• Aucun résultat trouvé

QUASI-CRYSTAL AND CRYSTAL IN AlMn AND AlMnSi. MODEL STRUCTURE OF THE ICOSAHEDRAL PHASE

N/A
N/A
Protected

Academic year: 2021

Partager "QUASI-CRYSTAL AND CRYSTAL IN AlMn AND AlMnSi. MODEL STRUCTURE OF THE ICOSAHEDRAL PHASE"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00225752

https://hal.archives-ouvertes.fr/jpa-00225752

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUASI-CRYSTAL AND CRYSTAL IN AlMn AND AlMnSi. MODEL STRUCTURE OF THE

ICOSAHEDRAL PHASE

P. Guyot, M. Audier, R. Lequette

To cite this version:

P. Guyot, M. Audier, R. Lequette. QUASI-CRYSTAL AND CRYSTAL IN AlMn AND AlMnSi.

MODEL STRUCTURE OF THE ICOSAHEDRAL PHASE. Journal de Physique Colloques, 1986, 47

(C3), pp.C3-389-C3-404. �10.1051/jphyscol:1986340�. �jpa-00225752�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, supplement au n o 7, Tome 47, juillet 1986

QUASI-CRYSTAL AND CRYSTAL IN AlMn AND AlMnSI. MODEL STRUCTURE OF THE ICOSAHEDRAL PHASE

P. GUYOT, M. AUDIER( and R. LEQUETTE*

L.T.P.C.M. (U.A. CNRS N o 29)

-

E.N.S.E.E.G., Domaine

Universitaire, BP N o 75, F-38402 Saint-Martin-d'Heres Cedex, France

'ARTEMIS (U.A. CNRS N o 3961, B P n o 68, F-38402 Saint-Martin-dlH&res Cedex,.France

Resume

-

I1 e x i s t e une grande s i m i l a r i t e entre l a phase cubique a dans AlMnSi e t l a phase icosaedrique i-AlLrnSi ou AlYn. Une etude par microscopie electro- nique en transmission (T.E.11.) d'un ruban hypertrempe 00 l e s deux phases co- e x i s t e n t , e t a b l i t clairement leurs r e l a t i o n s . On montre que l e s deux s t r u c - tures peuvent Ctre d e c r i t e s d p a r t i r d ' u n i t e s de bases communes -un double icosaedre A1-Hn- connectees en orientation p a r a l l e l e suivant leurs axes d ' o r - dre 3 par des l i a i s o n s Fln octaedriques. Une connection deterministe des ico- saedres dans l a phase i e s t coherente avec u n pavage Penrose d 3 dimensions.

Un s q u e l e t t e i de grandes dimensions e s t c o n s t r u i t par ordinateur, oO l a de- coration du pavage par l e s icosaedres, s a t i s f a i s a n t d des contraintes s t e r i - ques, e s t resolue par un algorithme de theorie des graphes. Des projections du modele sur des plans normaux d des axes de symetrie e t l e s diagrammes de d i f f r a c t i o n calcul@s, apres comparaison avec des r e s u l t a t s T.E.!:. haute reso- lution e t de d i f f r a c t i o n , indiquent q u ' i 1 contient 1 'e s s e n t i e l de l a structu- r e de l a phase i dans ces a l l i a g e s .

Abstract

-

There i s a close s i m i l a r i t y between the cubic a-phase i n AlllnSi and the icosahedral phase i-AlllnSi or Allln. A transmission electron microscopy

(T.E.14.) study of a melt-spun ribbon where the two phases coexist, e s t a b l i s - hes c l e a r l y t h e i r relationships. I t i s shown t h a t both s t r u c t u r e s can be des- cribed with common basic u n i t -a double Al-lln icosahedra- connected in paral- l e l orientation along t h e i r 3-fold axes by octahedral tln bonds. A detenninis- t i c connection of the icosahedra in the i-phase appears t o be consistent with a 3 dim-Penrose t i l i n g . A large s i z e i-skeleton i s then computer generated, wnere tne decoration by icosahedra of the t i l i n g , prescribed by s t e r i c cons- t r a i n t s , i s solved by a graph theory algorithm

.

Projections of the model on planes perpendicular t o symmetry axes and ca1cu:ated d i f f r a c t i o n patterns, orc?compared x i t h hi.jh resolution T.E.M. and d i f f r a c t i o n data, indicate that i t contains the main point of the i-phase s t r u c t u r e in these alloys.

I

-

INTRODUCTION

One expects the physical properties of quasi-crystals, of which only l i t t l e i s known today, t o r e l y f o r lon wave length excitations on t h e i r long range orientational order or translationnay quasiperiodicity, and f o r short wave length ones on t h e i r local atomic arrangements.

Soon a f t e r the discovery of the icosahedral phase (i-phase) i n Al-Mn by Shecthtman e t a l . / I / , the long range problem was solved by the very elegant and powerful1 tech- nique of cut and prciection of periodic 6-dimensional hyperlattices /2/ /3/ /4/, leading t o a 3 dim.-generalization of the Penrose t i l i n g ( 3 DPT). The agreement of the Fourier transform of such a q u a s i l a t t i c e w i t h experimental electron d i f f r a c t i o n data was s u f f i c i e n t l y good t o assign a second order r o l e t o the local atomic order.

( ' o

n leave at Cegedur-Plchiney Research Centre. P-38340 Voreppe. France

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986340

(3)

C3-390 J O U R N A L DE PHYSIQUE

However s i g n i f i c a n t i n t e n s i t y v a r i a t i o n s observed i n d i f f r a c t i o n experiments w i t h v a r y i n g s c a t t e r i n g lengths ( X r a y s /6/, neutrons /7/, see a l s o t h i s conference) e v i - denced t h e e x i s t e n c e o f an atomic o r d e r i n g on t h e q u a s i - l a t t i c e s i t e s .

Solve t h e l o c a l o r d e r i s e q u i v a l e n t t o decorate w i t h atoms t h e p r o l a t e and o b l a t e rhombohedra1 t i l e s o f t h e q u a s i - l a t t i c e , w i t h a s p e c i a l d i f f i c u l t y i n h e r e n t t o t h e matching r u l e s c o n s t r a i n i n g t h e t i l i n g : i t i s n o t obvious thatan u n i o u e p a i r o f e l e - mentary t i l e s can be defined. On t h e o t h e r hand i t i s c l e a r t h a t t h e d e c o r a t i o n i s e a s i e r t o perform i n t h e 3 dim-space, i n o r d e r t o reap advantage from t h e elementary r u l e s o f chemistry ; a f u r t h e r c l i m b o f t h e atoms i n t h e 6 dim-hyperspace f o r s 4 n p l e r F o u r i e r t r a n s f o r m c a l c u l a t i o n s i s p o s s i b l e .

I t a l s o appears s i m p l e r and w i t h a p h y s i c a l ground t o decorate t h e 3 DPT by po- lyatomic c l u s t e r s which preserve i t s icosahedral symmetry elements : icosahedron, dodecahedron, rhombic t r i a c o n t a h e d r o n

...

The s i z e o f t h e u n i t s i m p l i e s t o s t a r t w i t h a b a s i c bare t i l i n g o f convenient s i z e ( f i x e d by t h e edge l e n g t h AR o f t h e rhombohe- d r a l t i l e s ) . The a n a l y s i s o f t h e r e s u l t i n g modelling, i n a f u r t h e r step, may be done i n terms o f atoms l o c a t i o n s , and consider, whether o r n o t a d e f l a t e d atomic t i l i n g e x i s t s .

A n a t u r a l choice o f t h e dressing c l u s t e r s can be adressed t o c r y s t a l l i n e phases, where t h e r e are known t o e x i s t b u t packed p e r i o d i c a l l y . On t h e b a s i s o f t h e i n t r i n s i c s t a b i l i t y o f t h e d u s t e r s , t h e d i f f e r e n c e between c r y s t a l s and q u a s i - c r y s t a l s i s t h e n r e l a t e d t o t h e i r c o n n e c t i v i t y ( c o o r d i n a t i o n number, bond l e n g t h ) and i t s long range propagation ( p e r i o d i c ; a p e r i o d i c b u t d e t e r m i n i s t i c ; a t random). To t h a t respect, l i q u i d , amorphous, q u a s i c r y s t a l l i n e and c r y s t a l l i n e s t a t e s may e n t e r i n t o a s i n g l e f i l i a t i o n , where t h e f o r m a t i o n k i n e t i c s i s suspected t o p l a y an important r o l e . I n i t i a l l y , we f o l l o w e d a p a r t o f t h i s procedure, by t r i a l and e r r o r , borrowing i c o - sahedral u n i t s and bonds o f t h e c r y s t a l l i n e cubic a-phase i n AlMnSi o r AlFeSi. I n t r o - ducing a simple breaking o f p e r i o d i c i t y i n t h e connection o f t h e icosahedra, we pro- posed a r e a l i s t i c s t r u c t u r e o f t h e i-phase i n AlMn /7/. Independently, t h e develop- ment o f t h e c u t and p r o j e c t i o n technique l e d E l s e r and Henley /8,9/ t o a s i m i l a r r e s u l t , a f t e r d e s c r i b i n g t h e cubic c r y s t a l through a 6 d i m - s t r i p o f r a t i o n a l slope, approximant o f t h e golden number $I = ( 1

+

& ) / 2 .

I n t h e present work, we g i v e a more complete s t r u c t u r a l approach o f t h e .i-phase. We f i r s t i n t r o d u c e t h e c u b i c a-phase, as observed d u r i n g t h e c r y s t a l l i z a t i o n o f a melt- spun AlFeSi glass. We show next, i n a melt-spun AlMnSi r i b b o n where a and i-phase c o e x i s t , t h e c l o s e r e l a t i o n s between c r y s t a l and q u a s i c r y s t a l . The relevance t o use t h e icosahedral u n i t s o f t h e a phase t o b u i l d t h e i-phase i s o u t l i n e d . F i n a l l y a q u a s i c r y s t a l i s computer generated w i t h a s i z e c l o s e t o t h e c o r r e l a t i o n l e n g t h expe- r i m e n t a l l y determined i n AlMn

-

a 20 nm

-

/5/. The decoration o f t h e 3 DPT i s solved by a graph algorithm, and beyond t h e basic icosahedron v a r i o u s l a r g e r atomic u n i t s are a l s o t e s t e d . P r o j e c t i o n s o f t h e model on planes perpendicular t o symnetry axes and F o u r i e r transforms a r e compared w i t h h i g h r e s o l u t i o n e l e c t r o n microscopy and d i f f r a c t i o n data.

I 1

-

THE a-PHASE

The cubic a phase has f i r s t a s t r o n g s i m i l a r i t y w i t h t h e i-phase i n i t s as grown den- d r i t i c morphology : i n F i g . l a ) , a a c r y s t a l has been formed a f t e r h e a t i n g a m e l t - spun A17 FeljSi17 glass

/lo/,

whereas i n F i g . l b ) , t h e q u a s i - c r y s t a l s are as spun from a m e l t ~PfjMn. A comparison o f t h e i r r e s p e c t i v e s t o i c h i o m e t r y , as determined by X-EDS a n a l y s i s i n a scanning transmission e l e c t r o n microscope (STEM) /10//11/ i s a l s o i n s - t r u c t i v e : A18Fe2Si f o r a, A14Mn f o r i, i .e. t h e r a t i o o f t r a n s i t i o n metal t o alumi- nium atoms has a cormon value o f 20 %. F i n a l l y a s t r o n g c o r r e l a t i o n i n e l e c t r o n d i f - f r a c t i o n p a t t e r n s was n o t i c e d /7/ /12/, somewhat d e t a i l e d l a t e r i n t h e study of an as spun A174 gMn2 S i 5 8 ribbon, where i - a n d a-phases are found t o c o e x i s t , announces a r e l a t i o n s h i p be?wee~ t h e s t r u c t u r e s o f t h e two phases.

(4)

F i g . 1

-

T.E.M. micrograohs. The a o r i-phases are formed by a f i r s t order t r a n s f o r - mation : from t h e amorphous s t a t e f o r a, F i g . l a )

-

a r e j e c t i o n o f pure A1 ( w h i t e

? a r t s ) a t t h e p e r i p h e r y o f t h e c r y s t a l i s c l e a r l y evidenced-, from t h e 1 iq u i d s t a t e f o r i, F i g . l b )

-

t h e i-phase A14Mn i s embedded i n a f.c.c. m a t r i x , which i s a super- s a t u r a t e d s o l i d s o l u t i o n o f Mn i n A1 /11/.

The s t r u c t u r e of t h e a phase, e s t a b l i s h e d by Cooper and Robinson /13/ and Cooper /14/, i s cubic, e i t h e r Pm3 i n AlMnSi o r Im3 i n AlFeSi, w i t h a u n i t c e l l parameter a

, = 12.68

1

and a, = 12.56

fi

r e s o e c t i v e l y . The s t r u c t u r e , s c h e m a t i c a l l y drawn i n F i g . 2, c o n s i s t s i n a packing o f double icosahedra (an A1 icosahedron, w i t h a vacant center, surrounded by a p a r a l l e l double s i z e d Mn icosahedron). The Mn icosahedra a r e

F i g . 2

-

a) Schematic view of t h e a phase ; o n l y t h e Mn icosahedra are drawn ; b) face-to-face octahedral bonds along t h e < I l l > d i r e c t i o n s .

connected along t h e < I l l > d i r e c t i o n s through f o u r o f t h e i r 3 - f o l d axes ; he face- t o - f a c e connections forms a Mn octahedral bond, o f l e n g t h a a d / 2 = 10.98

k

i n

(5)

C3-392 JOURNAL DE PHYSIQUE

a-AlMnSi, which maintains t h e icosahedra i n t h e same o r i e n t a t i o n . I n s i d e t h i s skele- ton, t h e A1 icosahedra are connected through < I l l > chains o f t h r e e bonding A1 octa- hedra, whereas o t h e r s A1 atoms cap t h e Mn icosahedral v e r t i c e s . I t i s i n t e r e s t i n g t o note t h a t t h e vacancy i n t r a n s i t i o n metal a t t h e center o f t h e A 1 icosahedron i s a l s o discarded i n t h e i-phase from MBssbauer data /IS/.

I 1 1

-

RELATIONSHIPS BETWEEN a- AND i-PHASE I N A174.2%$i-5.8

I t i s now known t h a t a small a d d i t i o n o f S i s t a b l i z e s t h e i-phase and confers i t a h i g h e r q u a s i - c r y s t a l 1 in e p e r f e c t i o n as compared w i t h t h e i-phase i n AlMn /16/. Fur- thermore a small p r o p o r t i o n o f a phase, which c o e x i s t s . w i t h t h e i-phase i n t h e r i b - bons, confirms (see a l s o /17/) t h e t i g h t s t r u c t u r a l connection t h a t we i n i t i a l l y suggested when t h e two phases were s e p a r a t e l y formed /7/ /12/.

Fig. 3a) i s a b r i g h t f i e l d micrograph o f t h e t i p o f a d e n d r i t e where i s l a n d s o f i- phase c o e x i s t w i t h t h e a-phase. Convenient t i l t s around [ O 1 O l a and [ I O 1 l a a l l o w t o e s t a b l i s h t h e o r i e n t a t i o n r e l a t i o n s h i p s between t h e two phases ( s i m p l y summarized i n F i g . 39

,

where t h e icosahedron -which 2, 3 and 5 f o l d axes are those o f t h e i- hase-, i s i n s c r i b e d i n t h e a cube), namely : 1100la//[A2I i, 11111 // [A31 i, [ @ ! o ~ I ~ / / I A ~ I ~ ([5021a o r [13,0,5bat .9Oor.13O from 1A31i), [ ~ o B I ~ ? / [ A s I ~ (1305la o r 1508Ia a t .75O o r .28O from [A51 i ) .

We a l s o n o t e ( n o t i n d i c a t e d i n t h e Fig. 3 ) t h a t t h e more i n t e n s e spots a r e i n n e a r l y coTncidence : [035Ia and [ 1000001 i

,

[ 5321 o r * [ 006Ia and ~ 1 1 0 0 0 0 1 ~ , [0311a and [1100011i, using f o r t h e i-phase r e f l e x i o n s t h e 6 icosahedral i n a i c e s o f Bancel e t a1

.

/5/.

High r e s o l u t i o n imaging i n a x i a l i l l u m i n a t i o n along [100Ia//[A21 i and [503Ia//[A5] 1 are shown i n Fig. 4, where o r i e n t a t i o n r e l a t i o n s h i p and degree o f coherency can be d i r e c t l y appreciated. I n F i g . 4b), two 36O r o t a t e d a v a r i a n t s , a1 and a11, seem t o be issued from t h e i-phase. Using t h e a phase as a standard i t i s then p o s s i b l e t o c a l i b r a t e t h e i-phase q u a s i - l a t t i c e constant, as discussed i n next s e c t i o n . I V

-

MODEL STkUCTU2E OF THE i-PHASE I N AlFln AND h1:lnSi

I V - 1

-

P r i n c i p l e :

k l o g i c a l i d e a t o ~:ioael t h e i-phase s t r u c t u r e i s t o paclc icosanecra m a i n t a i n i n g t h e sace orientation i n o r a e r t o propagate a t long range t h e i r o r i e n t a t i o n a l order. A packing v e r t e x - t o - v e r t e x o r eage-to-edge, as i n i t i a l l y proposed by Shechtnan and Alech

/la/,

see a l s o /lJ/,suffers from a r o t a t i o n freedom arouna t h e connection, which makes t h e r u l e somewhat "ad hoc". A t t h e o p p o s i t e t h e face-to-face connection as i n t h e f i r s t c o u s i n a-phase, i s r i g i d .

Applying t h i s % f o l d a x i s connection, we f i r s t b u i l t by hands /7/ /11/ a double i c o - sahedra skeleton according t o t h e f o l l o w i n g r u l e s : f o r s t e r i c c o n s t r a i n t s no octa- hedral bonds on a d j a c e n t icosahedron faces a r e allowed ; th e f i r s t - n e i g h b o u r s coor- d i n a t i o n number must be lower than 8, which i n s u r e s t h e t r a n s l a t i o n a l p e r i o d i c i t y o f t h e a-phase ; th e d i s t a n c e between f i r s t - n e i g h b o u r i n g icosahedra along a 3 - f o l d a x i s iaay be s l i g h t l y a t variance from t h i s i n t h e a-phase. A l o c a l icosahe- d r a l symmetry o f t h e model was obtained, which comparison o f atoms p r o j e c t i o n s w i t h h i g h r e s o l u t i o n micrographs, and o f dense atomic plane spacings w i t h d i f f r a c t i o n data /5/ was s a t i s f a c t o r y /li/.

The r e s u l t s of5.111, i n terms o f t h e d i f f r a c t i o n i n d e x a t i o n /12/, a l l o w t o determine t h e s i z e a i o f t h e Mn icosahedron edge i n t h e i-phase :

i/ w i t h i n t h e p r e c i s i o n o f t h e d i f f r a c t i o n p a t t e r n o f F i g . 3b), t h e (005) r e - f l e x i o n l i e s a t h a l f - d i s t a n c e of (111010)j and (110000)i, from which we deduce a i = 2/5 a = 5.07 A.

ii/ t h e i - f r i n g e s o f F i g . 4a), pependicular t o t h e 3 - f o l d a x i s , correspond t o (110001)i ; th e i r spacing, a i ($

+

1)/2~'3, as measured from t h e d i r e c t l y imaged cubic c e l l a, i s equal t o 3.66

1

; then a i = 5.10

A.

(6)

F i g . 3

-

Transmission e l e c t r o n micrograph o f c o e x i s t i n g a- and i-phases i n a m e l t -

?:lnzoSi s~ (a), and r e l a t e d d i f f r a c t i o n p a t t e r n s a f t e r convenient t i l t :C!e!17tbf t o ( f 5

-

see t e x t f o r d e t a i l s

-

(g) summarizes t h e o r i e n t a t i o n r e l a t i o n - ships. The weak spots o f t h e p a t t e r n

-

(e) are formed by double d i f f r a c t i o n by t h e i-phase of t h e a d i f f r a c t e d beams : due t o the a p e r i o d i c i t y o f t h e i-phase, t h i s e f f e c t gives r i s e t o rows o f spots.

(7)

JOURNAL DE PHYSIQUE

F i g . 4a)-High r e s o l u t i o n o f t h e a- and i-phase i n t h e o v e r l a p r e g i o n : [ 1001, N [A21

This e s t i m a t i o n i s i n good agreement w i t h t h e Cooper and Robinson measurements i n t h e a phase where a, = a i x (2.493

+

.009). We conclude t h a t a and i-phases i n AltlnSi a r e two d i f f e r e n t p a c ~ i n g s o f t h e sane Mn icosahedron. The d i s t a n c e icosahe- dron center4111 v e r t i c e i s 2 4.85

A .

IV-2

-

Computer model 1 i n g :

The l o c a l a n a l y s i s o f t h i s s k e l e t o n showed t h a t i t was c o n s i s t e n t w i t h 3 DPT rhom- bohedral t i l e s , o f edge l e n g t h A2 = a i $2 m / 2 /12/, shown i n F i g . 5. Four o f t h e e i g n t v e r t i c e s o f both t i l e s a r e occupied by a double icosahedron, on t h e oppo- s i t e v e r t i c e s o f t h e rhombic faces ; whereas t h e o b l a t e rhombohedron i s always empty, two types o f p r o l a t e ones a r e d i s t i n g u i s h e d : one which contains one icosahedron on i t s l a r g e diagonal, i n t h e r a t i o 1: @ f r o m th e occupied v e r t e x t o t h e vacant one ( F i s . 5), t h e o t h e r being empty. The opposite faces o f these rhombohedra are n o t e q u i v a l e n t , which precludes t h e i r t r a n s l a t i o n a l p e r i o d i c packing.

On t h i s basis, an extended s k e l e t o n has been computer generated, d e c o r a t i n g t h e t i l e s o f a 3 DPT,built by t h e c u t and p r o j e c t i o n method /2/, w i t h icosahedra accor-

(8)

Fig. 4b)

-

High r e s o l u t i o n of t h e a and i-phase i n t h e overlapp region:C5031a// [A51i.

Fig. 5

-

Icosahedra decoration of t h e p r o l a t e (a) and o b l a t e (b) rhonibohedral t i l e s .

(9)

J O U R N A L DE PHYSIQUE

0 o Z * & O ; * T + o o 4 4

*,* *

+

* * * *

+ 0 o + 4 ' O w 4 + 4 ' O w

*

+ o 0 +

* * * *

+ )

'*+++,&&++ ++%**++,, &++%*+C+*+* ++ ++ ++, &+++*$+g++&+S,, "C+ +%*+++, && ++

* a + + # o o q + + a + o o + a . g p o o q + + + + o o + a . g p . + + o o + * + + $ o o + ~ + + + $ $ * : o o:*:+&+o o + & $ * ' i o o : * % $ + o o+&+:*:+*+o o o # t 2 * = o o + * :

>~P*Q+$%++++&++*+Q++ 0 ++P*&+$~,++,,~$+*+.+Q++ ++4'p"C++%+Q++ ++P+.+@+++~++++&++

4 + + i 0 0 1 . + + 0 O + * * + + + * ' O + ~ ' O * * + + * ~ Q + O 0 + 4 ' 0 + o + * - u r * a + o c +$++&++

',

+&%+ * +& ++ +++++* ++ o +& ++ ++*+&+++,,o'+%+ 0 o +&++ o ++ %*& ++

',

++%+ o

.'+Q#+ 0 ++P*Q++ 0 ++P+ 0 0 +QP+ 0 ++P+ 0 0 +P$

* :

0 +Q++ 0 ++P+ 0 0 +QP+ 0 0 +Q++ O .

+ * * c + o + * * * * + o o + 4 * , * * + 0 o + * + + % 0 + 4 * * * + o o + * + o o + * ' O *

,

'++ +%*+++$#W++++,, &+ +* *+ ++, &+

+*

*$++C%

*+

, +, &+ +%

*+

++, &*++*+++C* Q+ , +, ++ +%

*+

++, "C$+$+, c L O O + L * U ) * * + O o + * + o o + * * * 4 + o o + * * * * + * * + * + o O + * * C * +

0 0 #++ o ++%To 0 +&%+ 0 0 +&++ 0

++i:

0 0 +#++ 0 ++%*&++ 0 +&%+ o 0 +&++ 0 ++%+ c ++O++P+O O+Q++o++P*Q++*++P+O O+Q+*o++P+O O+QP+O++P+Q++O++#+o o + Q + . b * O C * + O O ' * * C + * + * * * * + O o + * * * * + o o + * * w * + * * + * + o o + * ++ 0 ++ *+*++* &# ++ ++ $*& ++ ++

** *+

, +, &# ++ 0 ++ & b

*+ +*

&& +* *+++*+# ++ * ++ 1;0

*+

++, &+ +-

0 0+9++,4c++#+* 0 Q 9 + 0 0 Q++ 4 + + 9 + 0 0 9 + + 4 + + 9 O + * - ( P P 0 4 + 9 + + + * 2 0 C

-

o o +

* sa

4 + o o

i+*

+ o o i + e % d * + o o = + % $ a = o+&+i+e.= o o +

*

++& o

'*+ +,'++,+***++++J

*+

++,&+ +Bq+ +,,'+$++*Q+++*

*+

++,@+ +% *@+$**+ P+, &+

+* *+

++ &+ + ++ 0

+ 4 - o C + * + * U ) * * + o o + * * * * + * * c + * + o o + * * * * + o o + * + o o + * * *

>-+++O++*++&++o++&+* o+&++o++**&++o++&+o o + & + + o + + 6 + o o + # + + o o + & * + o -

O O++*+O O+Q++O++P+o * +Q9+ 0 V++++o++P+ 0 0 +Q++ 0 ++9+ 0 0 ++P+ 0

o + * + o O + * - O * * + O o + 4 + o o + * * c + 4 + o o + 4 ' O o c a + o o + a + o + + + + . o + ~ + + o + + + ~ * + + + , * + + + o O + & + + O + + + ~ * + + + , ~ + + + o + + + ~ * + + , , ~ + + + o

0 0 0 0 O O + Q + O 0 0 A D 0 o o + * + o 0 0 o + * + o o

F i g . 6

-

P r o j e c t i o n s of t h e icosahedra s k e l e t o n on planes perpendicular t o a 2-fold a x i s , a ) , and a 5-fold. a x i s , b ) .

9

= Iln atom.

+

= A1 atom. In a ) , t h e p r o l a t e rhom- bohedron, of edge length AR, decorated by 5 icosahedra, has been represented.

(10)

F i g . 7

-

High r e s o l u t i o n micrograph o f (A1FlnSi)i taken along a 5 - f o l d a x i s , w i t h a r e s o l u t i o n lower t h a n 6

a.

An i c o s a h e d r a s k e l e t o n , o f edge l e n g t h a i 44 = 34.95

h.,

superimposes e x a c t l y on t h e micrograph ( s e e t e x t ) .

(11)

C3-398 JOURNAL DE PHYSIQUE

ding t o t h e r u l e s p r e v i o u s l y described. The s k e l e t o n c o n t a i n s 1095 icosahedra, i . e . 26230 atoms. I t s s i z e i s about 20 nm., c l o s e t o t h e c o r r e l a t i o n l e n ~ t h i n t h e i-phase Aliln /5/. Various a d d i t i o n n a l decorations o f t h e s k e l e t o n have been attempted

( 5

IV-3).

The two-steps a l g o r i t h m used t o b u i l d t h e model i s g i v e n i n Appendix.

IV-3

-

A n a l y s i s o f t h e computer s i m u l a t i o n :

To v i s u a l i z e t h e s t r u c t u r e , t n e p r o j e c t i o n s o f t h e icosahedra s k e l e t o n on planes n o r - mal t o t h e icosahedron symmetry axes have been made. Examples a r e g i v e n i n F i s . 6.

As emphasized i n /7/ and /12/, these p r o j e c t i o n s show t h a t t h e atoms l i e i n planes p a r a l l e l t o t h e p r o j e c t i o n a x i s , d i s t r i b u t e d p e r i o d i c a l l y o r q u a s i - p e r i o d i c a l l y - i n t h e sense o f Levine and S t e i n h a r d t /20/, i . e . w i t h incommensurate i n t e r v a l s - perpen- d i c u l a r l y t o t h e 5, 3 o r 2 f o l d - a x i s l y i n i n t h e p r o j e c t i o n planes. The alignements are a t b e s t seen l o o k i n g t h e f i g u r e s a t gyancing angle. F i g . 7 i s a medium r e s o l u - t i o n micrograph o f t h e i-phase taken w i t h an i n c i d e n t beam p a r a l l e l t o a 5 f o l d - a x i s w i t h an o b j e c t i v e a p e r t u r e which c u t s t h e r e s o l u t i o n below .L 6

fi.

The agreement w i t h a p r o j e c t e d s k e l e t o n i n f l a t e d o f $4 w i t h r e s p e c t t o t h i s described i n g.IV-2, i s indeed s t r i k i n g .

On t h e o t h e r hand, t h e icosahedra s k e l e t o n i s e v i d e n t l y a loose s t r u c t u r e , o f s t o i - chiometry A1-Mn, and although t h e average icosahedra c o o r d i n a t i o n number, near 5.5, i s h i g h e r than t h e value 3.4 obtained by S t e r n e t a l . ( t h i s conference) f o r a random packing, o t h e r s atoms A1 and Mn must be added i n o r d e r t o achieve t h e c o r r e c t s t o i - chiometry (% A14Pin) and d e n s i t y , 3.7

,

which i s c l o s e t o t h e a phase d e n s i t y (see Audier and Guyot, t h i s conference).

To t h a t respect, two attempts have been made :

i/ t h e a d d i t i o n o f 30 A1 atoms i n t h e m i d d l e o f each icosahedron edge, d e f i n i n g t h e 54-atom i4ackay icosahedron, as proposed by E l s e r and Henley /8/. But i f t h e s t o i c h i o m e t r y i s almost c o r r e c t (A142 I.lnl2), t h e d e n s i t y i s s t i l l t o small.

ii/ t h e surrounding o f each icosahedron by a triacontahedron, which s i t e s can be occupied by e i t h e r :In o r A1 atoms. F i g . 8 shows such a s t r u c t u r e , w i t h o n l y F.1n atoms a t t h e v e r t i c e s of t h e t r i a c o n t a h e d r a . I t can be seen t h a t two a d j a c e n t tri- contahedra e i t h e r share a face, o r overlapp, which makes t r i c k y t h e e s t i m a t i o n o f t h e d e n s i t y .

The r e s p e c t i v e m e r i t s o f t h e models a r e now examined w i t h r e s p e c t t o t h e i r F o u r i e r transforms. Cuts o f t h i s F o u r i e r transform by planes perpendicular t o a 2 f o l d and a 5 fold-axes a r e shown i n F i g . 9 f o r t h e icosahedra s k e l e t o n (a), t h e P.lackay icosa- hedra (b), and icosahedra-fin t r i a c o n t a h e d r a ( c ) . The s c a t t e r i n g l e n g t h s have been taken w i t h o u t s c a t t e r i n g angle v a r i a t i o n ( f y , / f ~ l = 1.77, f o r t h e s i m u l a t i o n o f t h e e i t h e r e l e c t r o n o r X-rays d i f f r a c t i o n ) . Theke p a t t e r n s appear s i m i l a r t o t h e observed e l e c t r o n d i f f r a c t i o n p a t t e r n s , w i t h however c e r t a i n d i f f e r e n c e s f o r each o f them ; f o r example the i n t e n s i t y r a t i o I (100000)/1 (110000) i s lower than u n i t y f o r t h e icosahedra and t r i a c o n t a h e d r a models, whereas i t i s l a r g e r than u n i t y f o r t h e Flackay icosahedra and t h e experimental p a t t e r n s . C a l c u l a t i o n s o f neutron d i f f r a c t i o n ( f ? d n / f ~ 1 =

-

1.11) have a l s o been made, l e a d i n g t o r e f l e x i o n i n t e n s i t y v a r i a t i o n s i n q u a l i t a t i v e agreement w i t h t h e r e s u l t s o f Dubois e t a l . /6/.

iiowever, even i f t h e e s s e n t i a l f e a t u r e s o f t h e d i f f r a c t i o n p a t t e r n s (symmetry sec- quence o f peaks and s c a l i n g along t h e symmetry axes a r e c o n v e n i e n t l y reproduc& by t h e models, a complete comparison o f t h e ' i n t e n s i t i e s w i t h experiments, w i t h o u t p o s i - t i o n n i n g a l l t h e atoms i s premature. And again, s t o i c h i o m e t r y and d e n s i t y must remove any F o u r i e r space degeneracy. This i s l o n g we1 1 knownfrom model 1 in g t h e amorphous s t a t e . .

.

F i n a l l y we s t r e s s t h e d i f f e r e n c e between our model, which i s a 3 DPT decorated by icosahedra, and an elementary 3 DPT decorated by

atoms.

A f t e r d e c o r a t i n g t h e 3 DPT o f edge l e n g t h AR, s m a l l e r t i l e s of edge l e n g t h a r = Ar a-2, decorated by atoms, may be considered as described i n /12/. But t h e v e r t i c e s o f t h i s a r t i l i n g do n o t form a

(12)

F i g . 8

-

P r o j e c t i o n on a plane perpendicular t o a 2 f o l d - a x i s o f t h e icosahedra- t r i a c o n t a h e d r a s t r u c t u r e .

t w i c e d e f l a t e d 3 DPT f o r a simple reason : t h e o v e r a l l s e l f - s i m i l a r i t y r a t i o o f a 3 OPT i s b a s i c a l l y $-3, /2/ /3/ /21/.

Furthermore, depending on which way t h e d i f f r a c t i o n pa terns a r e indexed, d i f f e r e n t values o f ar = ~ ~ 6 - 2 a r e obtained i n i - A l % : e i t h e r 4.85

k

f r a n fl2/ which i s r e l a t e d t o a Hendricks-Tel l e r a n a l y s i s of t h e s t r u c t u r e /22/, o r 4.61, according t o E l s e r /3/.

On t h e basis o f t h e present r e s u l t s , we b e l i e v e t h a t i n AlMnSi, a and i-phases have i n common t h e same Al-Mn double icosahedron, w i t h t h e dimensions p r e v i o u s l y given.

However i n t h e a-phase, the hln atoms do n o t 1 i e e x a c t l y a t t h e v e r t i c e s o f rhombo- hedral t i l e s : they a r e s l i g h t l y (2. 5.4 %) displaced beyond t h e v e r t i c e s o f rhombo- hedra o f edge l e n g t h 4.6

A,

as s c h e m a t i c a l l y drawn i n F i g . 10. .So jt would be i n t h e i-phase, i f one keep t h e same t i l e s . The S i atoms are I n s u b s t i t u t ~ o n on t h e A1 sub- l a t t i c e

.

(13)

C3-400 3 0 U R N A L D E PHYSIQUE

Fig. 9 - 2 fold (left) and 5 fold (right) calculated diffraction patterns of the model, a) Al-Mn icosahedra. b) Mackay icosahedra. c) Al-Mn icosahedra + Mn tria- contahedra. The area of the spots is proportionnal to the calculated intensity. The spot letter a holds for (100000), d for (110000), c for (lliolo), h for (110000)/5/.

(14)

C3-401

Fig. 10 - In (AlHnSi)a, the Mn atoms do not l i e exactly on the vertices of rhombo- hedra A.S X prolate rhombohedron in dotted l i n e .

APPENDIX

COMPUTER SIMULATION OF THE MODEL

The algorithm to build the computer simulation of the quasi-crystal atomic model is separated in two distinct steps :

1- Building the 3 OPT with the cut-projection method / 2 / . 2- Decorating this tiling with icosahedra.

1- Building the quasi-periodical tiling :

During the construction of the tiling the computer keeps two lists in memory :a list of rhombohedra and a list of rhombic faces external to the tiling. Each algorithmic step contains the following operations :

- choose a face in the list.

- compute by the projection method the new rhombohedron of the tiling on this face

- add the faces of this rhombohedron to the faces list, deleting thosewhich are already present.

All the computations are made in the 6-dimensional space associated with the projec- tion method. Vertices are integer sextuplets, rhombohedra are three-dimensionnal cubes and are represented by a 6-dimension integer point and three axes. At each step we choose the oldest face in the list, so the tiling grows compactly.

A two dimensionnal illustration with the Penrose tiling is given on the figure below.

Here the "rhombohedra" are the rhombs and the "faces" are the edges.

2- Decoration of the tiling :

The Duneau-Katz 3DPT gives us a skeleton to build the net of icosahedra connected with octahedra. The tiling is decorated with the three rhombohedric motif : the oblate rhombohedron and the two prolate ones. There are two groups of icosahedra on the tiling : vertex icosahedra which stand on vertices of the tiling and internal icosahedra which are found inside some prolate rhombohedra. Note that every octahe- dron connects a vertex icosahedron and an internal icosahedron-two icosahedra of the same groupe cannot be connected.

Half the vertices are decorated with a vertex icosahedron. The rule is that no

(15)

C3-402 JOURNAL DE PHYSIQUE

a d j a c e n t v e r t i c e s can be b o t h decorated. I f we remember t h a t v e r t i c e s a r e t h e p r o j e c - t i o n of i n t e g e r s e x t u p l e t s and t h a t two v e r t i c e s a r e a d j a c e n t i f t h e y d i f f e r on one and o n l y one c o o r d i n a t e by u n i t y , we have a p r o c e d u r e t o choose t h e d e c o r a t e d v e r t i - ces. Namely, add t h e s i x i n t e g e r c o o r d i n a t e s and ( w i t h o u t l o s s o f g e n e r a l i t y ) we d e c o r a t e t h e v e r t e x if t h i s sum i s even.

I

gne stev in the construction of the tiling

l i t of faces new rhombohedron faces l

-

icancelled faces stupdating

-

added faces

F i n d i n g t h e i n t e r n a l i c o s a h e d r a i s n o t as easy because t h e r e i s no g l o b a l r u l e l i k e t h e c o o r d i n a t e sum. We have o n l y a l o c a l e x c l u s i o n r u l e which d e s c r i b e s when t w o a d j a c e n t p r o l a t e rhombohedra cannot b o t h have an i n t e r n a l icosahedron. A l l rhombic faces a r e d e c o r a t e d w i t h two d i a g o n a l l y opposed v e r t e x icosahedra. L e t us c a l l a f a c e a c r i t i c a l f a c e if t h e two i c o s a h e d r a a r e on t h e l o n g d i a g o n a l . Two p r o l a t e rhombohedra s h a r i n g a c r i t i c a l f a c e cannot b o t h c o n t a i n an i n t e r n a l icosahedron.

Since, o t h e r w i s e , t h e icosahedron on t h e s h a r p v e r t e x o f t h e two rhombohedra would b e connected w i t h t h e two i n t e r n a l icosahedra. Consequently two c o n n e c t i n g o c t a h e d r a would be on two a d j a c e n t f a c e s of t h e i c o s a h e d r o n

-

a c o n f i g u r a t i o n f o r b i d d e n i n t h e model.

1 r

\

m

7

internal icosahedron

-

The i n t e r n a l i c o s a h e d r o n problem can be r e s t a t e d u s i n g granh t h e o r y . Consider t h e graph whose v e r t i c e s a r e t h e p r o l a t e rhombohedra. Two v e r t i c e s a r e connected w i t h an edge i f t h e two rhombohedra s h a r e a c r i t i c a l f a c e , t h u s t h e y cannot b o t h c o n t a i n an

(16)

i n t e r n a l icosahedron. The s e t o f p r o l a t e rhombohedra c o n t a i n i n g an i n t e r n a l icosa- hedron i s a s t a b l e s e t o f t h i s graph ( a s t a b l e s e t i s a s e t of v e r t i c e s o f a graph c o n t a i n i n g no edges). The problem o f f i n d i n g a s t a b l e s e t w i t h maximum c a r d i n a l i t y i s very d i f f i c u l t , b u t i n our problem we can use a v e r y simple a l g o r i t h m w i t h good r e s u l t s . The a l g o r i t h m i s c a l l e d greedy a l g o r i t h m because i t scans t h e v e r t i c e s ad- d i n g them t o t h e s t a b l e s e t whenever i t i s p o s s i b l e and never reverses on a decision.

This a l g o r i t h m i s executed d u r i n g t h e c o n s t r u c t i o n o f t h e t i l i n g : f o r each new pro- l a t e rhombohedron added t o t h e t i l i n g we add an i n t e r n a l icosahedron i f t h e rhombo- hedron does n o t share a c r i t i c a l f a c e w i t h a rhombohedron already present i n t h e t i l i n g and c o n t a i n i n g an i n t e r n a l icosahedron.

Using t h i s a l g o r i t h m we b u i l t a model o f 1000 rhombohedra and t h e decoration gave 1095 icosahedra, t h e coordinates o f those icosahedra were recorded i n d i s k f i l e s . Using t h i s data we made a l l t h e computations : F o u r i e r transforms, p r o j e c t i o n o f t h e atoms, c o o r d i n a t i o n numbers,

...

T

occ~pied

unoccupied prolate rhomboedm

A

ACKNOWLEDGMENTS

L

This work has been financed by an ATP-CNRS no 90-4029. The C.I.C.G. o f Grenoble i s a l s o acknowledged f o r s u p p o r t i n g t h e s i m u l a t i o n computations, as w e l l as R. Rey- F l a n d r i n and G. Regazzoni f o r s p i n n i n g t h e a l l o y s a t PECHINEY-CEGEDUR, CRV.

REFERENCES

/1/ Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W., Phys. Rev. L e t t .

53

(1984) 1951.

~ u n e a u , M. and Katz, A., Phys. Rev. Lett., 54 (1985) 2688.

Elser, V., Acta C r y s t a l l o g r . t o be ~ u b l i s h e C

Kalugin, P.A., Kitaev, A.Y. and L e v i t o v , L.C., J. Phys. ( P a r i s ) ,

46

(1985) L 601.

-

Bancel, P.A., Heiney, P.A., Steohens, P.W., Goldman, A.I. and Horn, P.M., Phys Rev. L e t t . 54 (1985) 2422.

Dubois, J . c Janot, C. and Pannetier, J., submitted t o Phys. L e t t e r s . Guyot, P. and Audier, M., P h i l . Mag. B,

52

(1985) L15.

Elser, V. and Henley, C.L., Phys. Rev. L e t t . 55 (1985) 2883 Henley, C.L., J . Non-Cryst. S o l i d s

2

(1985) T.

Legresy, J.M., Audier, M., Simon, J.P. and Guyot, P., Acta M e t a l l . (1986) i n press.

(17)

C3-404 JOURNAL DE PHYSIQUE

/11/ Guyot, P., J. Microsc. Spectrosc. E l e c t r o n . 10 (1985) 333.

/12/ Audier, M. and Guyot, P., P h i l . Mag. 5, 53 ( m 8 6 ) L43.

/13/ Cooper, M. and Robinson, K., Acta C r i s t a n o g r . , (1986) 614.

/14/ Cooper, M., Acta C r i s t a l l o g r . , 93 (1967) 1106.

/15/ Swartzendruber, L.J., ~ h e c h t m a n 7 D .

,

Bendersky, L. and Cahn, J.W., Phys. Rev B, 32 (1985) 1383.

/16/ C h e z C.H. and Chen, H.S., ATT B e l l Lab. p r e p r i n t .

/17/ Koskenmaki, D.C., Chen, H.S. and Rao, K.V., ATT B e l l Lab. p r e ~ r i n t . /18/ Shechtman, D. and Blech, I.A., Met. Trans. 16A (1985) 1005.

/19/ Stephens, P.U. and Goldman, A.I., preprint.-

/20/ Levine, D. and Steinhardt, P.J., Phys. Rev. L e t t . 53 (1984) 2477.

/21/ Cahn, J.I.I., Shechtman, D. and Gratias, D., t o be pri6lished.

/22/ Hendricks, S. and T e l l e r , E., J. o f Chem. Phys.

10

(1942) 147.

Références

Documents relatifs

(i) the study of alternating sign matrices, which began in the early eighties after their definition by Mills, Robbins, and Rumsey in relation to Dodgson condensation, and

The analysis of query similarity measures and metrics has several facets like the investigation of similarity assessment dimensions, as well as the computation complexity of a

(I have to thank G. 111 gives in mostcases a degree, which is divisible by p, butnota power of p.. Then G has the degree 21.. Hence by lemma 4 of partI we can assume thatG/N is

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

THE STRUCTURE AND PROPERTIES O F FLUORITE CRYSTAL SURFACES C6-491 The results show an increase in relaxation with for barium fluoride and the oxides. as the

In this paper we shall examine gravitational fields containing (gravita- tional) radiation. We shall consider also electromagnetic fields in special relativity, but

All groups considered in this paper are abelian and additively writ- ten ; rings are associative and with an identity, modules are unitary... The

On montre qu’un entier algébrique cubique sur un corps de nombres K, de trace nulle est la différence de deux conjugués.. sur K d’un entier