte, 1970), assuming that it consists mainly of adenovirus capsid material, viz. hexon, penton and fibre capsomers, synthesized in considerable excess by the infected cell (Schlesinger, 1969). This hypothesis was first supported by Henry et al. (1971), then dis- proved by other workers, on the basis of immuno- fluorescent staining of crystal with an anti-adenovirus core hyperimmune serum, suggesting that crystals were related to adenovirus internal arginine-rich protein(s) (Henry & Atchison, 1971; Marusyk, Norrby & Maru- syk, 1972).

It is the aim of the present study to present some ad- ditional information on the structure of adenovirus type 5 induced protein crystals in KB cell nuclei, with the aid of crystallographic data obtained from electron micrographs of longitudinally and transversely sec-

tioned crystals (DeRosier & Klug, 1968; Crowther, Amos, Finch, DeRosier & Klug, 1970; Lake, 1972).

Such a crystallographic analysis of adenovirion crystals in KB cell nuclei has recently permitted the determina- tion of the mode of arrangement and association of the virions within the crystal packings (Boulanger, Torpier

& Rimsky, 1974).

Materials and methods

KB cells were grown as monolayers in 1 litre bottles (3x 107 to 4 x 107 cells per bottle) in Eagle's basal medium supplemented with 10 % calf serum. The cells were infected with adenovirus type 5 at a multiplicity of 100 infecting cell units per cell (ICU, Warocquier, M6nard & Samaille, 1966), and harvested at 40 hr post- infection. The cell pellet was fixed in 2.5 % glutaralde- hyde in 0-1M cacodylate buffer, pH 7.2, then post-fixed with osmium tetroxide and embedded in Araldite.

Sections were stained in uranyl acetate + lead hydroxide.

Electron micrographs of transverse and longitudinal sections of adenovirus-induced protein crystals were densitometered, using a C A L I F E automatic scanning microdensitometer in the Laboratoire Central de l'Armement (Arcueil). Computations were carried out at the Centre Interdisciplinaire R6gional de Calcul Electronique (Orsay) on an IBM 370-165 computer with a 2100 K bytes core memory, using programs written in Fortran IV.

The Fourier transforms were performed on the digitized electron microscopic plates, by the Fast Fourier Transform algorithm (Cooley & Tukey, 1965;

Lifchitz, 1974), and the displays of these Fourier

transforms were obtained with 20 intensity levels

(3)

442 A N A D E N O V I R U S - I N D U C E D P R O T E I N C R Y S T A L : A S T R U C T U R A L M O D E L symbolized by the printing of 20 combinations of

alphabetical and numerical characters (Epelboin &

Lifchitz, 1974).

Results

As observed on many electron micrographs, transverse sections through adenovirus-induced protein crystals reveal an approximately hexagonal lattice, limited by a polygonal convex contour, which shows that we are dealing with a real crystal [Fig. l(a)]. Fig. 2 presents the digitized image of a transverse section observed at higher magnification, as shown in Fig. l(b). The display of the Fourier transform (two-dimensional reciprocal space) performed by the Fast Fourier Transform algo- rithm on this digitized electron microscopic image presents a pseudohexagonal symmetry for the low- frequency harmonics. This symmetry disappears for the higher frequency harmonics. Along a principal direction, designated as b*, a systematic extinction occurs for odd harmonics, whereas such an extinction does not exist along the direction a*, perpendicular to b* (Fig. 3). This implies a glide-reflexion line with translation of one half the repeat distance along the line bo (Fig. 2). Hence the net is rectangular with a two- dimensional space group pg (No. 4), with two asym- metric units per unit cell and with the following param- eters obtained from measurements made directly on a series of original micrograph plates: a0 = 630 + 30, b0 =

J r o •

1200_ 60 A, 7 = 90 . The d~stances between the centres of the asymmetric units are respectively" Ii = 650 + 30;

l, = 610 + 30; la = 680 + 30 A. Although different, the/2 and 13 values are of the same order and the coordinate of the asymmetric unit centres is therefore approxi- m__ately ¼. The sectioned crystal habit is 01, 11, IT, 0T,

11 and ]1.

Longitudinal sections [Fig. 4(a)] show that the crystal habit is polygonal convex with an elongation axis parallel to the crystal fibres. As for the transverse sections, the existence of such a polygonal convex contour implies a two-dimensional periodicity, a characteristic of the periodical media, and therefore suggests a periodical modulation along the fibre axis.

Because the image seen on longitudinal sections cor- responds to the planar projection of a roughly cylin- drical fibre, the signal-to-noise ratio is low and the periodical modulation is scarcely visible. Nevertheless, if the longitudinal section micrographs are examined

with a tangential incidence, the signal-to-noise ratio

can be improved by physiological averaging of images on the retina, and this modulation appears clearly with an approximate wavelength of 10 3 /~. The Fourier transform of the digitized image of the longitudinal section confirms this period, giving the value Co=

930 + 60 A.

On the section presented in Fig. 4(a), one single fibre can be traced for its full length (up to 10 pm), proving that a net of fibres is totally contained in this section plane, for a section thickness of about 750 A. The i nterfibre distance is d = 6 3 0 A, which corresponds to

the/1 distance (Fig. 2). The interfacial angles (71 = 125, 72 = 145, 7a = 140, 74 = 120 °) allow the calculation of the axial ratio of the net, giving the respective values for the crystal parameters" /1 = 630 + 30, Co = 900 + 60/~,, ,6'=95+0.5 ° [Fig. 4(b)].

The three-dimensional characteristics of the crystal unit cell are therefore as follows" a 0 = 6 3 0 + 3 0 , b0=

1200+60, c 0 = 9 0 0 + 6 0 A; ~ = 9 0 , fl=95_+0.5, ),=90 °.

The crystal belongs to class 2 of the monoclinic system. The space group is P21, with two asymmetric units per unit cell.

From these crystallographic data, a value of 600 × 106 A 3 can be calculated for the volume of the unit cell, hence 300× 106 A 3 per asymmetric unit. Assuming a mean value of 2.37 A a for the volume of 1 Dalton of protein (Matthews, 1968), a molecular weight of 130 x

10 6 Daltons is obtained for the asymmetric unit. As- suming a density of 1.17 for crystal protein(s), as determined for adenovirus hexon crystals (Cornick, Sigler & Ginsberg, 1973), one calculates a water content of 64% (w/w) in the adenovirus-induced crystal.

Discussion

In spite of many studies, the nature of the adenovirus- induced protein crystals in infected cells remained con- jectural. Recent immunological evidence (Henry &

Atchison, 1971; Marusyk, Norrby & Marusyk, 1972) indicates that the crystals contain antigenic deter-

| l l O l ~ i O l l l l l l ~ M ~ l l l l l ~ ^ ~ l l l l l l l i i l m ~ : ~ i m i l l l l l l O O l N l O l O O l ~ l l l l l l l l l l i l l l l l l l l l l l l l l l l i l l l l l ~ l i i ~ l l l l ~ R ~ a l l l i l i i l l I 6 ~ l ~ l l i l l i l l i l ! i

i l l l l l l i l ¢ l l l i l ~ i l l l i ~ i l I H d ~ i l l l l l q x A O l l l l l l l i l l l i S i l l l l ~ i l l i l O M l

l l l i O l l i l w l i ~ t i l i l l i l l # ~ ^ ~ J ~ 7 ~ S I O O l l i l i U O U ~ X A I I I l l t l l i O O i l O i l l O 8 0 O i O l i l P l i l l i e O O l O l ~ O O O O i l O l l } l ~ l i l l l O l O i l O ~ l l ~ O ~ i l l l O O l O l ~ O l l l i i | l i l i l O l l l

|ooo@~egggeeeO~ooeJidllr~nli|oOooeogollllllO~o~e~ooo~oilooo|6gGODBO|OoigDogl e o O O U l i l i ~ i O l l i O O l O t l O O O O i O ~ i l ~ l ~ l l l O O O U O O i ~ O ~ O O x O l O i l i O I

| | k l | | i i ~ l L W ~ O O O e O O O | O ~ O O O ~ l O ~ O ~ O R J l ~ j ~ l l l i l | O ~ | O O g 6 O l ~ O q ~ O O | | O O O l l l l ~ l ~ l ~ x ~ l ~ J i b ~ l l i e e l l i | l i l l O e l ~ i 0 l O l t i O i g l ~ O ~ x A ~ e l O O l 0 o a

l i l l ~ l ~ ' ~ l l l i l l ~ i l ~ l l l i i l l i i l l l ~ l i l ~ l l i ~ l i 0 l ~ l l i l l 1 0 i l l ~ l l ~ v ~ O l O i ~ l e i i ~ ! l l l i ~ l l i l l i i i l l l l l l l ~ 1 0 1 ~ l i i ~

, t l l l l l i l l l i i i l l i ~ l ~ l l f l l l l i i l l l i i i l i i l O l l l i i ~ e ~ l i l l l l i i l l l l l l O e e ~ e i l l

~ i l l l i O l ~ i i l l i O ~ l l O § ~ O l l i l i l i t l ~ l l i l l l l l A ~ i i i l e l ' ~ i l l l i l l i ~ l l i l l i i l l l l l l l O i l ~ l l i l t l l i l t l l ~ l e l l i e o ,

pg~

I l l I~A {01~ x ~ i § l ~ i i 0 ~ l l l l l l l l l i l ~

l ~ i l l i ~ e ~ l i l l l l i i l l l l l l 0 8 8 ~ S i l l

|~jI i ~ 0 1 1 i l i l i t l ~ l l t l l l l l ~ i l l l O n

I ~ l i l l O I l O I l i l t l i l l t l l ~ 1 8 1 1 1 0 6 ,

I l l i l l l i l ~ i ~ P t " ' ~ l i l l i l l ~ l l l l l i l l l i l l i l i l l i i l l l l l i l ~ ' - ' l i l l l l i i i i l i l l

I l l l l l t l l l l i ~ H i i l i l t i ~ l e l l t l l ~ i l l e i i ~ l l l i l l ~ l i 0 1 ( IL- i g l l i l l l l l l l l ~ 1 6 1 1 1 1 1 1 1 1 ~ J l ~ i i i i i l i l l i l i i i ~ x ~ i i l l i l i § i l i i 0 i l l l i l ~ l l l l i i l l l i l l l l

l i l l l i l l l l i l i l l l l l l 0 i l ~ i t i i d l i l e ~ Z S ~ ' ~ i i i i i l i i ~ l i i l l l i { i U I I I I l i 0 ~ l i i l i , i ~ l i i l i l l i l i i l i i l l l i i ~ i i l ~ i l i i l i ~ e ~ i l i i l t l t i i l l i l i l l t l l i l ~ L I I l i l l i l l ~ , r e i O ~ l i l t l t l l l l l i t t ~ l l i l t ~ 1 0 i l l l ~ I e l i ~ l i l i l 0 i 0 1 1 1 O l i ~ l l i l i l i l l , , t l l i l l l l i l i i l i l l i l i l l l i i l O l l i i i ~ x ~ e B ~ e l l i l l | l l i O i ! i ~ O ~ l O l i i l O ~ l l l l , l i l i i i l l l l l l l l l i i l i i l i i l t l l l l l l l l A ~ i e i O l l l l l l l l l l ~ l ~ l l ~ O i l l l l i ~ O ~ l l l l l l i i l l l l i l i i l l l i l i i ~ i i l l l l l l l l l l l i i l i l i ~ 1 0 D l l l l ~ V ~ h l l i l i i i ~ l l l l l ~ l i l ~ } R i i l l l l l l t l t i l l l i ! l l 0 i i t t l l l i t l i i l 0 t ~ l J ~ O l l i i i i i ~ e i ~ i i 0 1 1 i l i l l l l i i *

~ i i e ~ i l l i l i i ~ i l i i ~ l x 0 1 l l l l i ~ i ~ l i l i e i i 0 i l l l l l i l l l i ~ 0 1 1 1 1 i i l l l l l l l l l S ~ l

~ l i ~ e l l i l l i ~ e l i e ~ - - v ~ l j L i i ~ l l l l i l i O l l e i l t O l i l l l O i i l l l l i O t l l O i O l l l l @ x ~ I l i ~ i l l O l l i l i t i l l i ~ i { ~ z , ~ i O i l l i i l i t ~ t i l i i l i l i i e @ l l i l ~ i l i i l i l i O i l l l ~ , l i t i l i i i l l l l l i i l l l l e l i l i l l ! l l i i l i ~ l l l l i ~ 8 8 e l l i i ~ i l i i ~ o o l i i l l i l l l i l i l ~ i i ~ O i l l i l t i l i l i l l l l l l i i l ~ l i l o i o ~ i O l l l l l ~ i l o ~ e i i l l l ~ i l l l l ~ l i l l l l i { i l i l l

$ 1 0 1 t i t i i u l i l l t i l l i i l l l l l ~ l i i l O i l l i l l O e l e o i l ~ i i i l l O i ~ l l l l ~ o ~ l l i l i l i i i | i l i i l l i i l ~ l l i ~ i l l i i i i l l l ~ i i ~ o i i ~ h l l l l i ~ ^ ~ i O i l i i i i l ~ l ~ i ~ q ~ l i $ 1 1 1 1 ~ l i i i l l l i l l l ~ l L ~ i l i i ~ l i ~ l i i i t ~ l i l l i i i ~ O i l l l ~ l l l l i ~ i i ~ 0 1 1 ~ X ~ l l l i l l O t 0 1

I ~ i l l ~ l i l l l l l i i i O l l l l ~ A i l l i l i l i l i l l i l l l l l l i ~ i i l i i l l i l l i e l l i i

Fig. 2. Line printer direct display of a portion of the digitized

negative electron microscopic plate showing the unit cell

and the glide-reflexion line. O1 and 02 represent the centres

of the two motifs contained in the unit cell, 11, 12 and 13 the

intercentre distances. The respective values given in the

text for 11, 12 and la correspond to an average of at least

20 measurements.

(4)

A C T A

C R Y S T A L L O G R A P H I C A ,

V O L .

B 3 1 , 1975--LIFCHXTZ,

R I M S K Y , T O R P I E R A N D B O U L A N G E R P L A T E 2

, ..,++ , . ~ ; . . . , , : . + + . , . . .,+.'..'.-+.'+v'.-. i~.'.:...,. . . :,.4~+,

~ ~ .+~'+-:_.~ .,3FK,~/..,~A~+~":.v+A+:,;',P.','r,~,.Z.+.+.v.+.'. • ...-,',-.'.".'.'.',-+=" : " . - v i~+,'~.'-;l~.,_'_= - _~I~

~._~3.,,~:.'..-:,÷:,.,::-~,:~.;+.,.'.:+>~

"~;++ .'",.'='~.. , " " ' : , + ' . . , " + ~ : , v - " ' . " . "

.. :+,

. .: , ~ . . . , , " h " " ~=,+-,+~ `:; ' ' " ~ ' ~ " ~ ' + . . . . . . " ? " ":" " = ' ~ '

P i ~ , ~ ' ~ ~ i ~ ~ ~ ; - , . ,'"",',+.+.

-~m~l~+ :,'.,+~,.,:--.'-~ ~-.-~.~.~v:.~-:!;~::-.':.~.~"~£~::.~;-.~:.:.X'..-.'.:.~-.:,:-:,:.:.;.-;. , . . . ' ,

" " " " . " ' , ~ , I ' , " " * ' , w +" '.~,~'~;':+`':` . . . :~`~.:~+~```~++~'~``~.~`~'~+'+~ '`~;r;'~P'~ . . . . ,9 - ~ ".'. i'."

, . " + . . . ~ ; ~ : . : ~ , ' . : : .'.:'.-..::.'.+.v .:...+.:++,~..v.,..,::.++7...':.+.'.'..~+'...+,,:.: .

" . , ~.,.~ ~¢:%~."A.,+++'7.¢r.~ ,< . . . , ¢ , . ,'+. . . ~ . .

~ ~ + + ~ ~++.~.~,.+-...-.~..--,.,,-.--~-+:,+...,.~...:,,.,,...,..,....,..:...

- '.--'7- w . . . ".".'.;'.;-.:.~-,~.:+'..'. ~':,'..:,:..v,v... v ,,.

. . . . " / . . L . . .'. , " . " , . " ' + . ".':'+'., "i~..,.'Ir ,',z. " , ." . . . . ' + ' " . " . . .

, o . . . . + . - . : ' . , . . . ~ , , . - . : ' ~ , ' . ~ . . . " . . . ".'.'...':..'+'.'..." . . . 'NI

~ ~ : : ~ : i ~ ' , + , . " ' . , ,~ ,~,~ v. . . .t . . . ",.'.'..,:'",.'.'".,.:', ... ,]...,,...,.,.,.',.,'.'.. 7 " , + .

~ ~ . " : ? . : ~ .'..Y..'+:..x;...~;..?: 7-.:.:.:.:-2.~:

,:~.y.~ :..:.:.:~.'.~::.'...:.':..~i + , " 2 ,

~ ~ + L+.~+ ..,y::.,v...+..v.v.,,...,,.... ~v..,..v. . . . . . . . : . . . . - , q . ,

~ ~ , ~ " ~ +,. , . ,+. d , . .:.) .v~:,;.:+4Kg:~.: ...,.:;+::...+:~:~... ,~¢.:,~:;.;.'." o - h ~.'-.,~

f . ~ . , ~ . , - ~ ( ~ . , ~ , ~ , ~ . • • 4r . + , .+. , , . : , . . . . ~, . . . : . ., , . ,~, . . . .., . . . , = . , , . ~ . , . . " . 2'.".~. . . . . . ' : . . . . ; ~ . . ' ; 7 z ' : . - . # , : . . ¢ . . ; ' . . : . , . . . ~ . + . " ,* , , . .~ " . .

,,+r. ~ . +: ~ . .

. . .

.'.~

( a )

N

. .+,p~ .%. p r o,~@,..~,.

~++,. +'..j

• . :+~+,+

,, ,~ .',I"

l l i ~ P J ~ : ~ + . . ~ l t ~ +"' :~+ -.: ~ " " ° + .. - o , + ~ ; - o . = . , o , , ¢ - : , Q

+ . P ( ' - j .'+'0"" , O r ' 0 . ,,~a, • e ' - - ' v ' ~ - " u ~

.liP.- ~. - ,I ~,~, ~ : o o ~ 0 . , . 5 , ~ . n . ~ e ' ~ i ~ - . . . ,

, , . I " . ~ r . " ~ . z o ' . . . o ¢ : . . . ~ . < o o . - , ~ o , , o . : . ~ + ~

l l ~ l P ~ - . , . .... ~'~ + ¢:-"o-,.~o',-,:a o~.'+'o_.+~,'oV5

~ , + , ' q , % ~ " :'+ _ f . ~ + : ~" , o ~ . . ' o , : + , - , 0 ~ o . . . . ~ , ' . o . . . , ' o . + t ' ~ ' ~

I I i ~ . ~ i < _ . o x , 0 / + . ~ , , - o , : . + . + o + + - . , L ~ . . ,

~ i ~ ' + - . , - + + ~ , ~ . ' ' +.'~, ~_ ~ X ' + , ~ : +I ' ": : + , - ' , ~ - o ,,';:, ; P 4 ~ , " ° :' ; , +.° : ~+ ° " d + , + "="~ ?

1 F . . q l l l +

~ , 7 . ~ : ~ . +,~/e ." o~++-+o+-<aL:,o+-+::+. ,+ o®++;+#

~ i " " 9 ~ l w ~ t ' ~ e ',~ C ,'" ~ " 0 "~. O" .'0+; ~ . ~'I~..~- -~. ,.4

+ _ . + . + . ; , .

; ~ j ~ .-:

, + . + + , _ . . .o,,,,<,+... ++,+~0 .... .... o .... + . ,.0...o~ + . + , + . . o _ .

• . . . . , ~ . m . . . , ~ .

P~IZ_..,+IPZZ,"~_~,¢'~IIIeZ"~. " . ~ : ~ " "o '-..~,=,~'.o+'-~ o , ~ + o.~.." o ".. ¢=., + - ~ wj~"~_+ _ + . u % ~ " ; ~ ' ~ . ~ + , + + +. ~ ..¢ . o " ' , ' . : . , o , , " ' a + ~ ' : ' o ' . . , " o + . " O . ' . . ,,+'~.++

~ . ~ ~ s + . ' , ; +'~ , .', += ¢ , - ~ + + , ' + ~ 2 , . 0 , + + , 0 + ~ . ~, . • @, * . - - . ' ' + , ~ " , , < v . . . . ,-~ 0 - , £ , 0 : o , - : " o , - . - " + I ~ r ~ ~ , " . . , , , ~ = , , o . . , , . , , : :+,+ ,. <,.. o', .o ... o +:.+,~+

I k ~ i ~ w J l ~ ' + ~ J t - ~ " ~ 4.~"!~l+. , . ~ - , + : 0 ",.., " 0 : " +'o. . ", o , . , 0 - - O ' + " O e ` ~ + a I g , A , ~ ' . , 4 p ~ + ~ , % + ~ , , ~ :

I' +.~. : o-

, o - , o . : + , , , o . . o : , , o ~ , ~ . . l [ d ~ l l ~ z , , " + & l ~ . , r . ~ ' : g +. Z " "+.m_. . + + . . - ' ' o : . ' 9 , _ . . 0 , , o . . " O<, , o " ~'-+~,',A

• . ,I'+ "++ ~ 4" +".J~ e o . o . , . ¢~ ~ + I o , ~ , . ' + ' - o , , . o . ~ . - o ~ . ~ ~- I I , # # ~ J ~ + , , P " ~ : % 7 ; . , . ' . . a , . , , . , ; o ; , . ' ¢ " +,<o " , . O '+ .-',,.o ' . , ~ o ~ , : o " ...-P,~:~

~ ' ~ . + ~ + ~ ',:., "-. o.+ , - o - ~ o , +to:',~. • ,o .<o :,'O~.+~+

:.~. ~ . , X + ' , . ~ . ' , ~ 0 , ++0 " , ' 0 • " 0 " . ' 0 " ~ o + # ~

~ Z ~ , ' d " . " , ~ . ~ , ~ ,.+'.¢].+~" o e :_,.,, - ' , , - ' , -"+, . . . . . . c o . l ~ " : l y ' l l ' L ~ t + , ' ~ _ X g , ' ~ ' + : ~ ¢ J : , +, o ' : ~ . ' . , o ' , . + , . , , + ,- v - , o + : + ~ , ~ . - : ~ -

, ~ , . . ~ . . . ~ . ~ . + ~ . • ++.. o:+..,. , o . + ,,e +,+,+

( b )

Fig. 1. (a) E l e c t r o n m i c r o g r a p h o f a t r a n s v e r s e section o f an a d e n o v i r u s t y p e 5 i n d u c e d p r o t e i n crystal in K B cell nucleus.

T h e crystalline lattice is limited by a c o n v e x c o n t o u r . T h e b a r r e p r e s e n t s 1 /zm. (b) A p o r t i o n o f t r a n s v e r s e l y s e c t i o n e d crystal at higher magnification. At the t o p left, a crystal o f a d e n o v i r u s particles n e i g h b o u r s the p r o t e i n crystal. T h e limits o f the a s y m m e t r i c unit are clearly d i s t i n g u i s h a b l e a l o n g the edge o f the crystal. This unit is f o r m e d o f a faintly-stained t u b u l e , p o l y g o n a l in s h a p e on section, c e n t r e d b y a d e n s e l y - s t a i n e d t u b u l a r fibre. T h e circle delineates an a s y m m e t r i c unit. T h e b a r r e p r e s e n t s 0.5 /~m.

[ T o f a c e p . 4 4 2

(5)

A. L I F C H I T Z , A. R I M S K Y , G. T O R P I E R A N D P. A. B O U L A N G E R 443 minants of adenovirus arginine-rich internal core. How-

ever, the failure to find the expected large quantities of arginine-rich proteins in the crystal, either by bio- chemical analysis of a cellular subfraction containing the crystal components (Boulanger, Torpier & Biserte, 1970; Torpier & Boulanger, 1971), or by a polyacryl- amide-gel electrophoresis study of the basic proteins isolated from adenovirus type-5 infected cells (Russel, 1971), led us to admit that the structure of this crystal is more complex than previously postulated. In addi- tion, it seems hazardous to assess the exact nature and structure of the crystal from immunofluorescent staining, inasmuch as some antigenic determinants of crystal components can be masked within the crystal- line matrix.

Nothing is known about the mechanism of forma- tion of the crystals within the cell nucleus, but a geo- metrical pathway has been recently proposed (Wach- man & Levitzki, 1972) for the assembly of spherical viruses, involving a cubic crystal of capsomers as an intermediate, which collapses to form virus particles.

If the collapse of the crystal structure does not occur

. . . 2---- 2-- __-_-'L_ __ -2_ _-_ .-_-__ "_-'2 - -

: . . . . . . = _ _ = ........... ~ + . . . . . . . = . - -

: .. ... . ~ - - ~ ---= -__=_ _ = .....

. . . . . . . . . . = - - , , = = . .... .... ... .... ...

- ~ . . . . . . = = ..... = . - _ = .... = ....... = . . . . .

. . . . . . . . . . . . ÷ = .... . = - = = - ==÷-÷ --==. .. .. . = - -

... .... .... .... ... . z = ÷ - - = . . . . . . . . . .

. - .... = _ -=.-- ~-_. = . - = . .. .. . =

. . . .

- =--_= .. ..... ......... = ..... =---

. . . . . . . . . . . . . . . . . . . . .

. . . . . . .

F i g . 3. D i s c r e t e F o u r i e r t r a n s f o r m c o r r e s p o n d i n g t o F i g s . l ( b ) a n d 2. A l t h o u g h a p s e u d o h e x a g o n a l l a t t i c e is r e v e a l e d b y t h e

intense diffraction spots, the true lattice appears rectangular, as materialized by the lines. A systematic extinction occurs for odd harmonics along the b* axis. The vertical affinity, due to the line printer display, has been intentionally correc- ted on Fig. 2, but not on Fig. 3 to prevent a loss of informa- tion. (As in Fig. 2, the code is given by Epelboin &

Lifchitz, 1974.)

around a nucleation centre, such as the DNA-contain- ing inner core of the adenovirus, but rather around a linear core, the collapse of the crystalline array is longitudinal and filamentary structures will result. Such filaments have been observed in KB cells infected with adenovirus type 5 (Torpier & Petitprez, 1968, Plate III), in the process of generating crystalline inclusions within the nucleus. Other spherical animal viruses such as polyoma (Mattern & De Leva, 1968) and herpes (Stack- pole & Mizell, 1968) also induce tubular inclusions in the host cell.

The adenovirus-induced crystal presents a tubular architecture: it consists of a crystalline array of faintly contrasted parallel tubules, polygonal in shape on transverse sections [Fig. l(b)], centred by a densely stained tubular filament which seems connected to the peripheral tubule by a thin reticulum. The limits of the external tubular unit, and hence the limits of the asym- metric unit, are clearly distinguishable along the edges of the crystal [Fig. l(a,b)] as well as on isolated tubules in the course of assembling to form a crystalline array (Torpier & Petitprez, 1968, Plate III).

If it is supposed that the adenovirus-induced protein crystal in the KB cell consists of viral capsid compo- nents, and particularly of hexon capsomers, the major adenovirus morphological subunits, collapsing around a filamentary axis of inner densely stained protein(s) (the formerly called 'tubules' of the crystal) to form longitudinal tubular fibres associating in a crystalline array, then it would be feasible to reconstruct from capsid components a three-dimensional structure com- patible with the crystallographic data previously ob- tained. This is shown in Fig. 5(a): a plane hexagonal surface lattice of adenovirus icosahedron faces (equi- lateral triangles of 350 A edge), constituted of 123 hexon capsomers, can be folded round upon itself to form a helical polyhedral tubule with an external dia- meter of 550 A and an axial periodicity of 930 A. A unique structure possibility is thus found [Fig. 5(a,b)], giving a tubular unit containing 28 triangles. In this hexagonal arrangement there is no room for pentons.

From the most accurately determined molecular weight for hexon capsomer (298000, Cornick et al., 1973) a value of 104 x 106 is obtained for the molecular weight of this tubular unit. As the volume of the internal densely-stained tubular fibre is 56 x 106 A 3, a molec- ular weight of 2 4 x 106 is calculated as mentioned above. The molecular weight of 128 x 106 for the whole tubular unit is in good agreement with the value of 130 x 106 inferred from crystallographic data.

The adenovirus-induced crystal would thus be

formed of a crystalline array of helical polyhedral tu-

bules 550A in diameter, whose tubular unit consists of 28

triangular facets of 123 subunits with hexagonal sym-

metry and molecular weight about 300 000, helicoidally

disposed with a 930 A period. These hollow tubules

contain a dense tubular fibre of basic protein(s). On the

hypothesis that these hexagonal subunits are true

adenovirus hexon capsomers, the occurrence of such

(6)

ACTA C R Y S T A L L O G R A P H I C A , VOL. B 3 1 , 1975--L[FCH[TZ, RIMSKY, TORPIER AND BOULANGER PLATE 3

?,',.3,1t~ ~ " ," "*' " :P.

:':':'~"t" ".

: . . - "

." • ,.,,i. i. :"~lill~ :'L' ': ~ "

: ". . " , ~ , - -. . " . .-"

(a)

r .. . . '~'~ \

(b)

Fig. 4. (a) Electron m i c r o g r a p h of a longitudinal section of an a d e n o v i r u s - i n d u c e d protein crystal in the KB cell nucleus.

The limits of the external t u b u l a r unit are visible at the periphery of the sectioned crystal. The bar represents 1 ,urn.

(b) D e t e r m i n a t i o n o f the crystal p a r a m e t e r s by the crystal m o r p h o l o g y . T h e reciprocal lattice is c o n s t r u c t e d f r o m the directions p e r p e n d i c u l a r to the crystal faces. This reciprocal lattice permits the calculation o f the direct p a r a m e t e r s by the following e q u a t i o n s : tg 0 = 2 sin ~,~. sin ~,3/sin (72 - h ) ; a0 = d/sin 0, d being the interfibre distance; Co = d . sin (~,~ +

~,~)/sin 7, • sin }'3.

A I o I

5 0 0 A

(a)

(b)

Fig. 5. (a) Plane hexagonal net of triangular facets (350 ,~ in edge; 123 hexagonal subunits per facet) foldable r o u n d u p o n itself to form a helical polyhedral tubule, 550 ,~, in diameter, 930 ,~ in axial periodicity, ,4C c o m i n g on BD.

(b) A p r o p o s e d three-dimensional model for tubular units of a d e n o v i r u s - i n d u c e d crystal, reconstructed from crystallo- graphic data. Each tubule is f o r m e d by helical e n w i n d i n g of triangular plane facets o f 12~ hexagonal subunits (28 tri- angles per a s y m m e t r i c unit). The inner hollow fibre repre- sents the densely-stained central filament o f basic proteins.

[To face p.

443

(7)

444 AN A D E N O V I R U S - I N D U C E D P R O T E I N C R Y S T A L : A S T R U C T U R A L M O D E S protein crystals in the KB cell would depend upon the

synthesis rate of hexon and inner proteins and their excess over the other capsid components.

The proposed model [Fig. 5(b)], reconstructed from crystallographic parameters, is supported by a number of structural and biochemical arguments. (i) As cal- culated above, the parameters of the asymmetric unit of the unit cell are compatible with the dimensions of adenovirus capsid subunits. (ii) The phenomenon of epitaxy between non-viral crystals and virion crystals, visible in our electron micrographs [Fig. l(b)], as well as in many others [Henry et al. (1971) Fig. 3(a); Maru- sik et al. (1972) Fig. l(A)] strongly suggests some struc- tural identity of the components of both crystals. (iii) The fine structure of the crystal has been shown to be related to the serotype of the inducing adenovirus, hence to the structure of the virus capsid components (Weber & Liao, 1969). (iv) The relative resistance of the crystal to proteolytic enzymes (Martinez-Palomo &

Granboulan, 1967; Weber & Stich, 1969) is reminiscent of the resistance of hexon to proteases (Valentine &

Pereira, 1965; Boulanger, Flamencourt & Biserte, 1969; Pereira & Laver, 1970). (v)The chromicity of the tubule wall in the sectioned crystal is the same as that of sectioned capsids in the intranuclear virion crystal.

In contrast, the inner axial tubular fibre displays the same affinity for staining agents as does the inner core of adenovirons present in neighbouring area of the same cross section [Fig. l(b)]. This inner core contains DNA-associated basic protein(s) (Prage, Petterson &

Philipson, 1968; Boulanger, Jaume, Flamencourt &

Biserte, 1970; Laver, 1970). (vi) The faint but positive immunofluorescent staining of the crystal with both anti-hexon and anti-adenovirion immune sera (Bou- langer et aL, 1970; Torpier & Boulanger, 1971 ; Henry et al., 1971) implies the presence of capsid components within the crystal lattice. If confirmed, the model herein proposed for adenovirus-induced protein crystals would have the merit of explaining the apparently con- flicting results of immunofluorescent staining with anti-hexon, anti-adenovirion and anti-virus core im- mune sera.

After completion of this study, we were informed of two works on adenovirus-induced protein crystals. In the first (Wills, Russel & Williams, 1973), crystals were observed at 38.5°C in cells infected with Ad5-ts 17, an adenovirus type 5 temperature-sensitive mutant defective in hexon capsomer at this restrictive tem- perature. However, in that study, only achieved hexon antigen was explored by serological methods, and it was therefore possible that hexon synthesized at 38.5°C in the host cell was no longer antigenic, al- though still capable of forming crystals. At the non- permissive temperature of 42 ° , we have also observed an absence of achieved hexon antigen, whereas hexon polypeptide unit is present (Warocquier & Boulanger,

1973).

The second study was concerned with the isolation of a 'crystal' protein from Ad5-infected KB cells by

Marusyk and coworkers (Marusyk, personal com- munication): a protein of molecular weight 27 000 has thus been obtained. The position of this protein could be the densely-stained tubular filament of the crystal unit.

This work was supported in part by contract C R L 74-5-043-03 from the Institut National de la Sant6 et de la Recherche M6dicale, and by ERA 225 from the Centre National de la Recherche Scientifique. We thank Dr J. Berthou for his constructive criticisms and Dr W. Brown for his critical reading of the manuscript.

The assistance of A. Petitprez in the Laboratoire de Microscopie Electronique de l'lnstitut Pasteur de Lille is gratefully acknowledged.

References

BOULANGER, P. A., FLAMENCOURT, P. & BISERTE, G. (1969).

Europ. J. Biochem. 10, 116-131.

BOULANGER, P. A., JAUME, F., FLAMENCOURT, P. & BI- SLATE, G. (1970). J. Virol. 5, 109-113.

BOULANGER, P. A., TORPIER, G. & BISERTE, G. (1970).

J. Gen. Virol. 6, 329-333.

BOULANGER, P. A., TORPIER, G. & RIMSKY, A. (1974).

Intervirology, 2, 56-62.

COOLEY, J. W. & TUKEY, J. W. (1965). Math. Comput. 19, 297-301.

CORNICK, G., SIGLER, P. B. & GINSBERG, H. S. (1973).

J. Mol. Biol. 73, 533-538.

CROWTHER, R. A., AMOS, L. A., FINCH, J. T., DEROSlER, D. J. & KLUG, A. (1970). Nature, Lond. 226, 421-425.

DEROSIER, D. J. & KLUG, A. (1968). Nature, Lond. 217, 130-134.

EPELBOIN, Y. & LIFCHITZ, A. (1974). J. Appl. Co,st. 7, 377-382.

HENRY, C. J. & Aa-emSON, R. W. (1971). J. Virol. 8, 842- 849.

HENRY, C. J., SLIFKIN, M., MERKOW, L. P. & PAROO, M.

(1971). Virology, 44, 215-218.

LAKE, J. A. (1972). J. Mol. Biol. 66, 255-269.

LAVER, W. G. (1970). Virology, 41,488-500.

LEUCHTENBERGER, C. & BOYER, G. S. (1957). J. Biophys.

Biochem. Cytol. 3, 323-324.

LIFCHrrz, A. (1974). Acta Cryst. A30, 86-92.

MARTINEZ-PALOMO, A. & GRANBOULAN, N. (1967). J. Virol.

1, 1010-1018.

MARUSYK, R., NORRBY, E. & MARUSYK, H. (1972). J. Gen.

Virol. 14, 261-270.

MATTERN, C. F. T. & DE LEVA, A. M. (1968). Virology, 36, 683-685.

MATTHEWS, B. W. (1968). J. Mol. Biol. 33, 491-497.

MORGAN, C., GODMAN, G. C., ROSE, H. M., HOWE, C. &

HUANG, J. S. (1957). J. Biophys. Biochem. Cytol. 3, 505- 516.

MORGAN, C., GODMAN, G. L., BREITENEELD, P. M. & ROSE, H. M. (1960). J. Exp. Med. 112, 373-382.

PEREIRA, H. G. & LAVER, W. G. (1970). J. Gen. Virol. 9, 163-167.

PRAGE, L., PETTERSON, U. & PHILIPSON, L. (1968). Virology, 36, 508-511.

RUSSEL, W. C. (1971). J. Gen. Virol. 11, 65-69.

SCHLESINGER, R. W. (1969). Advanc. Virus. Res. 14, 1-61.

(8)

A. L I F C H I T Z , A. R I M S K Y , G. T O R P I E R A N D P. A. B O U L A N G E R 445 STACKPOLE, C. W. & MIZELL, M. (1968). Virology, 36,

63-72.

TORPIER, G. & BOULANGER, P. A. (1971). Ann. Inst. Pasteur Lille, 22, 269-282.

TORPIER, G. t~; PETITPREZ, A. (1968). J. Microsc. 7, 411-418.

VALENTINE, R. C. & PEREIRA, H. G. (1965). J. Mol. Biol.

13, 13-20.

WACHMAN, A. & LEVITZKI, A. (1972). J. Theor. Biol. 34, 277-287.

WAROCQUIER, R. & BOULANGER, P. A. (1973). Arch. Ges.

Virusforsch. 41, 371-381.

WAROCQUIER, R., MI~NARD, D. • SAMAILLE, J. (1966).

Ann. Inst. Pasteur Lille, 17, 97-106.

WEBER, J. & LIAO, S. K. (1969). Canad. J. Microbiol. 15, 841-845.

WEBER, J. & STICH, H. F. (1969). J. Virol. 3, 198-204.

WILLS, E. J., RUSSEL, W. C. & WILLIAMS, J. F. (1973).

J. Gen. Virol. 20, 407-412.

Acta Cryst. (1975). B31, 445

Etude d'Arseniures et Phosphures Doubles. II. Structure de C a l o + x S i l z _ z x A S l 6 ( e t PI6) PAR MIREILLE HAMON, JEAN GUYADER, PAUL L'HARIDON ET YVES LAURENT

Laboratoire de Chimie Mindrale C, U.E.R. 'Structure et Propridtks de la Matidre', Avenue du Gdndral Leclerc, 35031 Rennes Cedex, France

(Recu le 1 juillet 1974, acceptd le 11 septembre 1974)

Ca10+xSitz-2xAs16 crystallizes in the monoclinic system, space group P2x/m, with one formula unit in a cell of dimensions a=7.134 (5), b= 17.651 (10), c=7.267 (5) ,~, t = 111-74 (5) °. The structure has been solved from 1167 non-zero independent reflexions. The atomic parameters and isotropic thermal coeffi- cients were refined by the least-squares method, yielding a final R value of 0.060. The arsenic atoms have a slightly distorted cubic close packing. Of the 16 octahedral sites, 10 are occupied by calcium atoms.

The other octahedral sites are filled with calcium or silicon-silicon pairs. Ca10+xSi12-2xP16 is isotypic with the arsenic compound. The monoclinic cell parameters are a = 6.924 (3), b = 17-251 (9), c= 7.093 (4) A, f l = l l l ' 8 1 (4) ° .

Introduction

L'6tude structurale des compos6s A"BIVC v ( A n = B e , Mg, M n, Zn, Cd) montre qu'ils poss6dent une struc- ture t6tra6drique qui d6rive de celle de la sphal6rite lorsque l'616ment C v e s t le phosphore, l'arsenic ou l'antimoine (Parth6, 1972), et de celle de la wurzite pour les nitrures (Maunaye, Marchand, Guyader, Lau- rent & Lang, 1971). Lorsque l'616ment AII est le cal- cium, seuls sont connus CaSiN2 (Laurent, 1968) et CaGeN2 (Guyader, 1967). La structure de celui-ci dif- f6re des pr6c6dentes (Maunaye, Guyader, Laurent &

Lang, 1971). L'6tude des syst~mes ternaires Ca-Si-As et Ca-Si-P a permis de pr6ciser les phases qui s'y mani- festent (Hamon, Guyader & kang, 1974). Les com- pos6s contenant du phosphore sont isotypes des 6quiva- lents ars6ni6s. L'obtention de monocristaux est plus facile pour ces derniers qui ont donc 6t6 choisis pour une d6termination structurale.

Partie exp~rimentale Prdparation

On op~re par chauffage en tubes de silice scell6s sous vide des 616ments en proportions variables (temp6ra- ture 1000°C; dur6e: 24 h). On a mis en 6vidence deux phases: l'une, Ca4SiAs4 (ou P4) dont l'6tude structurale est en cours, l'autre, de formule variable selon les con- ditions exp6rimentales, peut s'6crire Cat0 +xSi12-zxAs~6

(ou P16), formule en accord avec les r6sultats des ana- lyses chimiques et structurale.

La pr6sence d'un exc6s d'arsenic par rapport 5. la composition de Calo+xSi12-zxAs16 favorise la forma- tion de monocristaux. Un refroidissement lent pro- gramm6 (5°C h -x de 1000 5. 20°C) permet d'obtenir des cristaux de meilleure qualit6.

Etude cristallographique

Afin d'6viter leur hydrolyse, les cristaux sont plac6s dans des tubes de Lindemann emplis de nujol puis scell6s.

L'examen des clich6s obtenus selon les m6thodes du cristal tournant, de Weissenberg et de pr6cession de Buerger permet de d6terminer une maille triclinique dont les param&res sont: a = 12,0, b = 12,0, c = 11,9 ,~, c~=90,50, t = 89,50, y = 84,80 °, V= 1700 A 3.

Les raies de diffraction les plus intenses du dia- gramme Debye-Scherrer de ce compos6 peuvent ~tre compar6es /t celles d'un diagramme type NaCI en tenant compte de la d6formation triclinique.

La maille r6elle, de volume deux fois moindre, est monoclinique, l'axe b co~'ncidant avec l'axe [110] de la maille pr6c6dente pseudocubique.

La matrice de transformation monoclinique-+

pseudo-cubique est:

1 0 - .

Références

Documents relatifs

- The field-induced phase transitions in FeBr2-type crystal under hydrostatic pressure have been determined in terms of Landau's theory, with the paramagnetic phase described

ADN Deoxy Ribo Nuclec.

L'oxyde de carbone est le principal agent toxique produit par la combustion du polyéthylène et d'autres matériaux organiques composés d'atomes de carbone et

We have presented a compact, transportable frequency comb system based on a 1 GHz octave spanning Ti:sapphire laser and a commercially available methane stabilized

In the absence of classical logic axioms, type theory already makes it possible to model potentially non-terminating functions as total terminating functions with an extra

There are two groups of icosahedra on the tiling : vertex icosahedra which stand on vertices of the tiling and internal icosahedra which are found inside some prolate

— schistes à Calymènes (Llandeilien, Ordovicien moyen) : ils livrent communément d’abondantes faunes de Bivalves tous à charnière bien constituée (Ctenodontidae,

To show that the Daxx displacement from PML-NBs in the very early infection phase was caused by protein VI, we analyzed Daxx dissociation from PML- NB also in VI-wt and