• Aucun résultat trouvé

Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion

N/A
N/A
Protected

Academic year: 2021

Partager "Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01808649

https://hal.archives-ouvertes.fr/hal-01808649v3

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its

Equations of Motion

Torbjørn Cunis, Laurent Burlion, Jean-Philippe Condomines

To cite this version:

Torbjørn Cunis, Laurent Burlion, Jean-Philippe Condomines. Piecewise Polynomial Model of the

Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion. [Technical

Report] Third corrected version, ONERA – The French Aerospace Lab; École Nationale de l’Aviation

Civile. 2018. �hal-01808649v3�

(2)

Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion

Torbjørn Cunis

1

, Laurent Burlion

2

, and Jean-Philippe Condomines

3

Abstract

The purpose of this document is to illustrate the piecewise polynomial model which has been derived from wind- tunnel measurement data of the Generic Transport Model (GTM) using the

pwpfit

toolbox. For implementation details and use in MATLAB, please refer to the source code at

https://github.com/pwpfit/GTMpw.

Preliminaries

If not stated otherwise, all variables are in SI units. We will refer to the following axis systems of ISO 1151-1:

the body axis system (x

f

, y

f

, z

f

) aligned with the aircraft’s fuselage; the air-path axis system (x

a

, y

a

, z

a

) defined by the velocity vector V

A

; and the normal earth-fixed axis system (x

g

, y

g

, z

g

) . The orientation of the body axes with respect to the normal earth-fixed system is given by the attitude angles Φ, Θ, Ψ and to the air-path system by angle of attack α and side-slip β ; the orientation of the air-path axes to the normal earth-fixed system is given by azimuth χ

A

, inclination γ

A

, and bank-angle µ

A

. (Fig. 1.)

x

g

x

a

x

f

z

g

z

a

z

f

mg

−Z

A

F

−X

A

V

A

Θ

γ

A

α

(a) Longitudinal axes (

β=µA= 0

).

x

g

x

0f

x

a

y

g

y

f0

y

a

F

0

−X

A

Y

A0

V

A

Ψ β

0

χ

A

(b) Horizontal axes (

γA= 0

).

Fig. 1: Axis systems with angles and vectors. Projections into the plane are marked by

0

.

I. Aerodynamic Coefficients The piecewise polynomial models of the aerodynamic coefficients are given

C

(α, β, . . . ) =

C

pre

(α, β, . . . ) if α ≤ α

0

,

C

post

(α, β, . . . ) else, (1)

where C

∈ {C

X

, C

Y

, C

Z

, C

l

, C

m

, C

n

} are polynomials in angle of attack, side-slip, surface deflections, and normalized body rates; and the boundary is found at

α

0

= 16.111°. (2)

The polynomials in low and high angle of attack, C

pre

, C

post

, are sums

C

pre

= C

αpre

(α) + C

βpre

(α, β) + C

ξpre

(α, β, ξ) + C

ηpre

(α, β, η) + C

ζpre

(α, β, ζ) + C

ppre

(α, p) + ˆ C

qpre

(α, q) + ˆ C

rpre

(α, r) ; ˆ (3) C

post

=C

αpost

(α) +C

βpost

(α, β) +C

ξpost

(α, β, ξ) +C

ηpost

(α, β, η) +C

ζpost

(α, β, ζ) +C

ppost

(α, p) +C ˆ

qpost

(α, q) +C ˆ

rpost

(α, r) ˆ . (4)

1ONERA – The French Aerospace Lab, Department of Information Processing and Systems, Centre Midi-Pyrénées, Toulouse, 31055, Franceand ENAC, Université de Toulouse, Drones Research Group; now with the University of Michigan, e-mail:tcunis@umich.edu.

2Rutgers, The State University of New Jersey, Department of Mechanical & Aerospace Engineering, Piscataway, NJ 08854, USA, e-mail:laurent.burlion@rutgers.edu.

3ENAC, Université de Toulouse, Drones Research Group, Toulouse, 31055, France, e-mail:jean-philippe.condomines@enac.fr.

(3)

In the following subsections, we present the polynomial terms obtained using the pwpfit toolbox. Coefficients of absolute value lower than 10

−2

have been omitted for readability.

A. Domain of low angle of attack Polynomials in angle of attack:

C

pre

= − 0 . 039 + 0 . 244 α + 4 . 452 α

2

− 17 . 394 α

3

; (5)

C

pre

= −0.017 − 5.241α − 1.866α

2

+ 28.466α

3

; (6)

C

mpreα

= 0 . 119 − 1 . 465 α + 8 . 129 α

2

− 31 . 983 α

3

; (7)

C

pre

, C

pre

, C

pre

are zero by definition.

Polynomials in angle of attack and side-slip:

C

pre

=

0.012+0.013α−2.049α2+0.027αβ+0.066β2+9.808α3+0.249α2β−0.572αβ2−10.651α4−1.178α3β+1.936α2β2−0.043β4;

(8) C

pre

= − 1 . 024 β + 0 . 219 αβ − 0 . 307 α

2

β + 0 . 070 β

3

+ 4 . 667 α

3

β − 1 . 062 αβ

3

; (9) C

pre

=

− 0 . 035 − 0 . 018 α + 2 . 911 α

2

+ 0 . 024 β

2

− 6 . 328 α

3

− 0 . 098 α

2

β + 4 . 018 αβ

2

− 8 . 805 α

4

+ 0 . 328 α

3

β − 8 . 609 α

2

β

2

+ 0 . 165 β

4

; (10) C

pre

= − 0 . 144 β + 0 . 177 αβ + 0 . 052 α

2

β + 0 . 203 β

3

+ 3 . 495 α

3

β − 1 . 113 αβ

3

; (11) C

mpreβ

=

0.068−0.205α−9.113α2+0.021αβ−1.396β2+54.917α3+0.170α2β−1.633αβ2−83.622α4−0.990α3β+11.760α2β2−0.027αβ3+1.164β4;

(12) C

npreβ

= 0 . 228 β − 0 . 228 αβ − 0 . 230 β

3

− 1 . 697 α

3

β + 0 . 539 αβ

3

. (13) Polynomials in angle of attack, side-slip, and aileron deflections:

C

pre

=

0.033α0.262α2+0.042β2+0.014βξ+0.135ξ2+1.195α3+0.094α2β0.147αβ2+0.016αβξ0.129αξ22.732α40.308α3β+0.993α2β20.575α2βξ+0.161α2ξ20.111β40.048β2ξ20.012βξ30.499ξ4;

(14) C

pre

=

0.080β−0.022ξ−1.925αβ−0.036αξ+0.501α2β+0.229α2ξ−0.021β3−0.244βξ2−1.469α3β−0.751α3ξ+3.189αβ3+5.135αβξ2+0.227αξ3;

(15) C

pre

=

−0.030α0.322α20.033β20.140βξ+0.029ξ2+3.097α3+0.094α2β0.328αβ2+0.385αβξ0.247αξ25.289α40.308α3β+0.142α2β2+0.169α2βξ0.795α2ξ2+0.109β4+0.027β3ξ0.058β2ξ2+0.197βξ3+0.118ξ4;

(16) C

pre

=

0.021β0.079ξ0.158αβ+0.046αξ+0.149α2β+0.698α2ξ0.066β3+0.027β2ξ0.036βξ2+0.069ξ30.508α3β1.316α3ξ+0.338αβ3+0.016αβ2ξ+0.453αβξ20.139αξ3;

(17) C

pre

=

−0.039+0.059α+0.163α2+0.401β2−0.013βξ−0.564ξ2+2.568α3+0.094α2β−1.548αβ2+0.068αβξ−0.439αξ2−4.594α4−0.308α3β−1.295α2β2−0.048α2βξ+0.356α2ξ2+0.085β4+0.082β3ξ+0.084β2ξ2+0.038βξ3+2.201ξ4;

(18) C

pre

=

−0.249αβ+0.014αξ+0.041α2β+0.053α2ξ+0.029β3−0.017βξ2+0.016ξ3+0.337α3β+0.048α3ξ+0.337αβ3+0.049αβ2ξ+0.690αβξ2−0.122αξ3.

(19)

(4)

Polynomials in angle of attack, side-slip, and elevator deflections:

C

pre

= −0 . 036 α − 0 . 292 α

2

+ 0 . 148 αη − 0 . 102 η

2

+ 1 . 173 α

3

− 0 . 411 α

2

η + 0 . 033 αβ

2

− 0 . 011 αβη + 0 . 105 αη

2

− 0 . 036 η

3

; (20) C

Ypreη

= − 0 . 267 β + 1 . 036 αβ − 3 . 141 α

2

β + 0 . 532 β

3

; (21) C

pre

=

0.041α−0.016β−0.526η+0.205α2+0.074αβ+0.050αη−0.012β2−1.770α3−0.060α2β+0.815α2η+0.306αβ2−0.028αβη+0.181αη2+0.297β2η+0.012βη2+0.645η3;

(22) C

pre

= −0.012β + 0.057αβ − 0.286α

2

β + 0.047β

3

; (23) C

pre

=

0.028+0.032α−0.054β−1.851η0.172α2+0.206αβ0.172αη0.199β2+0.026βη−0.173η20.300α3−0.068α2β+5.136α2η+0.816αβ20.023αβη+0.897αη2+0.693β2η+0.111βη2+1.324η3;

(24) C

pre

= −0.057β + 0.142αβ − 0.344α

2

β + 0.110β

3

. (25) Polynomials in angle of attack, side-slip, and rudder deflections:

C

Xpreζ

=

−0.011+0.026α+0.351α2+0.022β2+0.091βζ2.731α30.042αβ20.040αβζ+0.013αζ2+6.059α4+0.053α2β2+0.245α2βζ0.211α2ζ20.011β40.042β2ζ20.130βζ30.056ζ4;

(26) C

Ypreζ

=

0.187β+0.308ζ+0.820αβ0.501αζ+0.160α2β+1.251α2ζ0.455β30.224β2ζ+0.168βζ20.235ζ3+14.007α3β6.802α3ζ2.757αβ3+0.307αβ2ζ0.678αβζ2+1.093αζ3;

(27) C

pre

=

−0.106α+0.016β+0.254α2−0.074αβ+0.055β2+0.054βζ+0.117ζ2+3.459α3+0.060α2β+0.089αβ2−0.367αβζ+0.063αζ26.397α4−0.984α2β2+1.934α2βζ−1.049α2ζ2−0.099β40.140β3ζ−0.047β2ζ20.043βζ3−0.122ζ4;

(28) C

pre

=

0.024ζ+0.027αβ−0.027αζ+0.150α2β+0.068α2ζ−0.013β3−0.026β2ζ−0.017ζ3+0.600α3β−0.251α3ζ−0.172αβ3+0.046αβ2ζ+0.020αβζ2+0.040αζ3;

(29) C

pre

=

−0.016−0.039α+0.054β+0.335α2−0.206αβ+0.032β2−0.340βζ+0.298ζ2−7.653α3+0.068α2β+0.723αβ2−0.354αβζ+0.021αζ2+23.281α4−1.037α2β2+0.588α2βζ−1.013α2ζ2−0.311β4−0.304β3ζ+0.213β2ζ2+0.680βζ3−0.247ζ4;

(30) C

pre

=

0.040β0.145ζ+0.109αβ+0.033αζ+0.606α2β0.264α2ζ−0.108β3+0.114β2ζ0.052βζ2+0.088ζ31.391α3β+1.698α3ζ0.387αβ30.098αβ2ζ+0.077αβζ20.090αζ3.

(31) Polynomials in angle of attack and normalized body p-rate:

C

Yprepˆ

= −0.071 p ˆ − 0.138αˆ p − 0.013ˆ p

2

− 0.862α

2

p ˆ + 0.383αˆ p

2

+ 14.142 p ˆ

3

; (32) C

prep

= −0.266 p ˆ − 0.247αˆ p − 0.015ˆ p

2

+ 3.159α

2

p ˆ + 0.540αˆ p

2

− 2.843 p ˆ

3

; (33) C

prep

= − 0 . 083 p ˆ − 0 . 044 αˆ p − 0 . 065 p ˆ

2

+ 1 . 221 α

2

p ˆ + 0 . 073 αˆ p

2

+ 5 . 811 p ˆ

3

; (34) C

prep

, C

prep

, C

prep

are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body q -rate:

C

preq

= − 0 . 030 α + 0 . 851 q ˆ + 0 . 076 α

2

+ 12 . 434 αˆ q + 571 . 330 q ˆ

2

+ 0 . 127 α

3

+ 23 . 482 α

2

q ˆ + 2196 . 700 αˆ q

2

+ 2529 . 200 q ˆ

3

; (35) C

preq

= −32.946ˆ q − 0.203α

2

− 32.151αˆ q + 1401.800ˆ q

2

− 0.282α

3

− 80.578α

2

q ˆ + 1239.200αˆ q

2

+ 2345.900ˆ q

3

; (36) C

preq

=

− 0 . 024 − 0 . 033 α − 42 . 378 q ˆ + 0 . 496 α

2

− 2 . 991 αˆ q + 765 . 020 q ˆ

2

+ 0 . 909 α

3

+ 29 . 585 α

2

q ˆ + 2214 . 800 αˆ q

2

+ 2370 . 400 q ˆ

3

;

(37)

C

preq

, C

preq

, C

preq

are zero due to lack of GTM measurement data.

(5)

Polynomials in angle of attack and normalized body r -rate:

C

prer

= 0 . 748 r ˆ + 0 . 865 αˆ r + 0 . 881 ˆ r

2

+ 1 . 625 α

2

r ˆ − 1 . 485 αˆ r

2

+ 2 . 662 r ˆ

3

; (38) C

lprerˆ

= 0 . 147 r ˆ + 0 . 755 αˆ r + 0 . 862 α

2

r ˆ + 0 . 125 αˆ r

2

− 5 . 986 r ˆ

3

; (39) C

prer

= −0 . 337 ˆ r − 0 . 249 αˆ r − 0 . 471 r ˆ

2

− 0 . 912 α

2

ˆ r + 1 . 028 αˆ r

2

+ 19 . 902 r ˆ

3

; (40) C

prer

, C

prer

, C

prer

are zero due to lack of GTM measurement data.

B. Domain of high angle of attack Polynomials in angle of attack:

C

Xpostα

= 0 . 019 − 0 . 130 α + 0 . 169 α

2

− 0 . 022 α

3

; (41)

C

post

= −0.365 − 2.712α + 1.647α

2

− 0.369α

3

; (42)

C

post

= 0 . 247 − 2 . 847 α + 2 . 748 α

2

− 1 . 105 α

3

; (43)

C

Ypostα

, C

post

, C

post

are zero by definition.

Polynomials in angle of attack and side-slip:

C

post

= 0 . 101 α − 0 . 239 α

2

+ 0 . 025 β

2

+ 0 . 199 α

3

+ 0 . 160 αβ

2

− 0 . 011 β

3

− 0 . 055 α

4

− 0 . 148 α

2

β

2

+ 0 . 010 αβ

3

− 0 . 043 β

4

; (44) C

post

= −0.393β − 2.181αβ + 1.680α

2

β − 0.591β

3

− 0.402α

3

β + 1.287αβ

3

; (45) C

post

=

−0.040+0.183α−0.268α2+0.039αβ−0.293β2+0.168α3−0.088α2β+3.329αβ2−0.039α4+0.056α3β−2.148α2β2+0.165β4;

(46) C

post

= 0 . 074 β − 0 . 339 αβ + 0 . 111 α

2

β − 0 . 142 β

3

+ 0 . 113 αβ

3

; (47) C

post

=

0.357−2.954α−0.096β+7.802α2+0.510αβ−0.589β2−7.667α3−0.736α2β−1.740αβ2+2.469α4+0.296α3β+1.931α2β2−0.040αβ3+1.164β4;

(48) C

post

= 0 . 197 β − 0 . 186 αβ − 0 . 286 α

2

β − 0 . 238 β

3

+ 0 . 160 α

3

β + 0 . 567 αβ

3

. (49) Polynomials in angle of attack, side-slip, and aileron deflections:

C

post

=

0.0790.611α+1.476α2+0.135β20.025βξ0.083ξ21.489α3−0.253αβ20.013αβξ+0.897αξ2+0.531α4+0.194α2β2+0.026α2βξ0.717α2ξ20.111β40.048β2ξ20.012βξ3−0.499ξ4;

(50) C

post

=

−1.486β−0.059ξ+4.744αβ+0.127αξ−4.548α2β−0.097α2ξ+2.041β3+2.727βξ2+0.121ξ3+2.605α3β+0.031α3ξ−4.143αβ3+0.013αβ2ξ−5.429αβξ2−0.185αξ3;

(51) C

post

=

0.0380.332α+0.762α20.043β20.277ξ20.480α30.326αβ2−0.034αβξ+0.676αξ2+0.054α4+0.262α2β20.033α2βξ0.206α2ξ2+0.109β4+0.027β3ξ−0.058β2ξ2+0.197βξ3+0.118ξ4;

(52) C

post

=

−0.107β−0.035ξ+0.419αβ−0.042αξ−0.500α2β+0.084α2ξ+0.082β3+0.035β2ξ+0.194βξ2+0.030ξ3+0.253α3β−0.032α3ξ−0.188αβ3−0.013αβ2ξ−0.365αβξ2;

(53) C

mpostξ

=

−0.062+0.636α1.619α20.520β2+0.051βξ0.061ξ2+1.436α3+1.727αβ20.202αβξ2.612αξ20.434α41.297α2β2+0.105α2βξ+1.727α2ξ2+0.085β4+0.082β3ξ+0.084β2ξ2+0.038βξ3+2.201ξ4;

(54) C

npostξ

=

0.170β+0.013ξ+0.458αβ0.034αξ0.227α2β+0.037α2ξ+0.328β3+0.017β2ξ+0.397βξ20.045ξ3+0.161α3β0.021α3ξ0.726αβ30.017αβ2ξ0.781αβξ2+0.095αξ3.

(55)

(6)

Polynomials in angle of attack, side-slip, and elevator deflections:

C

post

=

0.042 − 0.276α − 0.011η + 0.546α

2

+ 0.061αη + 0.039β

2

− 0.063η

2

− 0.293α

3

− 0.063α

2

η − 0.088αβ

2

− 0.032αη

2

− 0.036η

3

; (56) C

post

= − 0 . 608 β + 1 . 973 αβ − 2 . 152 α

2

β + 0 . 532 β

3

; (57) C

Zpostη

=

−0.100+0.559α−0.594η−0.926α2+0.029αβ+0.585αη+0.110β2−0.035η2+0.452α3−0.024α2β−0.230α2η−0.127αβ2+0.319αη2+0.297β2η+0.012βη2+0.645η3;

(58) C

lpostη

= − 0 . 049 β + 0 . 150 αβ − 0 . 152 α

2

β + 0 . 047 β

3

; (59) C

mpostη

=

0.090−0.372α−1.880η+0.436α2+1.470αη+0.019βη−0.087η2−0.139α3−0.341α2η+0.076αβ2+0.589αη2+0.693β2η+0.111βη2+1.324η3;

(60) C

post

= − 0 . 070 β + 0 . 142 αβ − 0 . 187 α

2

β + 0 . 110 β

3

. (61) Polynomials in angle of attack, side-slip, and rudder deflections:

C

post

=

0.0160.140α+0.478α2+0.082β2+0.203βζ0.122ζ20.669α30.316αβ20.463αβζ+0.456αζ2+0.298α4+0.274α2β2+0.325α2βζ0.307α2ζ20.011β40.042β2ζ20.130βζ30.056ζ4;

(62) C

post

=

3.051β0.205ζ11.790αβ+1.702αζ+14.450α2β2.320α2ζ2.302β30.260β2ζ0.182βζ2+0.353ζ36.130α3β+1.104α3ζ+3.811αβ3+0.433αβ2ζ+0.566αβζ20.996αζ3;

(63) C

post

=

0.220−1.248α+2.437α2−0.029αβ0.083β2+0.142βζ−0.081ζ22.074α3+0.024α2β+0.345αβ20.163αβζ+0.591αζ2+0.654α4−0.149α2β2+0.107α2βζ−0.422α2ζ20.099β40.140β3ζ0.047β2ζ20.043βζ30.122ζ4;

(64) C

post

=

0.129β−0.471αβ+0.047αζ+0.546α2β−0.070α2ζ−0.091β3−0.019β2ζ+0.012βζ2−0.203α3β+0.031α3ζ+0.106αβ3+0.021αβ2ζ−0.010αβζ2−0.033αζ3;

(65) C

post

=

0.4293.325α+8.084α2+0.245β20.974βζ+0.199ζ27.822α30.363αβ2+2.617αβζ+0.150αζ2+2.615α4+0.142α2β21.957α2βζ0.220α2ζ20.311β40.304β3ζ+0.213β2ζ2+0.680βζ30.247ζ4;

(66) C

post

=

0.149β0.146ζ0.223αβ+0.055αζ+0.015α2β+0.184α2ζ−0.377β3+0.176β2ζ0.036βζ2+0.067ζ30.013α3β−0.106α3ζ+0.568αβ30.318αβ2ζ+0.020αβζ20.015αζ3.

(67) Polynomials in angle of attack and normalized body p -rate:

C

postp

= − 0 . 058 p ˆ − 0 . 590 αˆ p + 0 . 970 p ˆ

2

+ 0 . 582 α

2

p ˆ − 3 . 112 αˆ p

2

+ 14 . 142 p ˆ

3

; (68)

C

lpostpˆ

= 0.044 p ˆ − 0.589αˆ p + 0.133ˆ p

2

+ 0.464α

2

p ˆ + 0.013αˆ p

2

− 2.843 p ˆ

3

; (69)

C

postp

= 0.113 p ˆ − 0.504αˆ p − 0.240ˆ p

2

+ 0.369α

2

p ˆ + 0.695αˆ p

2

+ 5.811 p ˆ

3

; (70)

C

postp

, C

postp

, C

postp

are zero due to lack of GTM measurement data.

(7)

Polynomials in angle of attack and normalized body q -rate:

C

postq

=

0 . 034 − 0 . 209 α + 22 . 961 q ˆ + 0 . 246 α

2

− 76 . 364 αˆ q + 821 . 140 q ˆ

2

− 0 . 097 α

3

+ 59 . 647 α

2

q ˆ + 1308 . 300 αˆ q

2

+ 2529 . 200 q ˆ

3

; (71) C

postq

=

0.015 − 0.385α − 91.233ˆ q + 0.978α

2

+ 199.050αˆ q + 1312.200ˆ q

2

− 0.677α

3

− 165.610α

2

q ˆ + 1557.900αˆ q

2

+ 2345.900 q ˆ

3

; (72) C

postq

=

0.128 − 0.470α − 11.370ˆ q + 0.432α

2

− 145.970αˆ q + 1029.300ˆ q

2

− 0.173α

3

+ 145.910α

2

q ˆ + 1275.000αˆ q

2

+ 2370.400 q ˆ

3

; (73) C

postq

, C

postq

, C

postq

are zero due to lack of GTM measurement data.

Polynomials in angle of attack and normalized body r-rate:

C

postr

= 3 . 868 ˆ r − 11 . 818 αˆ r + 1 . 677 ˆ r

2

+ 7 . 267 α

2

r ˆ − 4 . 315 αˆ r

2

+ 2 . 662 r ˆ

3

; (74) C

postr

= − 0 . 154 r ˆ + 3 . 156 αˆ r + 0 . 019 r ˆ

2

− 3 . 867 α

2

r ˆ + 0 . 042 αˆ r

2

− 5 . 986 ˆ r

3

; (75) C

postr

= −0.639ˆ r + 0.714αˆ r − 0.239 r ˆ

2

− 0.510α

2

r ˆ + 0.203αˆ r

2

+ 19.902ˆ r

3

; (76) C

postr

, C

postr

, C

postr

are zero due to lack of GTM measurement data.

II. Equations of Motion We have the aerodynamic forces and moments in body axis system

 X

A

Y

A

Z

A

f

= 1 2 %SV

A2

 C

X

C

Y

C

Z

 ;

 L

A

M

A

N

A

f

= 1 2 %SV

A2

 b C

l

c

a

C

m

b C

n

 +

 X

A

Y

A

Z

A

f

× x

cg

− x

refcg

; (77)

and the weight force by rotation into the body axis system

X

gG

= −g sin Θ; (78)

Y

gG

= −g sin Φ cos Θ; (79)

Z

gG

= −g cos Φ cos Θ; (80)

The resulting forces lead to changes in the velocity vector, in body axis system, by

V ˙

Af

= 1 m

X

A

+ X

G

+ X

F

Y

A

+ Y

G

Z

A

+ Z

G

f

+

 p q r

 × V

Af

. (81) with the thrust X

fF

= F (engines aligned with the x

f

-axis). For a symmetric plane (I

xy

= I

yz

= 0), the resulting moments in body axis are given as

L

f

= L

Af

− q r (I

z

− I

y

) + p q I

zx

; (82)

M

f

= M

fA

+ M

fF

− p r (I

x

− I

z

) − p

2

− r

2

I

zx

; (83)

N

f

= N

fA

− p q (I

y

− I

x

) − q r I

zx

; (84)

with M

fF

= l

t

F (engines symmetric to the x

f

- y

f

-plane and shifted vertically from the origin by l

t

) and the inertias I

x

, I

y

, I

z

, I

zx

. The changes of angular body rates are then given as

˙

p = 1

I

x

I

z

− I

zx2

(I

z

L

f

+ I

zx

N

f

) ; (85)

˙ q = 1

I

y

M

f

; (86)

˙

r = 1

I

x

I

z

− I

zx2

(I

zx

L

f

+ I

x

N

f

) . (87) Here, the normalized body rates have been used with

 ˆ p ˆ q ˆ r

 = 1 2V

A

 b p c

a

q

b r

 ⇐⇒

 p q r

 = 2V

A

 b

−1

p ˆ c

−1a

q ˆ b

−1

ˆ r

 (88)

(8)

and

˙ˆ p

˙ˆ q

˙ˆ r

 = 1 V

A

 1 2

 b p ˙ c

a

q ˙ b r ˙

 − V ˙

A

 ˆ p ˆ q ˆ r

 . (89)

The change of attitude is finally obtained by rotation into normal earth-fixed axis system:

Φ = ˙ p + q sin Φ tan Θ + r cos Φ tan Θ; (90)

Θ = ˙ q cos Φ − r sin Φ; (91)

Ψ = ˙ q sin Φ cos

−1

Θ + r cos Φ cos

−1

Θ. (92) III. Longitudinal Model

The longitudinal model is restricted to the x

a

- z

a

-plane, assuming β = µ

A

= χ

A

= 0 . A. Aerodynamic Coefficients

The longitudinal aerodynamic coefficients, C

L

, C

D

, C

m

, are obtained as C

L

(α, η) = C

Lα

(α) + C

Lη

(α, η) with

C

(α) =

0 . 017 + 5 . 234 α + 1 . 985 α

2

− 30 . 060 α

3

if α ≤ 16 . 634°

0 . 279 + 3 . 251 α − 3 . 235 α

2

+ 0 . 708 α

3

else , (93) C

Lη

(α, η) = − 0 . 000 + 0 . 003 α + 0 . 521 η − 0 . 072 α

2

− 0 . 416 αη

+ 0 . 089 η

2

+ 0 . 051 α

3

+ 0 . 039 α

2

η − 0 . 293 αη

2

− 0 . 479 η

3

; (94) C

D

(α, η) = C

(α) + C

(α, η) with

C

(α) =

0.029 − 0.110α + 2.364α

2

+ 3.948α

3

if α ≤ 16.634°

−0.170 + 1.427α + 0.719α

2

− 0.486α

3

else , (95) C

(α, η) = + 0 . 008 − 0 . 012 α + 0 . 112 η + 0 . 040 α

2

+ 0 . 183 αη

− 0 . 069 η

2

− 0 . 053 α

3

− 0 . 043 α

2

η − 0 . 070 αη

2

− 0 . 628 η

3

; (96) C

m

(α, η) = C

(α) + C

(α, η) with

C

mα

(α) =

0 . 117 − 1 . 475 α + 8 . 475 α

2

− 32 . 729 α

3

if α ≤ 16 . 634°

0 . 144 − 2 . 456 α + 2 . 304 α

2

− 0 . 950 α

3

else , (97) C

(α, η) = + 0.014 + 0.165α − 1.968η − 0.410α

2

+ 1.365αη

− 0 . 415 η

2

+ 0 . 186 α

3

− 0 . 144 α

2

η + 0 . 948 αη

2

+ 1 . 356 η

3

. (98)

B. Equations of motion

The longitudinal equations of motion are given as V ˙

A

= 1

m

F cos α − 1

2 ρSV

A2

C

D

(α, η, q) − mg sin γ

A

, (99)

˙

γ

A

= 1 mV

A

F sin α + 1

2 ρSV

A2

C

L

(α, η, q) − mg cos γ

A

, (100)

˙ q = 1

I

y

l

t

F + 1

2 ρSc

a

V

A2

C

m

(α, η, q) − 1

2 ρSV

A2

C

Z

(α, η, q) x

refcg

− x

cg

+ 1

2 ρSV

A2

C

X

(α, η, q) z

cgref

− z

cg

; (101) with

Θ = α + γ. (102)

MATLAB Source Code

The source code for the aerodynamic coefficients and the equations of motion can be found at:

https://github.com/pwpfit/GTMpw

(9)

Appendix A. Spline-based Longitudinal Coefficients

The purpose of this model is to provide an application example of a spline-based longitudinal aircraft model. It has neither been designed nor evaluated for engineering purposes. For the longitudinal equations of motion, refer to Section III-B and note

C

D

(α, . . .) = −C

X

(α, . . .) cos α − C

Z

(α, . . .) sin α (103) C

L

(α, . . .) = C

X

(α, . . .) sin α − C

Z

(α, . . .) cos α (104) The longitudinal aerodynamic coefficients are obtained as

C

(α, η, q) = ˆ C

α

(α) + C

η

(α, η) + C

qˆ

(α, q) ˆ , (105) where C ∈ {C

X

, C

Z

, C

m

}, q ˆ = c

a

q/ (2V

A

), and

C

α

(α, η) =

 

 

 

 

 

 

C

α(1)

if α ∈ (−∞; α

1

) , C

α(2)

if α ∈ [α

1

; α

2

) , C

α(3)

if α ∈ [α

2

; α

3

) , C

α(4)

if α ∈ [α

3

; α

3

) , C

α(5)

if α ∈ [α

4

; ∞);

(106)

C

η

(α, η) =

 

 

 

 

 

 

C

η(1)

if α ∈ (−∞; α

1

) , C

η(2)

if α ∈ [α

1

; α

2

), C

η(3)

if α ∈ [α

2

; α

3

) , C

η(4)

if α ∈ [α

3

; α

3

), C

η(5)

if α ∈ [α

4

; ∞);

(107)

C

ˆq

(α, q) = ˆ

 

 

 

 

 

 

C

ˆ(1)q

if q ˆ ∈ (−∞; ˆ q

1

) , C

ˆ(2)q

if q ˆ ∈ [ˆ q

1

; ˆ q

2

) , C

ˆ(3)q

if q ˆ ∈ [ˆ q

2

; ˆ q

3

) , C

ˆ(4)q

if q ˆ ∈ [ˆ q

3

; ˆ q

3

) , C

ˆ(5)q

if q ˆ ∈ [ˆ q

4

; ∞);

(108)

with

α

1

= 5° , α

2

= 15° , α

3

= 25° , α

4

= 45° ; (109)

ˆ

q

1

= − 0 . 200° , q ˆ

2

= − 0 . 075° , q ˆ

3

= 0 . 075° , q ˆ

4

= 0 . 200° ; (110) and

C

X(1)α

(α) = − 0 . 025 − 0 . 002 α + 0 . 827 α

2

; (111)

C

(2)

(α) = −0 . 204 + 2 . 778 α − 7 . 493 α

2

; (112)

C

X(3)α

(α) = 0 . 217 − 1 . 218 α + 1 . 628 α

2

; (113)

C

(4)

(α) = 0 . 022 − 0 . 110 α + 0 . 114 α

2

; (114)

C

X(5)α

(α) = −0.052 + 0.024α + 0.063α

2

; (115)

C

Z(1)α

(α) = − 0 . 028 − 4 . 949 α + 0 . 837 α

2

; (116)

C

(2)

(α) = 0 . 155 − 8 . 239 α + 14 . 537 α

2

; (117)

C

Z(3)α

(α) = − 0 . 815 − 0 . 298 α − 1 . 648 α

2

; (118)

C

(4)

(α) = −0 . 467 − 2 . 158 α + 0 . 786 α

2

; (119)

C

Z(5)α

(α) = − 1 . 052 − 0 . 996 α + 0 . 254 α

2

; (120)

(10)

C

(1)

(α) = 0 . 157 − 1 . 724 α + 1 . 806 α

2

+ 11 . 969 α

3

; (121) C

(2)

(α) = 0 . 565 − 10 . 419 α + 59 . 277 α

2

− 118 . 320 α

3

; (122) C

(3)

(α) = 7 . 543 − 64 . 304 α + 174 . 300 α

2

− 160 . 370 α

3

; (123) C

(4)

(α) = − 0 . 866 + 1 . 176 α − 1 . 875 α

2

+ 0 . 681 α

3

; (124) C

(5)

(α) = −1.053 + 1.752α − 2.210α

2

+ 0.561α

3

; (125) C

X(1)η

(α, η) = − 0 . 010 η + 0 . 195 αη − 0 . 082 η

2

+ 0 . 628 α

2

η + 0 . 213 αη

2

− 0 . 036 η

3

; (126) C

(2)

(α, η) = 0 . 011 η − 0 . 009 αη − 0 . 060 η

2

+ 0 . 165 α

2

η − 0 . 043 αη

2

− 0 . 036 η

3

; (127) C

X(3)η

(α, η) = 0 . 060 η − 0 . 175 αη − 0 . 043 η

2

+ 0 . 087 α

2

η − 0 . 106 αη

2

− 0 . 036 η

3

; (128) C

(4)

(α, η) = 0 . 027 η − 0 . 079 αη − 0 . 056 η

2

+ 0 . 042 α

2

η − 0 . 076 αη

2

− 0 . 036 η

3

; (129) C

(5)

(α, η) = − 0 . 281 η + 0 . 586 αη − 0 . 133 η

2

− 0 . 305 α

2

η + 0 . 021 αη

2

− 0 . 036 η

3

; (130) C

(1)

(α, η) = − 0 . 595 η + 0 . 058 αη + 0 . 039 η

2

+ 0 . 045 α

2

η + 0 . 023 αη

2

+ 1 . 142 η

3

; (131) C

(2)

(α, η) = −0.626η + 0.461αη + 0.012η

2

− 0.452α

2

η + 0.332αη

2

+ 1.142η

3

; (132) C

(3)

(α, η) = − 0 . 631 η + 0 . 299 αη + 0 . 051 η

2

+ 0 . 224 α

2

η + 0 . 183 αη

2

+ 1 . 142 η

3

; (133) C

Z(4)η

(α, η) = −0.666η + 0.516αη − 0.337η

2

− 0.084α

2

η + 1.074αη

2

+ 1.142η

3

; (134) C

(5)

(α, η) = − 1 . 116 η + 1 . 625 αη + 0 . 312 η

2

− 0 . 768 α

2

η + 0 . 247 αη

2

+ 1 . 142 η

3

; (135) C

(1)

(α, η) = − 1 . 879 η − 0 . 047 αη − 0 . 227 η

2

− 0 . 845 α

2

η + 0 . 378 αη

2

+ 1 . 409 η

3

; (136) C

(2)

(α, η) = − 2 . 006 η + 1 . 410 αη − 0 . 260 η

2

− 0 . 807 α

2

η + 0 . 756 αη

2

+ 1 . 409 η

3

; (137) C

(3)

(α, η) = − 1 . 916 η − 0 . 071 αη − 0 . 704 η

2

+ 3 . 530 α

2

η + 2 . 449 αη

2

+ 1 . 409 η

3

; (138) C

m(4)η

(α, η) = −1.612η + 0.765αη + 0.802η

2

+ 0.017α

2

η − 1.002αη

2

+ 1.409η

3

; (139) C

(5)

(α, η) = −1.555η + 0.535αη − 0.777η

2

+ 0.219α

2

η + 1.009αη

2

+ 1.409η

3

; (140) as well as

C

X(1)qˆ

(α, q) = ˆ − 0 . 003 − 1 . 776 q ˆ − 0 . 010 α − 276 . 480 q ˆ

(2)

− 2 . 319 qα ˆ − 0 . 005 α

2

; (141)

C

(2)q

(α, q) = ˆ 0 . 001 + 0 . 689 q ˆ + 0 . 004 α + 120 . 080 q ˆ

(2)

+ 1 . 492 qα ˆ − 0 . 005 α

2

; (142)

C

(3)q

(α, q) = ˆ 0 . 001 + 1 . 338 q ˆ + 0 . 003 α + 232 . 350 q ˆ

(2)

+ 0 . 558 qα ˆ − 0 . 005 α

2

; (143)

C

X(4)qˆ

(α, q) = ˆ 0.001 + 1.897ˆ q + 0.004α + 144.900 q ˆ

(2)

− 0.699ˆ qα − 0.005α

2

; (144)

C

(5)q

(α, q) = ˆ 0 . 001 + 2 . 271 q ˆ − 0 . 009 α − 7 . 040 q ˆ

(2)

+ 2 . 981 qα ˆ − 0 . 005 α

2

; (145)

C

Z(1)qˆ

(α, q) = ˆ −0.008 − 25.814ˆ q + 0.138α + 2806.400ˆ q

(2)

+ 22.164ˆ qα + 0.004α

2

; (146)

C

(2)q

(α, q) = ˆ − 0 . 010 − 32 . 148 q ˆ + 0 . 019 α + 1120 . 800 q ˆ

(2)

− 11 . 921 qα ˆ + 0 . 004 α

2

; (147)

C

(3)q

(α, q) = ˆ − 0 . 014 − 36 . 128 q ˆ + 0 . 029 α + 507 . 060 q ˆ

(2)

− 3 . 943 qα ˆ + 0 . 004 α

2

; (148)

C

(4)q

(α, q) = ˆ −0.010 − 40.109ˆ q + 0.019α + 1120.800ˆ q

(2)

+ 4.036 qα ˆ + 0.004α

2

; (149)

C

(5)q

(α, q) = ˆ − 0 . 008 − 46 . 443 q ˆ + 0 . 138 α + 2806 . 400 q ˆ

(2)

− 30 . 049 qα ˆ + 0 . 004 α

2

; (150)

C

(1)q

(α, q) = ˆ 0.008 − 41.631 q ˆ − 0.013α + 300.350ˆ q

(2)

− 10.716ˆ qα − 0.081α

2

; (151)

C

(2)q

(α, q) = ˆ 0 . 009 − 40 . 268 q ˆ + 0 . 009 α + 632 . 510 q ˆ

(2)

− 4 . 284 qα ˆ − 0 . 081 α

2

; (152)

C

m(3)ˆq

(α, q) = ˆ 0.009 − 40.445 q ˆ + 0.012α + 674.850ˆ q

(2)

− 2.169 qα ˆ − 0.081α

2

; (153)

C

(4)q

(α, q) = ˆ 0 . 009 − 39 . 916 q ˆ + 0 . 009 α + 381 . 400 q ˆ

(2)

− 0 . 193 qα ˆ − 0 . 081 α

2

; (154)

C

(5)q

(α, q) = ˆ − 0 . 001 − 35 . 258 q ˆ + 0 . 008 α − 208 . 640 q ˆ

(2)

+ 0 . 192 qα ˆ − 0 . 081 α

2

; (155)

(11)

Nomenclature α = Angle of attack (rad);

α

0

= Low-angle of attack boundary (°);

β = Side-slip angle (rad);

γ

A

= Air-path inclination angle (rad);

ζ = Rudder deflection (rad), negative if leading to positive yaw moment;

η = Elevator deflection (rad), negative if leading to positive pitch moment;

µ

A

= Air-path bank angle (rad);

ξ = Aileron deflection (rad), negative if leading to positive roll moment;

% = Air density ( % = 1 . 200 kg m

−3

);

χ

A

= Air-path azimuth angle (rad);

Θ = Pitch angle (rad);

Φ = Bank angle (rad);

Ψ = Azimuth angle (rad);

b = Reference aerodynamic span ( b = 2 . 088 m);

c

A

= Aerodynamic mean chord (c

A

= 0.280 m);

g = Standard gravitational acceleration (g ≈ 9.810 m s

−2

);

l

t

= Engine vertical displacement, positive along z

f

-axis (l

t

= 0.100 m);

m = Aircraft mass (m = 26.190 kg);

p = Roll rate (rad s

−1

);

q = Pitch rate (rad s

−1

);

r = Yaw rate (rad s

−1

);

x

cg

, z

cg

= Longitudinal position center of gravity ( x

cg

= − 1 . 450 m, z

cg

= − 0 . 300 m);

x

refcg

, z

refcg

= Longitudinal position reference center of gravity ( x

refcg

= − 1 . 460 m, z

cgref

= − 0 . 290 m);

C

l

= Aerodynamic coefficient moment body x

f

-axis ( · );

C

m

= Aerodynamic coefficient moment body y

f

-axis ( · );

C

n

= Aerodynamic coefficient moment body z

f

-axis ( · );

C

D

= Aerodynamic drag coefficient, force negative air-path x

a

-axis ( · );

C

L

= Aerodynamic lift coefficient, force negative air-path z

a

-axis ( · );

C

X

= Aerodynamic coefficient force body x

f

-axis ( · );

C

Y

= Aerodynamic coefficient force body y

f

-axis (·);

C

Z

= Aerodynamic coefficient force body z

f

-axis (·);

D = Drag force, positive along negative air-path X

a

-axis (L = −X

aA

, N);

F = Thrust force (N), positive along body x

f

-axis;

L = Lift force, positive along negative air-path Z

a

-axis ( L = −Z

aA

, N);

L

f

= Roll moment (N m), mathematically positive around x

f

-axis;

M

f

= Pitch moment (N m), mathematically positive around y

f

-axis;

N

f

= Yaw moment (N m), mathematically positive around z

f

-axis;

S = Wing area ( S = 0 . 550 m

2

);

V

A

, V

A

= Aircraft speed and velocity relative to air ( V

A

= kV

A

k

2

, m s

−1

);

X

A

= Resulting force along air-path x

a

-axis (N);

X

fA

= Aerodynamic force along body x

f

-axis (N);

X

fF

= Thrust force along body x

f

-axis (N);

Y

A

= Resulting force along air-path y

a

-axis (N);

Y

fA

= Aerodynamic force along body y

f

-axis (N);

Z

A

= Resulting force along air-path z

a

-axis (N);

Z

fA

= Aerodynamic force along body z

f

-axis (N);

(·)

post

= Domain of high angle of attack;

(·)

pre

= Domain of low angle of attack;

x

a

, y

a

, z

a

= Air-path axis system;

x

f

, y

f

, z

f

= Body axis system;

x

g

, y

g

, z

g

= Normal earth-fixed axis system;

Références

Documents relatifs

After discussing some properties which a quantitative measure of model uncertainty should verify in order to be useful and relevant in the context of risk management of

At higher angles of attack, the results begin to diverge mainly due to delayed flow separation in case of the computations.. The computations as well as the experiment predict a

A comparative analysis of the spin parameters, as well as the spin entry/recovery behavior for the nominal and perturbed aerodynamic models, revealed the high sensitivity of

“A Multi-mode Upset Recovery Flight Control Sys- tem for Large Transport Aircraft,” in AIAA Guid- ance, Navigation, and Control Conference, Boston, US-MA, aug 2013..

In Section 1 we put an emphasis on the Lagrangian model and give a detailed and simple proof of existence of optimal irrigation plans without resorting to parameterizations as done

arnong collective polymer variables con be expressed in terras of correlation and response func- tions For a collection of noninteracting Rouse polymers, and with no externat

Interesting, however, is that the radii of curvature for the trailing partials in the high stress deformed crystals in general are found too large, so that the force

For gases, the sink via wet deposition includes an explicit computation by the cloud chemistry module for the resolved clouds whatever the microphysical scheme used