• Aucun résultat trouvé

A mass-momentum consistent, Volume-of-Fluid method for incompressible flow on staggered grids

N/A
N/A
Protected

Academic year: 2021

Partager "A mass-momentum consistent, Volume-of-Fluid method for incompressible flow on staggered grids"

Copied!
27
0
0

Texte intégral

(1)

HAL Id: hal-03099353

https://hal.sorbonne-universite.fr/hal-03099353

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A mass-momentum consistent, Volume-of-Fluid method for incompressible flow on staggered grids

T. Arrufat, M. Crialesi-Esposito, D. Fuster, Y. Ling, L. Malan, S. Pal, R.

Scardovelli, G. Tryggvason, S. Zaleski

To cite this version:

T. Arrufat, M. Crialesi-Esposito, D. Fuster, Y. Ling, L. Malan, et al.. A mass-momentum consistent,

Volume-of-Fluid method for incompressible flow on staggered grids. Computers and Fluids, Elsevier,

2021, 215, pp.104785. �10.1016/j.compfluid.2020.104785�. �hal-03099353�

(2)

ContentslistsavailableatScienceDirect

Computers and Fluids

journalhomepage:www.elsevier.com/locate/compfluid

A mass-momentum consistent, Volume-of-Fluid method for incompressible flow on staggered grids

T. Arrufat

a

, M. Crialesi-Esposito

b

, D. Fuster

a

, Y. Ling

f

, L. Malan

a,c

, S. Pal

a

, R. Scardovelli

d

, G. Tryggvason

e

, S. Zaleski

a,

aSorbonne Université et CNRS, Institut Jean Le Rond d’Alembert, UMR, Paris 7190, France

bCMT-Motores Térmicos, Universitat Politécnica de Valéncia, Camino de Vera, s/n, Edificio 6D, Valencia, Spain

cInCFD, Dept. of Mechanical Engineering, University of Cape Town, South Africa

dDIN - Lab. di Montecuccolino, Università di Bologna, Bologna I-40136, Italy

eDept. of Mechanical Engineering, Johns Hopkins University, Baltimore, USA

fDept. of Mechanical Engineering, Baylor University, Waco, TX, USA

a rt i c l e i nf o

Article history:

Received 30 November 2018 Revised 11 August 2020 Accepted 2 November 2020 Available online 19 November 2020 Keywords:

Multiphase flows Navier-Stokes equations Volume-of- Fluid Surface tension Large density contrast

a b s t r a c t

Thecomputationofflowswithlargedensitycontrastsisnotoriouslydifficult.Toalleviatethedifficultywe consideradiscretizationoftheNavier-Stokesequationthatadvectsmassandmomentuminaconsistent manner.Incompressibleflowwithcapillaryforcesismodeledandthediscretization isperformedona staggeredgridofMarkerand Celltype.TheVolume-of-Fluidmethodisusedtotracktheinterfaceand aHeight-Functionmethodisusedtocomputesurfacetension.Theadvectionofthevolumefractionis performedusingeithertheLagrangian-Explicit/CIAM(Calculd’InterfaceAffineparMorceaux)methodor theWeymouthandYue(WY)Eulerian-Implicitmethod.TheWYmethodconservesfluidmasstomachine accuracyprovided incompressibilityissatisfied.To improvethestabilityofthesemethodsmomentum fluxesareadvectedinamanner“consistent” withthevolume-fractionfluxes,thatisadiscontinuityof the momentumis advectedatthe same speed as adiscontinuityofthe density. To findthe density onthestaggered cellsonwhichthevelocity iscentered,anauxiliaryreconstruction ofthedensity is performed. Themethodis tested foradropletwithout surfacetensioninuniform flow,foradroplet suddenly accelerated inacarryinggas atrestatvery largedensity ratio withoutviscosity orsurface tension,fortheKelvin-Helmholtzinstability,fora3mm-diameterfallingraindropand foranatomizing flowinair-waterconditions.

© 2020TheAuthors.PublishedbyElsevierLtd.

ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Multiphase flows aboundin nature,buttheir stableandaccu- ratecomputationremainselusiveinmanycases.Asacaseinpoint, manynumericalmethodsusedfortwo-phase incompressibleflow arestronglyunstableforlargedensitycontrastsandlargeReynolds numbers. Experience withsuch simulations showsthat the pres- enceofsurfacetensionisan aggravatingfactor.Thelarge density contraststhatareofinterestareair/waterorgas/liquid-metal,with

ρ

l/

ρ

g of the orderof 103 or104. The large densitycontrasts are a difficulty whetherone dealswithanyofthe threemajor inter-

Corresponding author.

E-mail address: zaleski@dalembert.upmc.fr (S. Zaleski).

faceadvectionmethods,Level-Set,Volume-of-Fluid(VOF)orFront- Tracking,orwithcombinationssuchasCLSVOF.(Thetermdensity contrastis preferableto densityratiosince it encompassesratios bothmuchlargerthanoneandmuchsmallerthanone.)

Severalmethodshavebeenused toalleviate thehigh-density- contrastdifficulties. It hasbeen observed by severalauthorsthat making the momentum-advection method conservative improves the situation. For incompressible flow, “momentum-conserving”

methodshavebeeninitiallyproposed by[1],andbyseveralother authorssince [2–7].These methodshavebeen showntoimprove thestabilityofthenumericalresultsinvarioussituations.Inpar- ticular,liquid-gasflows with verycontrasted densities, asforex- ample intheprocess ofatomization,causeserious problemsthat areresolvedbyusingmomentum-conservingmethods.Inthatcase anotheroft-suggestedsolutionistoincreasethenumberofequa-

https://doi.org/10.1016/j.compfluid.2020.104785

0045-7930/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(3)

tions fromthestandardfourequationstofive,sixorsevenequa- tions, by introducing new field variables in each phase. The ad- ditionofonemoredensity

ρ

i,momentum

ρ

iui orenergyvariable

ρ

ieiincreasesthenumberofequations.Theauthorsofref[8].used sevenequations,thoseof[9]usedfiveequationsandsixequations wereusedin[10].Thelastthreereferencesalsouseamomentum- conserving formulation. Severalauthors, including some of those cited above, have argued that the difficulty may come fromgas velocities of order ug being mixedwith liquid densities of order

ρ

l.Boththe

ρ

l andug scales are largeandthe appearance ofan nonphysical

ρ

lu2g dynamic pressure scale could create numerical pressure fluctuationsofthesame orderandnonphysicalpressure spikes, asthe one nicelyillustrated in [11] inthe front partofa suddenlyacceleratedsmalldroplet.Onewayofavoidingthisnon- physicalmixtureofliquidandgasquantitiesistoextrapolateliq- uid andgaspressure andvelocity inthe“other” phase, asinthe ghost fluidmethod.Thisextrapolationstrategy wasusedsuccess- fullyin[12].

Itmaybearguedthatawaytoavoidthisnumericaldiffusionof liquidandgasquantitiesistoadvectthevolumefractionandthe conserved quantities that depend on it (density, momentum and energy) in a consistent manner. In incompressible flow inwhich we specializeinthispaper,itmeansthat thevolumefractionand momentumorvelocitymustbeadvected inthesameway.Thisis equivalenttorequestthatthediscontinuityoftheHeavisidefunc- tion H, marking the phase transition, should be advected atthe same speed as the discontinuity in momentum. This can be ex- pressed by the following consistency requirement: ifmomentum isinitiallyexactlyproportionaltovolumefraction,itshouldremain soafteradvection.WecallsuchamethodVOF-consistent.

To satisfy thisrequirement the idea is to solve the advection equation formomentumwiththesamenumericalschemethatis used for the VOFcolor function.This consistency property mini- mizes the nonphysical transferof momentum fromone phase to anotherduetothedifferencesinthenumericalschemesused.The consistencyisespeciallyimportantwhendealingwithfluidswitha large densitycontrastwhereasmallnumericalmomentumtrans- fer fromthe dense phase to the light phase results in large nu- mericalerrorsinthevelocityfieldwhichinturncreatesnumerical instabilities.

In this work, we present a modification of the classical momentum-preserving scheme proposed by [1] for the case of a staggered grid and VOF method. The scheme is then not momentum-conservingalthoughitisbuiltbydiscretizationofthe momentum conservingformulationoftheadvectionterms,sowe rathercallitmass-momentumconsistent.

Thepaperisorganizedasfollow:thesecondsectiondealswith the continuum mechanics formulation for incompressible flow and sharp interfaces. Section 3 describes our numerical method, starting with an overview of already-known methods for spa- tial discretization, time-stepping, and VOF advection. We con- tinuewiththenewmomentumadvection-VOF-consistentmethod.

Section 4isdevotedtotestsofthemethod,followedbyaconclu- sion.

Among the authors,GretarTryggvason, Ruben Scardovelli,Yue Ling andStéphane Zaleskihavebeeninvolvedintheconstruction ofthebaseoftheParisSimulatorVOFandFront-Trackingcodethat wasusedtoimplementandtesttheideasinthispaper.ParisSim- ulator isitself basedon a Front-Trackingcode developedby Gre- tar Tryggvason,SadeghDabiriandJiacai Lu.DanielFusterwasin- volved in the developmentof the momentum advectionmethod consistentwithVOFadvection,withhelpfromTomasArrufat,Leon Malan and Yue Stanley Ling. The Kelvin-Helmholtz analysis and testing were done by Stéphane Zaleski. The fallingraindroptest- ingandthecorrespondingfiguresweredonebyTomasArrufatand SagarPal.Thelargedensitydropletandshearlayertestsweredone

bySagarPal.Theatomisationtestingwasdone byMarcoCrialesi- Esposito.

2. Navier–Stokesequationswithinterfaces

We model flows with sharp interfaces defined implicitly by a characteristic function H(x,t) defined such that fluid 1 corre- spondstoH=1andfluid2toH=0.Theviscosity

μ

anddensity

ρ

arecalculatedasanaverage

μ

=

μ

1H+

μ

2

(

1H

)

,

ρ

=

ρ

1H+

ρ

2

(

1H

)

. (1) Thereisnophasechangesotheinterface,almostalwaysasmooth differentiable surface S, advances at the speed of the flow, that isVS=u·n whereuis thelocal fluid velocity andna unit nor- mal vector perpendicular to the interface. Equivalently the inter- facemotioncanbeexpressedinweakform

tH+u·

H=0, (2)

which expresses the fact that the singularity ofH, located on S, moves at velocityVS=u·n. Forincompressible flows, which we willconsiderinwhatfollows,wehave

·u=0. (3)

The Navier–Stokes equations for incompressible, Newtonian flow withsurfacetensionmayconvenientlybewritteninoperatorform

t

( ρ

u

)

=L

( ρ

,u

)

p (4)

whereL=Lconv+Ldiff+Lcap+Lext sothat theoperatorL isthe sumofadvective,diffusive,capillaryforceandexternalforceterms.

Thefirsttwotermsare

Lconv=−

·

( ρ

uu

)

, Ldiff=

·D, (5)

where D is a stress tensor whose expression for incompressible flowis

D=

μ

u+

(

u

)

T

, (6)

where

μ

iscomputedfromHusing(1).Thecapillarytermis Lcap=

σκδ

Sn,

κ

=1/R1+1/R2, (7)

where

σ

is the surface tension coefficient, n is the unit normal

perpendiculartotheinterface,

κ

isthesumoftheprincipalcurva-

turesand

δ

S isaDiracdistribution concentratedonthe interface.

Weassume aconstantcoefficient

σ

.FinallyLext representsexter- nalforcessuchasgravity.

3. Method

3.1. Spatialdiscretization

We assume a regular cubic orsquare grid.This can be easily generalizedtorectangular orcuboid grids,andwithsome efforts to quadtreeandoctree grids. We alsouse staggeredvelocity and pressuregrids,asrepresentedintwodimensionsinFig.1.

Thecontrolvolumesurroundingthepressurepisusedforother scalarquantities,suchasthedensity

ρ

andvolumefractionC.The

control volumesofthevelocity components,u1 andu2,andmo- mentumcomponentsareshiftedrespectivelyhalfcellhorizontally and vertically, with respect to the pressure control volume. The useof staggered control volumeshasthe advantage ofsuppress- ingneutralmodesoftenobservedincollocatedmethodsbutleads tomorecomplexdiscretizations(see[13]foradetaileddiscussion.) Thistypeofstaggeredrepresentationiseasilygeneralizedtothree dimensions, and the discrete version of the continuity Eq. (3) is rathercompactonsuchagrid

u1;i+1/2,j,ku1;i1/2,j,k

x +

u2;i,j+1/2,ku2;i,j1/2,k

y

(4)

Fig. 1. Representation of the staggered spatial discretization in two dimensions. The pressure p i,jis located at the center of its control volume (light color area); the horizontal velocity component u 1;i+1/2,jis stored in the middle of the right edge of the pressure control volume and at the center of its control volume (dash-dotted area); the vertical velocity component u 2;i,j+1/2is stored in the middle of the top edge and at the center of its control volume (dashed area).

+u3;i,j,k+1/2u3;i,j,k1/2

z =0. (8)

In what follows,we shall use thesubscript f=m±, with the integer index m=1,2,3, tonote theface of anycontrol volume located in thepositive or negativeCartesian directionm,andnf fortheunitnormalvectorofface f pointingoutwardsofthecon- trolvolume.Onacubicgridthespatialstepisx=y=z=h sothediscretecontinuityequationbecomes

h·u=3

m=1

(

um++um

)

/h=0, (9)

whereuf=um±=u·nf isthevelocitycomponentnormaltoface f.The discretization of the interface location is performed using a VOFmethod. VOF methods typically attempt to solve approxi- matelyEq.(2)whichinvolvestheHeavisidefunctionH,whosein- tegral inthe cell indexedby i,j,k definesthe volume fraction Ci,j,kfromtherelation

h3Ci,j,k=

Hdx. (10)

Ci,j,krepresentsthefractionofthecellfilledwithfluid1,takento bethereferencefluid.

3.2. Timemarching

Thevolumefractionfieldisupdatedas

Cn+1=Cn+LVOF

(

Cn,un

τ

/h

)

, (11) where LV OF represents the operator that updatesthe Volume of Fluid data given the velocity field. Once volume fraction is up- dated,thevelocity fieldisupdated ina coupleofsteps.Aprojec- tionmethodisfirstused,inwhichaprovisionalvelocityfielduis computed

ρ

n+1u=

ρ

nun+

τ

Lhconv

( ρ

n,un

)

+

τ

Lhdiff

( μ

n,un

)

+Lhcap

(

Cn+1

)

+Lhext

(

Cn+1

)

. (12)

Itgoeswithoutsayingthattheaboveoperatorsdependonthedis- cretizationtime step

τ

andspatialstephaswell asthefluidpa-

rameters. The discussion of the Lhconv operator is the main point ofthispaper.Inthesecondstep,theprojectionstep,thepressure gradient forceisaddedtoyieldthevelocity atthenewtimestep un+1=u

τ

ρ

n+1

hp. (13)

Thepressureisdeterminedbytherequirementthatthevelocityat theendofthetimestepmustbedivergencefree

h·un+1=0, (14)

whichleadstoaPoisson-likeequationforthepressure

h·

τ

ρ

n+1

hp=

h·u. (15)

3.3. Volume-of-fluid

Inthis section we detailonly the necessarysteps to illustrate the momentum advectionmethod based onthe VOF method.To simplifythe presentation we rescale spaceand time variables so thatthecellvolumeandthetimesteparebothequalto1.Anyve- locitycomponentubecomesu=u

τ

/handtheCi,j,kvalue isalso themeasure ofthevolume ofreferencefluid incell i,j,k. Atthe beginning of any simulation the volume fraction field is initial- izedwiththeVofilibrarydescribedin[14]and[15].Thisallowsa highlyaccuratenumericalintegrationofthemeasureoffluidvol- umes.

3.3.1. Normalvectorandplaneconstantdetermination

TheVOFmethodproceedsintwosteps,reconstructionandad- vection.InthefirststepweconsideraPLICreconstructionineach cell cutby the interface wherethe unit normalvector niscom- putedwiththe MYCmethod describedin[13].Wethen consider thecolinearnormalvector mwhosecomponentssatisfy therela- tion

|

mx

|

+

|

my

|

+

|

mz

|

=1.GiventhevolumeV=Ci,j,kincelli,j,k occupiedby fluid1 andthenormalmwe consider thefamilyof planes

m·x=

α

. (16)

Bychangingthevalueoftheplane constant

α

adifferentvolume

offluid1iscutinthecell.Thecorrectvalueof

α

isdeterminedby

theresolutionofacubicequation[16].

3.3.2. Generalsplit-directionadvection

The interface reconstruction at timetn is then used to obtain thepositionoftheinterfaceandthevolumesCi,j,katthenextdis- cretetimetn+1.Thefollowingdiscussionofmomentumadvection isbased on two VOFadvectionmethods, Lagrangian Explicit and Weymouth and Yue’s schemes. We first describe their common features.

Afteradditionandsubtractionofatermproportionaltotheve- locitydivergence,Eq.(2)leadsto

tH+

·

(

uH

)

=H

·u. (17) Thisequationisintegratedinthetimestepandcellvolume

Cin,+j,k1Ci,j,kn =−

facesf

Ff(c)+ tn+1

tn

dt

H

·udx, (18)

wherethe first termon the right-hand side is the sumover the cellfaces f ofthefluxesFf(c)of(uH).Obviouslythe“compression”

term on the right-hand side disappears for incompressible flow, howeveritisessentialinsplit-advectionmethods.Intheprevious equationthefluxFf(c)is

Ff(c)= tn+1

tn

dt

f

uf

(

x,t

)

H

(

x,t

)

dx, (19)

where uf=u·nf. Once an approximation for the evolution of (uH) duringthe time step is chosen, a four-dimensionalintegral remainstobecomputedinEq.(19).Thetwomethodsweconsider hereare directionally split andare alsodesignedto preserve the property 0≤Ci,j,k≤1 which we callC-bracketing. Itis important

(5)

Fig. 2. Formation of the areas V 1, V 2and V 3by Lagrangian advection in the horizontal direction: initial reconstruction with the horizontal velocities on the faces of the central cell (left); segments and areas V iafter Lagrangian advection (right). In three dimensions rectangles become cuboids.

Fig. 3. Eulerian flux representation for advection in the horizontal direction: same initial reconstruction and horizontal velocities of Fig. 2 (left); fluxes, or areas V 1and V 3, are calculated directly from the interface reconstruction in each cell (right).

topreserveC-bracketinginordertoavoidarbitraryadditionorre- movalofmass.Furthermoretheydonotproduceinthebulkofthe twofluidsdeviationsfromthecorrectvalues0and1.

Directional splitting results in the breakdown of equation(18)intothreeequations

Cin,l+1,j,kCin,l,j,k=−Fm(c)Fm(c+)+cm

mhum, (20)

where the superscriptl=0,1,2 is the substep index, i.e.Cin,,j0,k= Ci,j,kn andCni,,j,k3 =Ci,j,kn+1.Thefacewithsubscriptm−isthe“left” face indirectionmwithFm(c)≥0iftheflowislocallyfromrighttoleft.

A similar reasoningapplies to the“right” facem+.We have also approximatedthecompressiontermin(18)by

tn+1 tn

dt

H

mumdxcm

mhum, (21)

withnoimplicitsummationrule.IntheRHSof(20)and(21)the flux termsFf(c) andthepartialderivative

mummustbeevaluated

withthesamediscretizedvelocities.Inparticular,

mhumisafinite difference or finite volume approximation of the spatial deriva- tive of the mthcomponent ofthe velocity vector indirectionm, andthe“compressioncoefficient” cm approximatesthecolorfrac- tion. Its exact expression is dependent on the advectionmethod and it preserves theC-bracketingcondition. Since the coefficient cmmaynot bethesamealong thethreeCartesian directions,the

sum

mcm

mhum is not necessarily vanishing even ifthe flow is incompressible. Aftereach advectionsubstep(20),theinterfaceis reconstructedwiththeupdatedvolumesCin,l+1

,j,k ,thenthefluxesFf(c) arecomputedforthenextsubstep.

Ineach substep thevelocityfield indirectionmisusually de- pendent onlyonthespatialcomponentxm,um(xm).Thisapprox- imation ensures thatthe fluid areasfluxingacrossa cellside are rectangular in two dimensions, as shown in Figs. 2 and 3. The multi-dimensionalityoftheflowisconsideredinunsplitmethods, where thefluxingareasaredescribedby morecomplexpolygons [17].

3.3.3. Lagrangianexplicitadvection

TheLagrangianExplicit/CIAMmethodreferstoaspecifictype ofsplitadvectionanditismostnaturallyexplainedasaLagrangian transport of the Heaviside function [18,19]. The velocity field is linearly interpolated between the face velocities um on the left and um+ on the right, so that um(xm)=−um(1xm)+um+xm, with the origin of xm on the left face. The equation of motion dxm/dt=um(xm) is integrated witha first-order in time, explicit

um(xnm)approximation,togetinrescaledvariables

xnm+1=−um+

(

1+um++um

)

xnm. (22) Thistransformationgivesthepositionofadvectedpointsasafunc- tionoftheoriginalpositionandcompressesdistancesalongdirec- tionmbyafactor(1+um++um).Pointsoverfacesandlinearin- terfaceareadvectedinthesameway,andinthetwo-dimensional caseofFig.2the advectionsubstep resultsinthethreecontribu- tionsV1,V2 andV3 to the central cell.The intermediate value of thecolorfunction inthecentral cellwill begivenby thesumof thesethreecontributions.

Thereisacorrespondencebetweenthegeometricalinterpreta- tionoftheLagrangianExplicitadvectionandthedefinition(19)of Ff(c).Forexample,forthecentralcellofFig.2thefluxontheleft faceisfromlefttoright,sinceu1;i1/2,j>0.Thenwithm=1and f=1−, we have V1=−F1(c)>0 and u1=u·n1<0. The final expressionofthesubstepis

Cin,,jl,+k1=Cin,,jl,k

(

1+um++um

)

Fm(c)Fm(c+), (23) which showsthat the approximation ofthe derivative is

mhum= um++umand the compression coefficient is

cm=Cin,l,j,k. (24)

Inorderto removespurious asymmetriesintheflow itisimpor- tanttochangetheorderofsplitadvectionsateachtimestep.Then thecompressioncoefficientinthehorizontaladvection,m=1,can beassociatedtothefirstsubstep, l=0,intimestep n,andtothe lastsubstep,l=2,inthenexttimestep.ThesequenceofthreeLa- grangiansubsteps(20)doesnotresultinvolumeconservation

Cin,+j,k1Ci,j,kn =−

facesf

Ff(c)+ 3

m=1

cm

(

um++um

)

. (25)

Whilethefluxtermscanceluponintegrationoverthedomain,the sumofthecompressivetermsdoesnotvanishsincecmchangesat eachsubstepl.

3.3.4. WeymouthandYue’sadvection

The(WY)splitadvectionisexactlymass-conserving[20].Inthis methodthecompressioncoefficientisindependentofdirectionm, sothatcm=c,andisdefinedas

c=H

Cin,j,k−1/2

(26) whereH isa one-dimensional Heavisidefunction,that isc=0if Ci,j,kn <1/2andc=1ifCi,j,kn ≥1/2.ThefluxesFf(c)arealsodefined differently.Thereferencephase fluxedthroughtheleftfaceindi- rectionm=1isequaltothevolumefractioninacuboidofwidth

(6)

ui−1/2,j,k adjacenttotheleft face f=1−.Thisfluxedvolume cor- respondsto“EulerianImplicit” (EI)advectionintheterminologyof [19]andis representedin2DbytheareaV1ofFig.3.Usingthese definitions, Weymouth andYue were ableto show that the final resultobeysC-bracketing[20].

Thissplitadvectionschemeconservesvolumeatmachineaccu- racy.Indeedthesummationofthreesubsteps(20)resultsin

Cin,+1j,kCin,j,k=−

facesf

Ff(c)+c 3

m=1

mhum. (27) Since3

m=1

mhum=3

m=1(um++um)isthefinite-volumeexpres- sionfor

·u,itdisappearsandmassisconservedattheaccuracy withwhichcondition(3)issatisfied.

3.3.5. Clipping

Thealgorithmthat hasbeencodedinvolvesanumberofaddi- tionalstepsdesignedtoavoidunwantedeffectsofarithmeticfloat- ing point round-off error. The mostimportantone isclipping: at the end of each directional advection,the values ofCi,j,k are re- setsothatCi jkissetto0ifCi jk<

corto1ifCi jk>1−

c.When

thereisnosurfacetensionthechoice

c=1012 workswell.Oth- erwise

c=108givesmorestableresultswithsmootherinterface shapes. Thisstronger clippingis anecessityforsome simulations withWY,asweobservethatWYproducesmanymore“wisps”,i.e.

cellswithtinyvaluesof1−Ci,j,kinsidefluid1orCi,j,kinsidefluid 2.Wehavenotyetbeenabletodeterminetheoriginofthisneed foramoreforcefulclippingwithWY,butitcouldberelatedtothe factthat theCIAMmethodhasageometricalinterpretation,while WYisintrinsicallyalgebraicinnature.

3.4. Momentum-advectionmethods

3.4.1. Advectionofagenericconservedquantity

Consider the advectionofa genericconserved quantity

φ

by a

continuousvelocityfield

t

φ

+

·

( φ

u

)

=0. (28) We assume that

φ

is smoothly varying except on the interface

where it may be discontinuous. Indeed finding a correctscheme for the advectionof thisdiscontinuity, atthe same speed asthe advectionofthevolumefraction,isthegoalofthepresentstudy.

The smoothnessoftheadvected quantityawayfromtheinterface is verified forthe density

ρ

, the momentum

ρ

uor the internal

energy

ρ

e.Wefirstintegrate(28)intime

φ

in,+j,k1

φ

i,j,kn =−

facesf

Ff(φ). (29)

Thesumontheright-handsideisthesumoverfaces fofcelli,j,k ofthefluxesFf(φ) of

φ

,whicharedefinedinthesamewayasthe colorfunctionfluxesFf(c)in(19)

Ff(φ)= tn+1

tn

dt

f

uf

(

x,t

) φ (

x,t

)

dx. (30)

Inorderto“extract” thediscontinuityweintroducethecharacter- isticfunctionH(x,t)

Ff(φ)= tn+1

tn

dt

f

[ufH

φ

+uf

(

1H

) φ

]dx, (31) andrewriteitas

Ff(φ)=

φ

¯1

tn+1

tn

dt

f

ufHdx+

φ

¯2

tn+1

tn

dt

f

uf

(

1H

)

dx, (32) wherethefaceaverages

φ

¯s,s=1,2,are

φ

¯s=

tn+1

tn dt f

φ

ufHsdx

tn+1

tn dt fufHsdx , (33)

andH1=H,H2=1−H. Expression(32) can be written interms of the fluxesFf(c) andFf(1c), thissecond one being obtained by replacingHwith1−Hin(19)

Ff(φ)=

φ

¯1Ff(c)+

φ

¯2Ff(1−c). (34)

3.4.2. Cloningthetracers

When a cell is cut by the interface, and the field

φ

is not

smooth, it becomes difficult to estimate the integrals in (32). A possibilityistodefinetwonewfields

φ

1 and

φ

2,with

φ

s=

φ

in-

sidephases,then

φ

=H

φ

1+

(

1H

) φ

2. (35) This is morecostly in memory usage but simplifies considerably thecomputationoftheaveragesin(32).Thetwoequations(2)and (28)arenow replacedby threeequations,the samevolumefrac- tionEq.(2)and

t

φ

1+

·

( φ

1u

)

=0,

t

φ

2+

·

( φ

2u

)

=0. (36) ThethreeEqs.(2)and(36)nowimply(28).Theadditionofapair of“cloned” variablestodealwithlargedensitycontrastsissimilar tothemethodsusedfortheresolutionofthemomentumanden- ergyequationsforcompressibleflow. ForexampleSaurel andAb- grallused two density, momentum andenergy variables intheir seven-equationsmodel[8],whileAllaire,ClercandKokhuse two densityvariablesintheirfive-equationsmodel[9].Theadditionof aclonedtracervariableinincompressibleisothermalflowwasalso implementedbyPopinetinthe“Basilisk” code[21].

3.4.3. Advectionofthedensityfield

The density

ρ

(x,t) obeys(28)with

φ

=

ρ

. Moreoverwe con-

sider a divergence-free velocity field, with constant density in eachphase.Wecanextractthedensitytriviallyfromtheintegrals (33)toobtainexactly

ρ

¯s=

ρ

s.Thefluxof

ρ

isthen

Ff(ρ)=

ρ

1Ff(c)+

ρ

2Ff(1−c). (37) Usingthisfluxdefinitionfor

ρ

,andanyVOFmethodforthefluxes of the color function, one obtains a conservative method for

ρ

, since eq. (29) evolves

ρ

as a difference of fluxes. Thus the total

massisconserved. Howeverthisresultisnot consistentwiththe advectionofthecolorfunctionintheCIAMcase,asCIAMdoesnot conservevolumesexactly(see(25)).Asaresulttheadvectionof

ρ

isnotconsistentwiththeadvectionofC.

Thisparadoxmaybe resolvedifone noticesthatthecompres- siontermismissingin(28).Forconsistencythecompressionterm shouldbekept,andtheadvectionequationforaconservedquan- titybecomes

t

φ

+

·

( φ

u

)

=

φ

·u. (38)

Itisthenpossibletodefinetheevolutionof

φ

throughasequence

ofdirectionally-splitoperationswhichareequivalenttotheopera- tionsperformedonthecolorfunction

φ

ni,j,k,l+1

φ

i,j,kn,l =−Fm(φ)Fm(φ)+ +

φ

˜1mcm(1)+

φ

˜2mc(m2)

mhum (39)

whereFm(φ)± aredefinedin(34),thecellaverages

φ

˜smare

φ

˜ms =

tn+1

tn dt

φ

Hs

mhumdx

tn+1

tn dt Hs

mhumdx , (40)

andc(m1)=cmisthecompressioncoefficientoftheVOFadvection, while cm(2)=1−cm is that ofthe symmetric color fraction 1−C.

Specificallyfor

ρ

thisgives

ρ

in,l+1,j,k

ρ

in,l,j,k=−Fm(ρ)Fm(ρ)+ +Cm(ρ), (41)

Références

Documents relatifs

The Next Generation Transit Survey (NGTS) is a new ground-based sky survey that builds on the legacy of the WASP survey (Pollacco et al. 2006) and aims to find bright systems

Performing a parametric study on irregular meshes, VOF discretization schemes and Courant Number conditions, we first show, in the drainage case, that suitable parametrization allows

The convection term in the momentum balance equation is discretized by a finite volume technique, in such a way that a solution obeys a discrete kinetic energy balance, and the

In particular the volume replacement between phases, and the interaction between the discrete phase and the continuous interface must be taken into account in order to

Sets of simulations of 100 loci were conducted for combinations of parameters σ and χ over a grid from their prior range and we evaluated the median approximation

Table S2 Details of Engelhardia populations used in molecular analysis, sample size (n), cpDNA haplotypes (H) and nrDNA ribotypes

Each such experiment has the same number of signal and background candidates as the data; given that correlations among fit variables are negligible for q q events, these are

Figure 1: The dipole distributions for Monte Carlo (solid) and data (points). The generated Monte Carlo b lifetime was 1:50ps... Figure 2: Monte Carlo dipole with the normal