• Aucun résultat trouvé

GENERALIZED HELLMANN-FEYNMAN AND VIRIAL THEOREMS IN DENSITY FUNCTIONAL THEORY AT FINITE TEMPERATURES

N/A
N/A
Protected

Academic year: 2021

Partager "GENERALIZED HELLMANN-FEYNMAN AND VIRIAL THEOREMS IN DENSITY FUNCTIONAL THEORY AT FINITE TEMPERATURES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00224303

https://hal.archives-ouvertes.fr/jpa-00224303

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GENERALIZED HELLMANN-FEYNMAN AND VIRIAL THEOREMS IN DENSITY FUNCTIONAL

THEORY AT FINITE TEMPERATURES

Xu Xi-Shen, Zhang Wan-Xiang

To cite this version:

Xu Xi-Shen, Zhang Wan-Xiang. GENERALIZED HELLMANN-FEYNMAN AND VIRIAL THEO-

REMS IN DENSITY FUNCTIONAL THEORY AT FINITE TEMPERATURES. Journal de Physique

Colloques, 1984, 45 (C8), pp.C8-23-C8-26. �10.1051/jphyscol:1984805�. �jpa-00224303�

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplément au n ° l l , Tome k5, novembre 1984 page C8-23

GENERALIZED HELLMANN-FEYNMAN AND VIRIAL THEOREMS IN DENSITY FUNCTIONAL THEORY A T FINITE TEMPERATURES

Xu X i - s h e n and Zhang Wan-xiang

Institute of Applied Physios and Computational Mathematics, P.O. Box 8009, Beijing, China

Ré s umë - Partant de l'expression du grand potentiel et des équations self consistantes à un électron de la théorie de la fonction de densité, nous avons étendu les travaux de Slater et Janak afin de montrer que les théorèmes de Hellmann-Feynman et du viriel étaient valides pour la matière condensée à température finie dans l'approximation des noyaux fixes.

A b s t r a c t - For a condensed n a t t e r w i t h t h e n u c l e i f r o z e n , s t a r t i n g from t h e grand p o t e n t i a l and t h e s e l f - c o n s i s t e n t o n e - e l e c t r o n e q u a t i o n s o f t h e d e n s i t y f u n c t i o n a l t h e o r y a t f i n i t e t e m p e r a t u r e s , we have e x t e n d e d S l a t e r ' s and J a n a k ' s works t o show t h a t t h e Hellmann-Feynman and t h e v i r i a l theorems s t i l l hold g o o d .

S i n c e Hohenberg and Kohn / 1 / , Mermin / 2 / , and Kohn and Sham / V proposed s u c c e s s i v e l y t h e d e n s i t y f u n c t i o n a l t h e o r y (DFT) a t z e r o and a t f i n i t e

t e m p e r a t u r e s , t h e t h e o r y has been e x t e n s i v e l y a p p l i e d t o s t u d y v a r i o u s problems c o n c e r n i n g t h e e l e c t r o n i c s t r u c t u r e s and o t h e r s t a t e p r o p e r t i e s o f condensed m a t t e r and d e v e l o p e d c o n s i d e r a b l y ( s e e r e v i e w a r t i c l e s / 4 , 5 / ) . Janak / 6 / , f o l l o w i n g S l a t e r ' 3 method 111, d e r i v e d t h e v i r i a l theorem f o r DFT a t z e r o t e m p e r a t u r e . We e x t e n d t h e s e work3 and show t h a t t h e Hellmann-Feynman and t h e v i r i a l theorems hold good i n DFT a t f i n i t e T a s w e l l .

1 - FUNDAMENTAL EQUATIONS OF DFT AT FINITE TEMPERATURES

Let u s c o n s i d e r a condensed m a t t e r . In t h e Born-Oppenheimer a p p r o x i m a t i o n , f o r t h e e l e c t r o n system a t temperature T and of c h e m i c a l p o t e n t i a l fi , t h e grand p o t e n t i a l n. o f DFT a t f i n i t e T i s g i v e n a s a f u n c t i o n a l o f t h e e l e c t r o n d e n s i t y n ( r , T ) ( i n Hartree atomic u n i t s , ii = e = m = 1 ) / 5 / :

< i m\-\ *- , f *•* n ( r . T ) 1 (( - „», n C r . T ) n ( r ' . T ) . 1 _.' Z*2P T f

+ F3( n ( r , T ) ) + Fx c( n ( r * , T ) } - j d? n ( r , T ) / t . ( 1 ) The first line is the Coulomb potential energy & , which is the sum of Coulomb

interaction contributions for electrons and the nuclei, electrons with one another (Hartree term), and nuclei with one another. F fn(r,T)1 is defined as the free energy of a non-interacting electron system with the same electron density n(r,T). Hence, F ^(r.T)} represents the contribution of exchange=

correlation interaction to the free energy.

From Oibbs variational principle, the following self-consistent one-electron equations are obtained / 5 / :

n(r.T) = ^ i / i ^ i ^ Y i ^ ) , (3)

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984805

(3)

C8-24 JOURNAL DE PHYSIQUE

where

rxc

is t h e exchange-correlation c o n t r i b u t i o n t o t h e e f f e c t i v e one=

e l e c t r o n p o t e n t i a l V e f f

,

w h i l e f i is t h e Fermi d i s t r i b u t i o n f u n c t i o n :

In d e r i v i n g t h e above e q u a t i o n s , we have used t h e f o l l o w i n g e x p r e s s i o n f o r Fs

,

which i s t h e sum of t h e k i n e t i c energy K and t h e e n t r o p y term -T3:

1 2

P~ =

Ziii 5

d?y;(P)(- 2

v

) y i ( l ) + IT &(fi I n ii + ( l - i i ) ~n (1 -ii

11.

(7)

I1

-

THE GENERALIZED HELIMANN-FEmAN THEOREM

I f t h e i m p l i c i t dependence o f n(^r,T) on

3,

could be ignored, t h e n d i f f e r e n t i a - t i n g Eq.(l ) w i t h r e s p e c t t o

2,

w i l l l e a d t o

"

-

The terms on t h e r i g h t hand s i d e r e p r e s e n t t h e f o r c e s , computed by c l a s s i c a l e l e c t r o s t a t i c s , e x e r t e d by t h e t o t a l e l e c t r o n i c c h a r g e d i s t r i b u t i o n and by a l l n u c l e i except t h e d t h on t h e 4 t h nucleus. Hence t h e l e f t hand member may be t h e t o t a l f o r c e e x e r t e d by t h e whole system on t h e Nth nucleus. The Hellmann-Feynman theorem a f f i r m s t h a t t h e above s t a t e m e n t 4 i s t r u e i r r e s p e c t i v e o f t h e i g n o r a n c e o f t h e i m p l i c i t dependence o f n ( ? , ~ ) on R , .

A c t u a l l y , however, f i ( t h r o u g h Ei),

Ti

and lp; all dependent on

@,

i m p l i c i t l y . In o r d e r t h a t t h e theorem may hold in t h i s c a s e , we must show t h a t t h e addi- t i o n a l terms a r i s i n g from such dependences e x a c t l y cancel. Indeed, it i s easy t o show from t h e fundamental e q u a t i o n s t h a t t h e terms a r i s i n g from -Ifti and

y ;

may be reduced t o

- - Z i f i J " b " Y ' )

H P i

L i Y i + Y f ~ , ( V j f ; Y i ) l

= - z i f i L i V $ R { d ~ y l i % = 0 i ( 9 )

which v a n i s h on account of t h e n o r m a l i z a t i o n o f t h e

Ti's.

On t h e o t h e r hand, we can show t h a t t h e a d d i t i o n a l terms a r i s i n g from v & f i a r e

-z,(v- f

- p )

+ I ~ T ~n(-)f fi = 0 : ( 1 0 )

R, i i

which v a n i s h on account o f Eq.(6). T h i s is n o t a s u r p r i s e t o u s because such r e s u l t s a r e j u s t what t h e v a r i a t i o n a l p r i n c i p l e r e q u i r e d .

Thus, we have proved t h a t t h e g e n e r a l i z e d Hellmann-Feynman theorem h o l d s i n t h e DFT at f i n i t e T.

I11

-

THE VIXIAL THEOREM

The v i r i a l theorem r a y be o b t a i n e d , f o l l o w i n g S l a t e r / 7 / , by o p e r a t i n g on E ~ . ( 2 ) w i t h ($. V ), m u l t i p l y i n g from l e f t by f i y ;

,

i n t e g r a t i n g o v e r a l l s p a c e , and then summing o v e r a l l occupied s t a i e s . Using t h e c o n j u g a t e of Eq. ( 2 ) t o r e e x p r e s s t h e term y;(Veff

-

E i ) ( r . V Y i ) , we f i n d

(4)

Now s u b s t i t u t i n g t h e following i d e n t i t y /7/

i n t o Eq.( 11 ) and n o t i n g t h a t t h e i n t e g r a l of t h e divergence term v k i s h e s

because t h e wave f u n c t i o n s vanish s u f f i c i e n t l y f a r o u t s i d e t h e system, we o b t a i n :

2K = ' j d i ? n ( ? , T ) ( $ - v v e f f )

.

( 1 7 )

On s u b s t i t u t i n g t h e expression ( 4 ) f o r Vepf

,

a f t e r some manipulations and u s i n g t h e g e n e r a l i z e d Hellmann-Feynman theorem, Eq.(13) becomes

-z=(?&*

~ $ ~ ) f i [ n ( + , ~ ) ] 3 2K + f

-

JdG 0(:,~)(3. v p X c )

.

( 1 4 )

For a condensed m a t t e r under a h y d r o s t a t i c p r e s s u r e p and occupying a volume V, one must c o n s i d e r a l s o t h e e x t e r n a l f o r c e s which balancing t h e i n t e r n a l f o r c e s on t h e n u c l e i t o keep them i n equilibrium. p h e s e e x t e r n a l f o r c e s r e s u l t in a c o n t r i b u t i o n -7pV. which would make

-

Z , ( i i ; V ~ ~ ) n vanish a l t o g e t h e r . Hence, in such circumstances, Eq.(14) t u r n s o u t t o be t h e g e n e r a l expression of t h e v i r i a l theorem in DFT a t f i n i t e T which we required:

The v i r i a l theorem may a l s o be simply derived by t h e method based on an argument from t h e s c a l i n g of t h e wave function /7/. Let R be a d i s t a n c e determining t h e s c a l e of t h e system. When we adopt t h e r e p r e s e n t a t i o n by dimensionless q u a n t i t i e s , t h e wave f u n c t i o n s can be w r i t t e n in t h e form

and they s a t i s f y t h e normalization condition:

Now by dimensional a n a l y s i s , t h e grand p o t e n t i a l A

,

E q . ( l ) , may be w r i t t e n a s :

2 2

n(n(:.r)] = R-'F,(

{;-I)

+ i3-'F2(

[ 3 ) )

+ P ~ ~ ( ~ ( + , T ) ]

+ k ~ & ( f ~ l n f i + (1-fi) In (1-fi)]

- pzifi

9 ( 1 8 )

where t h e f i r s t two terms correspond t o t h e k i n e t i c energy K and t h e Coulomb p o t e n t i a l energy 3 r e s p e c t i v e l y . Of course, t h e f i r s t t h r e e t e r n s dependent i m p l i c i t l y on f i as well. However, we have a l r e a d y pointed o u t t h a t afl/afi= 0 by t h e v a r i a t i o n a l p r i n c i p l e . Therefore, in what follows we need n o t consider t h e dependence of f i on R

.

Now l e t u s c a l c u l a t e -R(d/dR)h

.

F i r s t l y , i t i s easy t o show t h a t

Secondly, a s r e g a r d s t h e d i f f e r e n t i a t i o n of Fxc

,

i t may be c a l c u l a t e d by t h e expansion fonnulas o f a n a l y t i c Punctional, and i t i s easy t o f i n d t h a t

( - ~ x c ) ~ ~ R l =

-p

O ( + , T ) ( S . V ~ ~ ~ )

.

Thus we g e t

(5)

JOURNAL DE PHYSIQUE

Noting t h a t V o e ~ ~ , we have

- a d / a H ) n = - 3 ~ ( & n ) , , ~ = ~ P V ;

and t h a t in t h e Born-Oppenheimer a p p r o x i m a t i o n , we must p u t

v~

= 0

.

R a F i n a l l y we o b t a i n t h e v i r i a l theorem j u s t i n t h e form o f ~ ~ . ( 1 5 ) .

In t h e l o c a l DFT, t h e e x c h a n g e - c o r r e l a t i o n c o n t r i b u t i o n t o t h e f r e e energy may be w r i t t e n as:

~ ~ ~ ( n ( f , ~ ) ] a j d f '

~(G,T)

f X c ( n ( t , T ) )

,

( 2 3 )

t h u s , t h e v i r i a l theorem can be transformed t o

3 p V = 2K +

3 -

7 5 d * n ( ? , T ) ( f x c b ) - p l c ( n ) )

.

We remark t h a t f o r t h e exchange p o t e n t i a l e i t h e r i n t h e n o n - l o c a l Hartree-Pock form o r i n t h e l o c a l form o f S l a t e r ' s X d method, t h e c o n t r i b u t i o n t o t h e v l r i a l i s d u s t t h e t o t a l exchange energy

P x .

We a l s o remark t h a t , when n e g l e c t i n g t h e c o r r e l a t i o n e f f e c t s o r n e g l e c t i n g t h e e x c h a n g e - c o r r e l a t i o n e f f e c t s c o m p l e t e l y , one o b t a i n s t h e g e n e r a l e x p r e s s i o n o f t h e v i r i a l theorem o f a system w i t h Coulomb i n t e r a c t i o n in t h e Hartree-Pock approximation o r i n t h e H a r t r e e approximation r e s p e c t i v e l y /8/, 1.e.

L a s t l y , we may mention t h a t all t h e s e r e s u l t s a r e much t h e same in form as t h a t in t h e T 0 c a s e , t h e o n l y d i f f e r e n c e l i e s in t h e replacement o f t h e e l e c t r o n d e n s i t y n($) by t h e t e m p e r a t u r e dependent form n($,T), i.e.,

n ( f ) = z i y ; ( i ' r ) ~ ~ ( $ 1 =a+ n(+,T) =

L

ifiy;(f.) y i ( * )

.

( 2 6 )

where t h e o n e - e l e c t r o n wave f u n c t i o n s

yi

and

Y / ;

and t h e Fermi d i s t r i b u t i o n f u n c t i o n f i a r e o b t a i n e d by s o l v i n g t h e s e l f - c o n s i s t e n t o n e - e l e c t r o n e q u a t i o n s w i t h t e m p e r a t u r e , i . e . , Eqs. ( 2 ) - ( 6 ) .

REPERBN CBS

HOHWBERG P. and KOHN Y., Phys. Rev. (1964) 864.

MEHMIN N.D., Phys. Rev.

A1'J7

( 1 9 6 5 ) 1441.

KOHN Y. and SHAM L.J., Phys. Rev. ( 1 9 6 5 ) 1133.

RAJAQOPAL A.K., in "Advances in Chemical P h y s i c s " , e d s . PRIGOQIBE I . and R I C E S.A., Q ( 1 9 8 0 ) 59 (Wiley, New York).

QUPTA 0. and RAJAGOPAL A.K., Phys. R e p o r t s

a

(1982) 259.

JANAK J.F., Phys. Rev.

a

( 1 9 7 4 ) 3985.

SLATER J.C.. J . Chem. Phys. (1972) 2389; *@anturn Theory o f Molecules and S o l i d s n , Vol. 4 ( 1 9 7 2 ) 287 (McQraw-Hill, Hew ~ o r k ) .

XU Xi-shen, ZHANG Wen-xiang e t al., " I n t r o d u c t i o n t o t h e P r a c t i c a l Equation o f S t a t e T h e o r i e s " , KEXUE(Science P r e s s ) , B e i j l n g ( i n p r e s s ) .

Références

Documents relatifs

La diiculté provient de ce que le mécanisme est hybride : la base en est claire- ment contractuelle mais il existe une certaine parenté avec l’arbitrage (qui est un

We discuss the finite temperature properties of ultracold bosons in optical lattices in the presence of an additional, smoothly varying potential, as in current experiments..

The following outcomes were compared between patients undergoing laparoscopic appendectomy for acute appendicitis admitted on weekdays versus weekends: severity of

An diesem Interview-Ausschnitt wird deutlich, dass sich für Frau Haldenberg der Umgang mit dem Kind in der Schule direkt auf die Zusammenarbeit auswirkt, denn es kann zu

Quantum Chemistry, Density Functional Theory, Time-Dependent Density Functional Theory, Open and Closed-shell molecules, Excitation Spectra, Photochemistry, Excited States,

Nous avons traité certaines questions mathématiques autour du théorème de Hohenberg-Kohn, analysé les propriétés de l'application des potentiels vers les densités des

Multicomponent Density Functional Theory (MDFT) is a promising methodology to incorporate nuclear quantum effects, such as zero-point energy or tunneling, or to simulate other types