• Aucun résultat trouvé

Thermal and thermo-mechanical solution of laminated composite beam based on a variables separation for arbitrary volume heat source locations

N/A
N/A
Protected

Academic year: 2021

Partager "Thermal and thermo-mechanical solution of laminated composite beam based on a variables separation for arbitrary volume heat source locations"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-01676516

https://hal.parisnanterre.fr//hal-01676516

Submitted on 5 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thermal and thermo-mechanical solution of laminated composite beam based on a variables separation for

arbitrary volume heat source locations

Philippe Vidal, Laurent Gallimard, Isabelle Ranc, Olivier Polit

To cite this version:

Philippe Vidal, Laurent Gallimard, Isabelle Ranc, Olivier Polit. Thermal and thermo-mechanical solu- tion of laminated composite beam based on a variables separation for arbitrary volume heat source lo- cations. Applied Mathematical Modelling, Elsevier, 2017, 46, pp.98-115. �10.1016/j.apm.2017.01.064�.

�hal-01676516�

(2)

Thermal and thermo-mechanical solution of laminated

composite beam based on a variables separation for arbitrary volume heat source locations

P. Vidal

, L. Gallimard , I. Ranc , O. Polit

UPL, Univ Paris Nanterre, Laboratoire Energétique, Mécanique, Electromagnétisme, 50 rue de Sèvres - Ville d’Avray, 92410 France

a b s t r a c t

Inthiswork, amethod tocompute explicitthermal solutions for laminatedand sand- wichbeamswitharbitraryheatsourcelocationisdeveloped.Thetemperatureiswritten asasumofseparatedfunctionsoftheaxialcoordinatex,thetransversecoordinatezand thevolumetricheatsourcelocationx0.Thederived non-linearproblemimpliesanitera- tiveprocessinwhichthree1Dproblemsaresolvedsuccessivelyateachiteration.Inthe thicknessdirection,afourth-orderexpansionineachlayerisconsidered.Fortheaxialde- scription,classicalFiniteElementmethodisused.Thepresentedapproachisassessedon variouslaminatedandsandwichbeamsandcomparisonswithreferencesolutionswitha fixedheatsourcelocationareproposed.Basedontheaccurateresultsofthethermalanal- ysis,thermo-mechanicalresponseisalsoaddressedusingalsoaseparatedrepresentation.

1. Introduction

Composite andsandwich. structures areincreasingly used inindustrialapplications owingto their specificmechanical properties. Theycan be also submitted to multi-physics environments such as thermal effects, andin particular due to theinternal volumeheat source.Someapplicationscan bementioned.Inthe thermallyactivated composite(smartmate- rial), thedeformationofthestructurecan becontrolled byactingontheinternalheat source[1].Itrequiresto knowthe thermo-mechanicalresponseofthestructureforvariouslocalizedthermalsollicitations.Theidentificationofthedamageof compositecanbe viewedasanotherillustration.Infact,thedeterminationofthepositionoftheheatsourceallows some researcherstolocalizethedamagedregion,asin[2]forcarbonfibrereinforcedlaminates.Inall thesescases,theclassical way consistsin performing differentcomputations witha fixed value ofthe heat source position. The presentapproach basedonthe variablesseparationaimsatbuildingtheexplicitthermalsolutionwithrespecttothislocationavoidingthe costofnumerouscomputations.Then,thermo-mechanicalanalysiscanbeperformed.

Inopenliterature,variousmechanicalmodelsdedicatedtocompositeorsandwichbeamstakeintoaccountthethermal effects withafixed value of theheat sourcelocation. Theycan be classifiedintotwo familiesasEquivalent Single Layer (ESL)orLayerwise(LW)models.IntheESLmodels,thenumberofunknownsremainlowasitisindependentofthenum- ber oflayers. Unfortunately, the physicalrequirements such asthe shearstress continuity atthe layer interfacesare not fulfilled.Inthisfamily,differenttypesofmodelscanbedistinguished:theclassicallaminatetheory[3],thefirstordershear

Corresponding author.

E-mail address: philippe.vidal@u-paris10.fr (P. Vidal).

(3)

deformationtheory ([4]witha linearvariationoftemperaturethrough thethickness),andhigherordertheories [5,6]for thermalstressesanalysisofbeamsorplates.ThelimitationsoftheESLapproachcanbeovercomebytheLWmodels.The thermaleffectforbeamstructures hasbeenincludedin[7].But,thecostbecomesvery highasthenumberofunknowns increaseswiththenumberofplies.Itshouldbenotedthesubstantial worksdevelopedbyCarrera([8,9]).VariousESLand LWtheorieswithmixedanddisplacement-basedapproachesforassumeddistributionoftemperatures(uniform,linear,lo- calized)are addressedintheframework oftheCarrera’s Unified Formulation(CUF).Different displacementorstress field approximationsoverthecross-sectionareconsidered.Afamilyofhigher-orderbeamelementscanbededuced.

Analternativestrategyconsistsinconsideringaprioriphysicalrequirementsinthekinematics.Thus,refinedmodelscan bebuilttoimprovethe accuracyofESLmodelsavoidingtheadditionalcomputational costofLWapproach.Inthisway,a zigzagtheoryforbeamshasbeencarriedoutbyKapuriain[10].Apiecewiselinearfunctionalongthethicknessisusedfor thetemperature. In[11],aglobal-local approach inconjunctionwitha Hermiteinterpolation ofthe temperaturethrough thethicknessisused.Foranoverviewaboutthethermalanalysis,see[5,12–14].

Until now, the so-calledProperGeneralized Decomposition (PGD) [15]has shownadvantageous characteristics to de- creasesignificativelythe computational costs intheframework of thereduction model.Indeed,it allows todecrease the dimensionalityofnumerousphysicalproblems.Forinstance,thecoordinatevariablesseparationinmulti-dimensionalPDEs hasbeenperformedin[15].Moreover,thisapproachhasbeencarriedout in[16,17]formechanicalapplicationsinvolving compositebeamsandplates. Concerningthethermalanalysis,the variablesseparation ofthespatialcoordinates xandz hasalreadybeenused in[18]forlaminates.Other parametrizedthermalproblemshave beenalsoconsidered in[19–21]. Notethat theintroductionoftheloadpositionasaparameterofthesolutionintheframeworkofmechanicalsimulations hasbeencarriedoutin[22].ForareviewaboutthePGDanditsfieldsofapplications,thereadercanreferto[23,24].

This work aims at modeling composite beam structures regardless of the volume heat source location for thermo- mechanicalanalysis.Thisparticularstudyhasnotbeenyetaddressedinthepreviousquoted works.Forthispurpose,the presentapproachisbasedontheseparatedrepresentationwherethetemperatureiswrittenasasumofproductsofunidi- mensionalpolynomialsofxcoordinate,zcoordinate,andalsothevolumethermalheatpositionx0.Apiecewisefourth-order Lagrangepolynomialofzischosenasitisparticularlysuitabletomodelcompositestructures.Asfarasthevariationwith respecttotheaxial coordinateisconcerned,a1D three-node beamFinite Element(FE)isemployed. Thefunctionsofthe volumeheatsourcepositionarealsopiecewisequadratic.Finally,thededucednon-linearproblemislinearized.Thus,three 1D linearproblems aresolved alternatively, inwhich the numberofunknownsis much smallerthan ina Layerwise ap- proach.Finally,thesolutiondependsexplicitlyontheloadposition.

Then,thethermo-mechanicalanalysiscanbeaddressedasaweakcouplingisconsidered.Thesolutionofthemechanical problem,alsowrittenunderaseparatedformasin[25],isbuiltby consideringthetemperaturedistribution asaload. As theseparatedform ofthetemperatureunknowns arechosen, the natureof themechanicalproblemremains unchanged.

Moreover,the approachallows usto refineeasily the descriptionofthe temperaturevariation withoutincreasing signifi- cantlythecomputationalcostwhichisimportanttoderiveanaccuratemechanicalresponse.

This article is organized as follows. Firstly, the thermo-mechanical formulation is recalled. The resolution of the parametrizedthermal problembased onthe variables separationis described. The particularassumption on thetemper- aturefield yieldsanon-linearproblemwhichissolvedby aniterativeprocess.Then,theFEdiscretizationisgiven.Finally, numericaltestsareprovided.Boththermalloadsandthermo-mechanicalcouplingareconsideredforlaminatedandsand- wichbeams.Thebehaviorofthemethodisillustratedanddiscussed.Itisassessedbycomparingwith2DFEMcomputations issuedfromacommercialfiniteelementsoftwarewithdifferentfixedheatsourcelocationsandsizes.Theresultsshowthe accuracyandtheefficiencyofthepresentedmethod.

2. Thermo-mechanicalproblemdescription

AlaminatedorsandwichbeamwithNClayers isdefinedinadomain B=Bx×By×Bz=[0,L]×[−b2y2b]×[−h2zh2]expressedinaCartesiancoordinate(x,y,z).Thecross-sectionofthebeamisrectangular.handbaretheheightand thewidth,respectively.Thecentrallineofthebeamischosenasthexaxis.ItisshowninFig.1.

Inthiswork,aplanestressassumptionisused(σ12=σ23=σ22=0).

x

h/2

y

y z z

L

b

Fig. 1. The laminated beam and co-ordinate system.

(4)

2.1. Heatconductionproblem

2.1.1. Thermalconstitutiveequation

Here, thetwo-dimensional linear heat conductionequations are considered.The constitutive equation is givenby the Fourierlaw

Q=

q1

q3

=−

λ

¯grad(

θ

), (1)

where

λ

¯ =

λ

1 0

0

λ

3

andgrad(

θ

)=

θ

,x

θ

,z

.

λ1,λ3 arethethermalconductivitycomponents,q1,q3aretheheatfluxcomponents.Theyareexpressedinthecoordinate systemx,z.Thederivativeofthetemperaturewithrespecttoxandzaredenotedθ,x,θ,z,respectively.

2.1.2. Theclassicalweakformoftheboundaryvalueproblem

Forδθδ(δ={θH1(B)/θ=0on∂Bθ}),thevariationalprincipleisgivenby:

findθsuchthat

Bgrad(

δθ

)TQ(

θ

)dB+

B

δθ

rddB+

Bh

δθ

hdd

B=0,

δθ

δ

(2)

whererdandhdaretheprescribedvolumeheatsourceandsurfaceheatfluxappliedon∂Bh.Thetemperatureθdisimposed on∂Bθ.isthespaceofadmissibletemperatures,i.e.={θH1(B)/θ=θd on∂Bθ}.

Inthepresentwork,theconvectionheattransferandtheprescribedsurfaceheatfluxarenotconsidered.

2.2. Thermo-mechanicalproblem

2.2.1. Constitutiverelation

Thereducedtwodimensionalconstitutivelawofthekth layerwiththermo-mechanicalcouplingisgivenby

σ

(k)=¯C(k)

ε

(k)

α

¯(k)

θ

(k)

, (3)

whereθ(k)=θ(k)θ0isthevariationoftemperature.

Thestressandstraintensoraresupposedtobewrittenas

σ

T=[

σ

11

σ

33

τ

13],

ε

T=[

ε

11

ε

33

γ

13].

Wehavealso

¯C(k)=

C¯11(k) C¯13(k) 0 C¯33(k) 0 symm C¯55(k)

,

whereC¯i j(k)arethereducedmoduliofthematerialforthekthlayerissuedfromtheplanestressassumptions(σ22=0).They aregivenby

C¯i j(k)=Ci j(k)Ci(2k)C(j2k)/C22(k). (4)

Ci j(k)are orthotropic three-dimensional elastic moduli. And, we have ¯C55(k)=C55(k). Thevectorofthethermalexpansioncoefficientsisα¯(k)T =[α1(k)α3(k)0].

2.2.2. Theweakformoftheboundaryvalueproblem

The formulationofthe thermo-mechanicalproblemis writtenundera displacement-basedapproach forgeometrically linearelasticbeams.UsingtheabovenotationandEq.(3),thevariationalprincipleisgivenby:

Findu(M)∈Usuchthat

B

δε

T¯C(k)

ε

dB=

VF

δ

u·t dS+

B

δε

T¯C(k)

α

¯(k)

θ

dB

δ

u

δ

U, (5) where t is the prescribed surface forces applied on ∂VF. U is the space of admissible displacements, i.e. U={u(H1(B))2/u=udon∂Bu}.WehavealsoδU={u(H1(B))2/u=0on∂Bu}.ThebodyforcesarenotconsideredinEq.(5).

(5)

Fig. 2. Volume heat source applied on the laminated beam.

3. Applicationofthevariablesseparationtothethermalanalysisofbeamwithanyvolumeheatsourcelocations

TheProperGeneralizedDecomposition(PGD)hasbeenintroducedin[15].Itisbasedonanaprioriconstructionofsepa- ratedvariablesrepresentationofthesolution.Intheframeworkofthermalproblems,thesolutionwithseparatedcoordinate variableshasbeendevelopedin[19].Thefollowing sectionsarededicatedtothe introductionofthisapproachtobuild a parametricsolutionforcompositebeamsubmittedtoheatsourceswithanylocations.TheproblemdefinedbyEqs.(1)and (2)isconsideredasaparametrizedproblemwheretheheat sourcelocation x0isdefinedinaboundedinterval[0,L].The thermalsolutionforapointMofcoordinate(x,z)ofthestructuredependsonthevaluesofthisparameterandisdenoted

θ(x,z,x0)(seeFig.2).

Inthepresentwork,aweakthermo-mechanicalcouplingisaddressed.Oncethethermalproblemhasbeensolved,the mechanicalresponseisdeducedusingalsothevariableseparationfollowing[17].Itwillnotbedetailedhereafterforbrevity reason.OnlythecouplingtermisdetailedinAppendixA.

3.1. Theparametrizedproblem

Thetemperaturesolutionθ isbuiltasthesumofN productsoffunctionsofonlyone spatialcoordinate(N∈Nisthe orderoftherepresentation)suchthat:

θ

(x,z,x0)= N

i=1

fi(x0)Txi(x)Tzi(z), (6)

whereTzi(z)isdefinedonBzandTxi(x),fi(x0) aredefinedonBx.AclassicalquadraticFEapproximationisusedinBx anda LWdescriptionischoseninBz asitisparticularlysuitableforthemodelingofcompositestructures.

Theexpressionofthetemperaturegradientiswrittenasfollows:

grad(

θ

)= N

i=1

fi(x0)

Ti

x,x(x)Tzi(z) Txi(x)Tz,zi (z)

. (7)

Fora structuresubmitted to a localizedinternal heat source atx=x0 in one layer, theparametrized problemcan be formulatedas:

findθext(ext={θH1(B×[0,L])/θ =θdon∂Bθ×[0,L]})suchthat:

a(

θ

,

δθ

)=b(

δθ

),

δθ

δ

ext, (8)

with

a(

θ

,

δθ

)=

x0

Bgrad(

δθ

)TQ(

θ

)dBdx0

b(

δθ

)=

x0

Bzs

δθ

rd

δ

(xx0)dBzsdx0

(9)

whereδistheDiracdistributionandBzs representsthelocationwheretheinternalheatsourceisapplied(seeFig.2).

Theassumption on theexpression ofthe temperaturegivenin Eq.(6)impliesthe resolution ofa non-linearproblem whichisdescribedinthefollowingsection.

(6)

3.2. Resolutionoftheparametrizedproblem

A greedy algorithm is used to solve Eq. (8). If we assume that the first m functions(cf. Eq.(6)) have been already computed,thetrialfunctionfortheiterationm+1canbegivenby

θ

m+1(x,z,x0)=

θ

m(x,z,x0)+f(x0)Tx(x)Tz(z), (10) wheref,TxandTz aretheunknownfunctionsandθmistheassociatedknownsetsatiterationmdefinedby

θ

m(x,z,x0)= m

i=1

fi(x0)Txi(x)Tzi(z). (11)

TheproblemtobesolvedgiveninEq.(8)canbewrittenas

a(fTxTz,

δθ

)=b(

δθ

)a(

θ

m,

δθ

). (12)

Thetestfunctionis

δ

(fTxTz)=

δ

fTxTz+f

δ

TxTz+fTx

δ

Tz. (13)

Introducing the test function defined by Eq. (13) and the trial function defined by Eq. (10) into the weak form Eq.(12)leadstothethreefollowingproblems:

forthetestfunctionδTx

a(fTzTx,fTz

δ

Tx)=b(fTz

δ

Tx)a(

θ

m,fTz

δ

Tx),

δ

Tx, (14)

forthetestfunctionδTz

a(fTxTz,fTx

δ

Tz)=b(fTx

δ

Tz)a(

θ

m,fTx

δ

Tz),

δ

Tz, (15)

forthetestfunctionδf

a(TxTzf,TxTz

δ

f)=b(TxTz

δ

f)a(

θ

m,TxTz

δ

f),

δ

f. (16)

FromEqs.(14)–16,acouplednon-linearproblemtobesolvedisdeduced.Classically,afixedpointmethodiscarriedout forsimplicityreason. Starting froman initial functionT˜x(0), T˜z(0), f˜(0), we constructa sequenceT˜x(k),T˜z(k) and f˜(k) which satisfyEqs.14–16,respectively.Foreachproblem,onlyoneunknown 1Dfunctionhastobefound,thetwoother onesare assumedtobe known(fromtheprevious stepofthefixed pointstrategy). So,theapproachleadstotheprocess givenin Algorithm1.

Algorithm1 Presentalgorithm.

forn=1toNmaxdo InitializeT˜x(0),T˜z(0), f˜(0) fork=1tokmaxdo

Compute f˜(k)fromEq.(16)(straightforwardresolution),T˜x(k1),T˜z(k1)beingknown ComputeT˜z(k)fromEq.(15)(linearequationonBz), f˜(k)andT˜x(k1)beingknown ComputeT˜x(k)fromEq.(14)(linearequationonBx), f˜(k)andT˜z(k)beingknown Checkforconvergence

endfor

Set fn+1=f˜(k),Tzn+1=T˜z(k),Txn+1=T˜x(k) Setθn+1=θn+fn+1Tzn+1Txn+1

Checkforconvergence endfor

Thefixedpointalgorithmisstoppedwhen

f(k+1)Tx(k+1)Tz(k+1)f(k)Tx(k)Tz(k)

B×Bx

f(0)Tx(0)Tz(0)

B×Bx

ε

, (17)

whereAB×Bx=

Bx

Bz

BxA2dxdzdx01/2

andεisasmallparametertobefixedbytheuser.Inthepresentstudy,weset ε=10−6.

(7)

3.3.FEdiscretization

Tosolvethebeamproblempreviouslyintroduced,adiscreterepresentationofthefunctions(Tx,Tz)ischosen.Aclassical finiteelementapproximationinBx andBz isused.Theelementaryvectorsofdegreeoffreedom (dof)associatedwiththe finiteelementmeshinBx andBz are denotedqxe andqze,respectively.The temperaturefieldsandthe associatedgradient arecomputedfromthevaluesofqxe andqze by

Txe=Nxqxe, Exe=Bxqxe,

Tze=Nzqze, Eze=Bzqze, (18)

where ExeT

=[Tx,x Tx] and EzeT

=[Tz Tz,z]. The matrices [Nx], [Bx], [Nz], [Bz] contain the interpolation functions, their derivativesandthejacobiancomponents.Theyarebuiltfollowingthechosendiscreterepresentation.

3.4.FiniteelementproblemtobesolvedonBx

Forthesakeofsimplicity,thefunctionsf˜(k)andT˜z(k)whichareassumedtobeknown,willbedenoted f˜andT˜z,andthe functionT˜x(k)tobecomputedwillbedenotedTx.ThegradientinEq.(14)canbewrittenas

grad(T˜zTx)=z(T˜z)Ex, (19)

with

z(T˜z)=

˜

Tz 0 0 T˜z,z

. (20)

ThevariationalproblemdefinedonBx fromEq.(14)is

Bx

δ

ExT

λ

x0z(f˜,T˜z)Exdx=rdQzs(T˜z)

Bx

f˜

δ

Txdx

Bx

δ

ExTQx0z(f˜,T˜z,

θ

m)dx, (21) with

λ

x0z(f˜,T˜z)=

Bx

f˜2dx0

Bz

z(T˜z)T

λ

¯z(T˜z)dz, (22)

Qx0z(f˜,T˜z,

θ

m)=

Bx

Bz

f˜z(T˜z)T

λ

¯grad(

θ

m)dzdx0, (23)

Qzs(T˜z)=

Bzs

T˜zdz, (24)

rd isconsideredasconstant.

NotethatEq.(23)cansplitintotwoindependentintegralsoverBx andBzasθmiswrittenunderaseparatedform.

TheintroductionofthefiniteelementapproximationEq.(18)inthevariationalEq.(21)allowsustodeducethefollowing linearsystem:

x0z(f˜,T˜z)qx=Rx(f˜,T˜z,

θ

m), (25) whereqxisthenodaltemperaturesvectorassociatedwiththeFEmeshinBx,x0z(f˜,T˜z)theconductivitymatrixobtained bysummingtheelements’conductivitymatricesex0z(f˜,T˜z)andRx(f˜,T˜zm)theequilibriumresidualobtainedbysumming theelements’residualloadvectorsRex(f˜,T˜zm)

ex0z(f˜,T˜z)=

Le

BTx

λ

x0z(f˜,T˜z)Bxdx (26)

and

Rex(f˜,T˜z,

θ

m)=rdQs(T˜z)

Le

NTxf˜dx

Le

BTxQx0z(f˜,T˜z,

θ

m)dx. (27)

Le referstooneelementofthemeshinBx(Bx=∪Le).

3.5.FiniteelementproblemtobesolvedonBz

Forsimplicityreasonasin theprevious section, thefunctions f˜(k) andT˜x(k1) whichis assumedtobe known,willbe denoted f˜,T˜x,andtheunknownfunctionT˜z(k)willbedenotedTz.ThegradientinEq.(15)becomes

grad(T˜xTz)=x(T˜x)Ez (28)

(8)

with

x(T˜x)=

˜

Tx,x 0 0 T˜x

. (29)

ThevariationalproblemdefinedonBzfromEq.(15)is

Bz

δ

EzT

λ

x0x(f˜,T˜x)Ezdx=rdQx0xs(f˜,T˜x)

Bzs

δ

Tzdz

Bz

δ

EzTQx0x(f˜,T˜x,

θ

m)dx (30)

with

λ

x0x(f˜,T˜x)=

Bx

f˜2dx0

Bxx(T˜x)T

λ

¯x(T˜x)dx, (31)

Qx0x(f˜,T˜x,

θ

m)=

Bx

Bx

f˜x(T˜x)T

λ

¯grad(

θ

m)dxdx0, (32)

Qx0xs(f˜,T˜x)=

Bx

f˜T˜xdx. (33)

AsinEq.(23),theintegralinEq.(32)cansplitforthesamereason.

TheintroductionofthefiniteelementdiscretizationEq.(18)inthevariationalEq.(30)leadstothelinearsystem

x0x(f˜,T˜x)qz=Rz(f˜,T˜x,

θ

m), (34) whereqzisthenodaltemperaturevectorassociatedwiththeFEmeshinBz,x0x(f˜,T˜x)theconductivitymatrixobtainedby summingtheelements’ conductivitymatricesex0x(f˜,T˜x)andRz(f˜,T˜xm) theequilibriumresidualobtainedbysumming theelements’residualloadvectorsRez(f˜,T˜xm)

ex0x(f˜,T˜x)=

Lze

BTz

λ

x0x(f˜,T˜x)Bzdz (35)

and

Rez(f˜,T˜x,

θ

m)=rdQx0xs(f˜,T˜x)

Lzsourcee

NTzdz

Lze

BTzQx0x(f˜,T˜x,

θ

m)dz. (36) Lze referstooneelementofthemeshinBz (Bz=∪Lze).

3.6. DeterminationoffonBx

Aspreviously,theknownfunctionsT˜x(k1),T˜z(k1) andtheunknown function f˜(k)aredenotedT˜x,T˜z andf,respectively.

TheintroductionoftheseparatedformEq.(10)inEq.(16)allowsustodeducethestraightforwardrelation:

Bgrad(T˜zT˜x)T

λ

¯grad(T˜zT˜x)dB

f=rdT˜x

Bzs

T˜zdz

Bgrad(T˜zT˜x)T

λ

¯grad(

θ

m)dB. (37) Remark:ForavolumeheatsourceappliedonagivenregiondenotedIs,thecalculationofthetemperatureiscarriedout followingtwosteps.First,thecomputationofthefunctionsfi,TxiandTziinEq.(6)isperformed. Second,onlyaintegration overIsofthetermsfiintheexplicitsolutioniscomputedatthepost-processinglevel.

4. Numericalresults:thermalanalysis

Inthissection, thefollowing FEdiscretizationischosen:(i) a classical3-node quadraticFEforthethermalunknowns dependingonthex-axiscoordinate,(ii)aclassicalquadraticinterpolationforthefunctionf,(iii)afourth-orderlayer-wise descriptionforthetransversedirection.

Static thermaltestsare presentedevaluatingthe efficiencyandthepropertiesofthealgorithm andalsovalidatingour approach.Tothispurpose,a sandwichtestisaddressed.Theconvergenceofthemethod,theinfluenceofthelocation and sizeofthethermalloadarediscussed.Theapproachisassessedby comparingwith2DFEMsolutions usingacommercial code. Finally, the separatedvariables decompositionis compared witha common tensor decomposition to illustrate the performanceofthemethod.

(9)

4.1. Localizedvolumetricheatsourceontheupperfaceofasandwichbeam

Asandwichbeam, givenin[10],submitted toa localizedheat sourceon theupperface isconsidered. The testis de- scribedasfollows:

geometry:Athree-layersandwichbeamwithgraphite-epoxyfacesandasoftcorewiththicknesse=0.1hisconsidered.

S= L h=10.

boundaryconditions:localizedvolumetricheatsourceover[xsmin(1),xsmax(1)]intheupperfaceofthesandwichwithaconstant valuerd=0.1W.m3

zerotemperatureonthebottomsurfaceofthebeamsuchasθ(x,z=−h/2)=0 materialproperties:Theorientationofallthepliesisγk=0,k=1,2,3.

fortheface:λL=1.5W.m1.K1T=0.5W.m1.K1

whereLreferstothefiberdirection,Treferstothetransversedirection.

forthecore:isotropicmaterialsuchasλ=3.0W.m−1.K−1 mesh:Nx=60(numberofelementsalongthewholebeam)

results: Fora fixedheat sourcelocation, 2DFEM computationsusingAnsyswithavery refinedmeshofPLANE25 ele- mentsisprovided(120elementsalongthelengthand70elementsalongthethickness).Resultsbasedonthevariables separationxandz,denotedVS-LD4,arealsoprovided.Theseresultsareconsideredasreferencesolutions.

4.1.1. heatsourceforthreelocations

First, the approach is assessed forthree different locations of the heat source over I1=[0,10], I2=[10,20] andI3= [40,50].ForathermalloadoverIi,threeerrorindicatorsbetweenareferencesolutionθref (VS-LD4) andaseparatedvari-

ablessolutionθnofordernisintroduced:

1. energyerrorindicator

n=100

aerr(

θ

n

θ

re f,

θ

n

θ

re f) aerr(

θ

re f,

θ

re f) withaerr(

θ

1,

θ

2)=

Bx

Bzgrad(

θ

1)T

λ

¯grad(

θ

2) dzdx,

(38)

2. globalerrorindicator

n=100

Bx

Bz

(nre f)2 dzdx

Bx

Bz

re f2 dzdx

, (39)

where standsforθ,q1andq3 3. errorindicatoronthemaximumvalue

nθmax=100

(

θ

maxn

θ

maxre f)2

θ

maxre f2 , (40)

ThevariationoftheenergyerrorindicatorEq.(38)withrespect tothenumberoftriplets(Txi,Tzi,fi)isrepresentedon Fig. 3for the three locations ofthe heat source.The trendof these three configurations is rather similar. The obtained curve can be divided into two parts withtwo different slopes, thefirst one being over 0to 15 triplets, and thesecond

Fig. 3. Energy error indicator with respect to the number of triplets for three locations of volume heat source.

(10)

Fig. 4. Global error indicator (left) - θmaxerror indicator (right) for three locations of volume heat source.

Fig. 5. Global error indicator q 1(left) - q 3(right) for three locations of volume heat source.

Fig. 6. Distribution of the temperature along the beam axis for 3 locations of volume heat source at x = (xs (min1)+ xs (max1))/ 2 - 50 triplets.

one beyond 15triplets. For further investigations, Fig.4 showsthe errorrate onthe globaland maximumtemperatures versus thenumberof termsforthedifferentcases.Again, we cannoticethat the errorrateis greatlyreducedwithonly 15couples,then thenewcouples donotbringanysignificantcorrections. Nevertheless,asit canbehighlighted inFig.5, the axialheat flux q1 is themostdifficult quantity toobtain withaccuracy, andadditionaltermsare neededto improve theestimationofq1.50tripletsareneededtohaveanerrorrateoflessthan1%,whereas40tripletsaresufficientforthe maximumtemperaturewiththesameleveloferror.

Toillustratetheaccuracyoftheapproach,thedistributionsoftemperaturealongtheaxisandthethicknessofthebeam, andthevariationofthe transverseheatflux forthree locationsoftheheatsourceare showninFigs.6–8,respectively.It canbeinferredfromthesefiguresthattheparametrizedapproachisinverygoodagreementwiththe2Dreferencesolution

(11)

Fig. 7. Distribution of the transverse heat flux along the thickness for 3 locations of volume heat source at x = (xs min(1)+ xs (max1))/ 2 - 50 triplets.

Fig. 8. Distribution of the temperature across the thickness for 3 locations of volume heat source - 50 triplets.

Fig. 9. Distribution of the temperature for 3 locations of volume heat source - 50 triplets.

computedwithAnsysregardlessofthepositionofthevolumetricthermalload,fromtheedgetothemiddleofthestructure.

Thelocalizedtemperatureriseiswell-captured(seeFigs.6and9).Asfarasthetransverseheatfluxisconcerned,thefree boundary conditionon the top ofthe beam andthe continuity conditionat the layers interface are fullfiled (cf. Fig. 7).

Thehighvariationinthe upperlayerisalsowell-represented. Finally,itcanbe noticedthat theseparatedrepresentation approach(x andz coordinates), denoted VS-LD4, witha fixedlocation of heat sourceleadsto very accurate results,and couldbeconsideredasareferencesolution.

4.1.2. Influenceofthesizeoftheheatsourceregion

Tofurtherassessthemethod,localizedvolumeheatsourceoveraverysmallregionisconsidered withthreelocations (I1L=[0,5/3],I2L=[10,35/3], I3L=[40,125/3]). The variationof theerrorrateis showninFig. 10.It can beinferred from thisfigurethattheconvergencerateisslowerthanthepreviouscaseasitcouldbeexpected.Indeed,thisloadcaseimplies a highvariation of thetemperature along the beamaxis around the heat sourceregion as it can be seen inFig. 11.34 couples are needed to obtain a global error rate nθ<1%. Nevertheless, 55 couples are required to obtain the maximal temperaturewithaccuracy(about2%)duetothelocalizationeffectonthedistribution.Forillustration,thefiftyfirsttriplets Txi,TziandfiaregiveninFigs.12–14.ThevariationsofTxiandfiarerathersimilar.Theseresultswereexpectedconsidering Eq.(37)becausetheyhaveshorterwavelengthswhenthenumberofthetripletincreases.ForthefunctionTzi,thevariation alongthe thickness(Fig.13) seems to be identicalbeyondthe 10thone.Nevertheless, itis not thecaseasheat flux are correctedbytheseadditionalterms.

(12)

Fig. 10. Global error rate (left) - θmaxerror rate (right) for three very localized regions of volume heat source ( I L1, I L2, I L3).

Fig. 11. Distribution of the temperature along the beam axis for 3 locations of volume heat source - 55 triplets.

Fig. 12. T xi(x ).

Finally,itcanbeconcludedthattheaccuracyofthemethodisverygoodwhencomparedwiththereferencesolution.

4.2. ComparisonwithCANDECOMP-PARAFACapproach

Toevaluate theefficiencyofthedecompositionalgorithm developedinthe previoussection, theresultsare compared withthecanonicaldecompositionandparallelfactor(CANDECOMP-PARAFAC,denotedHOSVD-PC)[26,27]whichisacom- mon tensordecomposition.Forthat, an estimateofthe bestrank-R CandecompParafacmodelof atensorXis computed using an alternating least-squares (ALS) algorithm available in [28].The process consists infactorizing agiven Nth order tensor Xinto asum ofcomponentrank-one tensors (set of NcomponentmatricesAn withAn=[an1,...,anR],An∈RIn×R,

(13)

Fig. 13. T zi(z).

Fig. 14. f i( x 0).

(n=1,...,N))thatis X

R

r=1

a1ra2r...aNr =Xsuchthat min

X

XX

2F

whereF istheFrobeniusnormand“◦” denotesouterproduct.

Inourcase, we haveN=3 anda1r,a2r, a3r corresponds to Txr,Tzr,fr respectively.The tensorXiscomputed usingthe solutionXobtainedwith55triplets.Thetestinvolvesavolumeheatsourceappliedononlythesizeofoneelement(xs∈ [40,125/3],namely1.6%ofthelengthofthebeam).Tocomparewiththepresentapproach,twotypesoferrorrate,aglobal oneEq.(39)andalocaloneEq.(40),aregiveninFig.15.Itcanbeobservedthattheresultsarerathersimilar.Itshowsthe performanceofthepresentdecompositionprocess.

Then,theenergycontributionofeachtriplettothetotalsolutionisalsocomparedinFig.16.Forthepresentapproach, 55% and 87% of the total energyare included in the first 8 and 25 triplets, respectively. The figure illustrates well the behavior of the greedy type algorithm. On the contrary, for the HOSVD-PC approach, it is important to notice that the decompositionprovided foragivennumberof termscannot be truncated.This numbermustbe chosen a priori.We see clearlythat thereisno hierarchyinthedifferenttermsofthesummation(seeFig.16right),whichisadrawback.Infact, toobtainthisfigure,itisneededtocomputeallthetermseachtimeforafixedvalueofR.

5. Numericalresults:thermo-mechanicalanalysis

Thenumericalmethod describedin[17] tosolve themechanicalproblemisused asithasshowninteresting features intermsofaccuracyandefficiency.Again,afourth-orderexpansionforthez-functions isconsidered.Asthepresentstudy isrestrictedtoaweakthermo-mechanical coupling,oncethethermalproblemissolvedfollowingthepresentedapproach, theresolution ofthemechanical oneis limitedto thecomputationofthe second termofthe righthandside ofEq.(5). Itis importantto note that thisintegral can be alsodivided into2 parts,one over Bx and theother one over Bz asthe temperatureiswrittenunderaseparatedform. Thus,the keypoint ofthemethodremains available.Thiscomputationis giveninAppendixA.

Références

Documents relatifs

Remarks on the resolution of the thermo-mechanical problem The mechanical problem has been already solved using the vari- ables separation for composite beam structures in [16] and

The kink in the vertical profile tail (red curve, upstream wire) is an indication of cross-talk from the horizontal profile wire due to stripped electrons scattering... LINAC4

VOLUME AND TEMPERATURE DEPENDENCE OF THE TRANSVERSE CHARGE AND THE IONICITY OF TETRAHEDRAL

Die Resultate der Studie zeigen, dass trotz einem erhöhten Risiko zu psychischen Folgen eines Einsatzes Rettungshelfer Zufriedenheit und Sinn in ihrer Arbeit finden können und

Nous souscrivons donc aux recommandations européennes les plus récentes concernant le traitement anticoagulant et antiagrégant des patients atteints de fibrillation auriculaire (et

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We show that the spatial derivatives of its fundamental solution admit upper bounds that agree with the Aronson type estimate and only depend on the ellipticity constants of

En conclusion, nous trouvons que les ´etats proches de k k = 0 s’adaptent instantan´ement ` a la population pr´esente dans le r´eservoir, et que la diff´erence entre les