• Aucun résultat trouvé

Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02628310

https://hal.inrae.fr/hal-02628310

Submitted on 26 May 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

vessel density measurement on optical coherence tomography angiography in patients with myocardial

infarction

Louis Arnould, Charles Guenancia, Pierre-Henry Gabrielle, Stéphane Pitois, Florian Baudin, T. Pommier, Marianne Zeller, Alain M. Bron, Catherine

Creuzot Garcher, Yves Cottin

To cite this version:

Louis Arnould, Charles Guenancia, Pierre-Henry Gabrielle, Stéphane Pitois, Florian Baudin, et al..

Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence

tomography angiography in patients with myocardial infarction. Journal Français D’Ophtalmologie,

Elsevier Masson, 2020, in press, pp.1-6. �10.1016/j.jfo.2019.07.026�. �hal-02628310�

(2)

Version postprint

Disponibleenlignesur

ScienceDirect

www.sciencedirect.com

ORIGINAL ARTICLE

Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction

Influence des paramètres hémodynamiques systémiques sur la mesure des densités vasculaires rétiniennes en OCT angiographie chez des patients coronariens

L. Arnould

a,b,c,d,1

, C. Guenancia

e,f,1

,

P.-H. Gabrielle

a,d

, S. Pitois

e

, F. Baudin

a

, T. Pommier

e

, M. Zeller

e

, A.M. Bron

a,d

, C. Creuzot-Garcher

a,∗,d

, Y. Cottin

e,f

aOphthalmologyDepartment,UniversityHospital,14,ruePaul-Gaffarel,21079Dijon,France

bINSERM,CIC1432,clinicalepidemiologyunit,Dijon,France

cDijonUniversityHospital,ClinicalinvestigationCentre,Clinicalepidemiology/clinicaltrials unit,Dijon,France

dCentredessciencesdugoûtetdel’alimentation,AgrosupDijon,CNRS,INRAE,université BourgogneFranche-Comté,21000Dijon,France

eCardiologyDepartment,UniversityHospital,Dijon,France

fPEC2,UniversityHospital,Dijon,France

Received11July2019;accepted30July2019

KEYWORDS Retina,OCT angiography, Myocardial infarction,

Summary

Introduction.Quantitativemeasurementsofretinalmicrovasculaturebyopticalcoherence tomography angiography(OCT-A)havebeenused toassesscardiovascular riskprofile.How- ever,todate, therearenostudiesfocusing onOCT-A imaginginthesetting ofthe altered hemodynamicstatusfoundinhigh-riskcardiovascularpatients.

Correspondingauthor.

E-mailaddress:catherine.creuzot-garcher@chu-dijon.fr(C.Creuzot-Garcher).

1 Theseauthorscontributedequallytothiswork.

https://doi.org/10.1016/j.jfo.2019.07.026

0181-5512/©2020ElsevierMassonSAS.Allrightsreserved.

(3)

Version postprint

ARTICLE IN PRESS

2 L.Arnouldetal.

Cardiovascular

disease Methods.TodeterminethepotentialassociationbetweenretinalvasculardensityonOCT-A andacomprehensivebatteryofhemodynamicvariablesinpatientswithmyocardialinfarction (MI)usingdatafromtheacutephaseandat3monthsfollow-upaftercardiacrehabilitation.

ThisprospectivelongitudinalstudyincludedpatientswhopresentedwithMIinthecardiology intensivecareunitatDijonUniversityHospital.Mainoutcomesandmeasurementswereretinal vesseldensityonOCT-A,hemodynamicstatusbasedonleftventricularejectionfraction(LVEF), andindexedcardiacoutputduringtheacutephaseofmyocardialinfarctionandat3months follow-up.

Results.Overall,30patientswereincludedinthispilotstudy.Themedian(IQR)agewas64 years(55—71)with87%men.Atadmission,themean(SD)LVEFwas53%(11), andthemean indexedcardiacoutputwas2.70(0.83)L/min/m2.OnOCT-A,themeaninnerretinalvascular densitywas19.09(2.80)mm1.Nosignificantassociationwasfoundbetweenretinalvascular densityandhemodynamicvariables.

Conclusion.WefoundnosignificantassociationbetweenretinalvasculardensityonOCT-Aand hemodynamicvariablesintheacutephaseofamyocardialinfarctionorafter3monthsofcardiac rehabilitation.Therefore,OCT-Afindings donotseemtobeinfluencedbythehemodynamic changesassociatedwithmyocardialinfarction.

©2020ElsevierMassonSAS.Allrightsreserved.

MOTSCLÉS Rétine;

OCTangiographie; Infarctioninfarctus dumyocarde; Maladiecardiaque athérosclérotique

Résumé

Introduction.Les caractéristiques quantitatives de la microvascularisation rétinienne en tomographieparcohérenceoptiqueangiographie(OCT-A)ontétéutiliséespourévaluerleprofil derisquecardiovasculaire.Cependantàcejour,aucuneétudenes’estintéresséeàladescrip- tionmicrovasculaireenOCT-Adansuncontexted’unealtérationdel’étathémodynamiquechez despatientsprésentantunrisquecardiovasculaireélevé.

Méthodes.Déterminerl’associationpotentielleentreladensitévasculairerétinienneenOCT- A et un ensemble exhaustif de variables hémodynamiques chez des patients atteints d’un infarctusdumyocardeenutilisantlesdonnéesdelaphaseaiguëetdusuivià3mois,aprèsune rééducationcardiaque.Cetteétudelongitudinaleprospectiveainclusdespatientsprésentant uninfarctusdumyocardedansl’unitédesoinsintensifscardiologiqueducentrehospitalieruni- versitairedeDijon.LescritèresprincipauxétaientladensitévasculairerétinienneenOCT-A, lafractiond’éjectionventriculairegauche(FEVG)etledébitcardiaqueindexéàlaphaseaiguë del’infarctusdumyocardeetlorsdusuivià3mois.

Résultats.Autotal,30patientsontétéinclusdanscetteétudepilote.L’âgemédian(écart interquartile)étaitde64ans(55—71)avec87%d’hommes.Àl’admission,laFEVGmoyenne (écarttype)étaitde53%(11)etledébitcardiaqueindexémoyenétaitde2,70(0,83)L/min/m2. Deplus,ladensitévasculairerétinienneinternemoyenneétaitde19,09(2,80)mm1.Aucune associationsignificativen’aététrouvéeentreladensitévasculairerétinienneetlesvariables hémodynamiques.

Conclusion.Nous n’avonspas trouvéd’association significativeentrela densitévasculaire rétinienneenOCT-A etles variableshémodynamiques niàla phaseaiguëde l’infarctusdu myocardeniaprès3moisderéadaptationcardiaque.Parconséquent,lesrésultatsquantitatifs del’OCT-Anesemblentpasêtreinfluencésparlesvariationshémodynamiqueschezdespatients ayantprésentéuninfarctusdumyocarde.

©2020ElsevierMassonSAS.Tousdroitseserv´es.

Introduction

Ischemiccardiovasculardisease(CVD)isoneoftheleading causes of mortality and morbidity worldwide [1]. The clinical presentation is either sudden, in the form of an acutecoronarysyndrome(ACS),oralow-gradeprocessthat evolvesoverseveralyears.Itisthereforecrucialtodetect

at-risk patients as early as possible in order to improve follow-up and monitoring. The most reliable approach wouldbetoexplore thecoronaryvasculatureof patients, but the currently available techniques are very invasive [2,3].Inthiscontext,retinalvascularimagingappearstobe anappropriateapproachforrefiningpatients’riskstratifi- cation.Opticalcoherencetomographyangiography(OCT-A)

(4)

Version postprint

canbeavaluabletooltoassessa patient’scardiovascular riskprofile[4,5].Indeed,retinalvasculardensityseemsto beapromisingbiomarkerofcardiovascularstatus[6,7].

However,therearepotentialconcernsregardingtheuse ofimagingoftheretinalmicrovasculatureincasesofaltered hemodynamicstatusduringacuteCVDsincewe previously found a significant correlation between decreased retinal vesseldensityonOCT-Aandimpairedleftventricularejec- tion fraction (LVEF) on echocardiography [1]. Contrarily to the Doppler imaging technique, OCT-A is not a retinal blood flow-imaging device [8—10]. As a matter of fact, thecorrelationbetweenquantitativeretinalmicrovascular characteristics on OCT-A and systemic hemodynamic fea- tures remain unclear and literature is sparse about the associationbetweensystemicbloodflowandretinalOCT-A interpretation.

If the retinal vessel density on OCT-A is associated to hemodynamicchanges,itseemsveryunlikelythatitcould beusedasascreeningtoolforcardiovascularriskfactors’

assessment.Therefore,thisstudy aimedtodetermine the potential association between retinal vascular density on OCT-A anda comprehensive rangeof hemodynamic varia- blesofpatientswithmyocardialinfarction(MI)attheacute phaseandat3monthsfollow-upvisitaftercardiacrehabil- itation.

Research design and methods

Weconductedaprospectivelongitudinalancillarystudyof the EYE-MI study, which has already been reported [4].

Briefly, from May 2017 to February 2018, patients pre- senting with MI in the cardiology intensive care unit in Dijon University Hospital and with a 3-month follow-up aftercardiacrehabilitationwereincluded.Patientspresent- ing withnon-stable angina pectorisand myocarditis were excludedfromtheanalysis.Theprotocolwasapprovedby theregionalethicscommittee onhumanresearchandfol- lowedthetenetsoftheDeclarationofHelsinki.Participants have given their written informed consent. We followed theSTROBEstatementaccordingtotheEQUATORguidelines [11].

Cardiachemodynamicvariables

Thehemodynamicvariablesofeachpatientwereassessed upon admission by means of a transthoracic echocardio- graphy (General Electric, VIVID, Boston, MA, USA). The parameters measured were blood pressure, left ventric- ular ejection fraction (LVEF), the indexed cardiac output measuredattheleftventricularoutputtract,andDoppler measurementsofdiastolicfunction(E/A,E/E).Thesemea- surements were repeated on the same device and by the same cardiologist (SP) 3 months after MI and after completion of a cardiac rehabilitation program. Several patients underwent complementary hemodynamic evalu- ation via the photo-plethysmography device FINAPRES® (Demcon, Enschede, the Netherlands) at admission [12].

FINAPRES® is used for non-invasive analysis of informa- tion such as leftventricular ejection volume,myocardial contractility, aortic impedance, and vascular compli- ance.

Descriptionofretinalmicrovasculaturewith OCT-A

The method for the collection of quantitative retinal microvascular data was previously described [1]. In sum- mary,weperformedanOCT-AwithCIRRUSHD-OCT5000and Angioplexv10software(CarlZeissMeditec,Lena,Germany) in order to determine retinal microvascular characteris- ticsat admission andat the 3-month follow-up visit[13].

The OCT-A examination was performed within the first two days after admission under mydriasis obtained with eye drops containing tropicamide 0.5% (Thea, Clermont- Ferrand, France). OCT-A was performed by nurses or technicians.We collected retinal vascular features in the superficialcapillaryplexus(SCP)andwemeasuredthearea of the FAZ (mm2) in 3×3mm angiograms. Two types of vascular density were measured: perfusion density (area, unitless),whichrepresentsthetotalareaofperfusedvascu- latureperunitareainaregionofmeasurement;andvessel density(length,mm1),which representsthetotallength ofperfusedvasculature per unitareain a regionof mea- surement.Alldensitiesweremeasuredautomaticallyinthe totalandinnersectorsoftheSCP.Themeasurementswere madeonbotheyesbut oneeyeonly wasretained forthe analysisaccordingtothefollowingprocedure:

• OCT-A of the right eye for participants born in even- numbered years and the left eye for those born in odd-numberedyears;

• insingle-eyepatients,thefunctionaleyewasselected;

• whenascanwasuninterpretableforoneeye,theother onewasretainedfortheanalysis.

Onlyimageswithasignalstrength>7/10wereretained.

Thesameprotocolwasappliedforthesecondretinalexam- ination at 3-month follow-up after cardiac rehabilitation andwekeptforanalysisthesameeye.Quantitativestudies onretinal microvasculature were shown tobe repeatable [14,15].

Statisticalanalysis

Continuous variables were tested for normality (Shapiro- Wilk test). When continuous variables respected normal distribution, they were expressed in means (standard deviation, SD) and compared with one-way ANOVA for repeatedmeasures.Ifnot,theywereexpressedinmedians (interquartile-ranges, IQR) and compared using Friedman RepeatedMeasuresAnalysisofVarianceonRanks.Categori- calvariablesweresummarisedinnumbersandpercentages.

Werandomlyselectedonly oneeyefor theanalysis.They werecomparedwiththeFisher exacttest. The Spearman correlation was used to assess the association between hemodynamicstatusandretinalmicrovascularparameters.

ANOVA one-wayanalysis was used for repeated measures and subgroup analyses were performed in patients with impairedLVEF(<50%)atadmission[16].Statisticalanalysis wasperformedwithSigmaPlot12.0andSPSS22.0software programs(SPSSInc.,Chicago,DE,USA)andaPvalue≤0.05 wasconsideredtobestatisticallysignificant.

(5)

Version postprint

ARTICLE IN PRESS

4 L.Arnouldetal.

Table1 Hemodynamicstatusandretinalmicrovascularparametersonopticalcoherence tomographyangiographyof patientswithacutecoronarysyndrome,n=30.

Intensivecareunitadmission Threemonthsfollow-up Pvalue Hemodynamicvariables

LVEF(%) 53(11) 55(7) 0.130

Aorticbloodflow(mL/s)a 19.15(5.40) 21.20(3.50) 0.001

Indexedcardiacoutput(L/min/m2)a 2.70(0.83) 2.60(0.71) 0.600

Heartrate(bpm)a 72(16) 60(10) <0.001

E/Aa 0.72(0.20) 0.71(0.18) 0.470

E/Ea 7(5.88—8.40) 7.19(6.02—10.14) 0.470

Systolicbloodpressure(mmHg) 117(107—127) 138(125—153) <0.001

Diastolicbloodpressure(mmHg) 73(10.85) 83(12.31) <0.001

Retinalmicrovascularparameters

FAZ(mm2) 0.22(0.17—0.26) 0.23(0.17—0.28) 0.140

Innervesseldensity(length,mm1) 19.09(2.80) 19.51(1.98) 0.290

Totalvesseldensity(length,mm1) 18.03(2.73) 18.36(1.98) 0.400

Innerperfusiondensity(area,unitless) 0.36(0.34—0.38) 0.36(0.34—0.38) 0.850

Totalperfusiondensity(area,unitless) 0.33(0.04) 0.34(0.03) 0.390

Continuousvariablesarepresentedasmean(SD)ormedian(IQR)dependingontheirdistribution.bpm:beatsperminute;LVEF:left ventricularejectionfraction;FAZ:fovealavascularzone;E/A:earlytolatetransmitralflowvelocity;E/E:earlymitralannularvelocity.

an=23

Table2 Hemodynamicstatusandretinalmicrovascularparametersonopticalcoherence tomographyangiographyof patientswithalteredleftventricularejectionfractionatadmission(<50%),n=13.

Intensivecareunitadmission Threemonthsfollow-up Pvalue Hemodynamicvariables

LVEF(%) 42(8) 50(9) <0.001

Aorticbloodflow(mL/s) 17.88(5.25) 21.20(3.15) 0.130

Indexedcardiacoutput(L/min/m2) 2.70(0.83) 2.60(0.71) 0.600

Heartrate(bpm) 70(61—82) 60(52—67) 0.001

E/A 1.06(0.88—1.55) 1.46(1.13—1.58) 0.770

E/E 8.69(4.20) 8.44(2.76) 0.540

Systolicbloodpressure(mmHg) 117(107—127) 138(125—153) <0.001

Diastolicbloodpressure(mmHg) 71(65—84) 84(72—89) 0.150

Retinalmicrovascularparameters

FAZ(mm2) 0.21(0.07) 0.22(0.07) 0.390

Innervesseldensity(length,mm1) 18.62(2.79) 19.64(1.04) 0.210

Totalvesseldensity(length,mm1) 17.58(2.70) 18.52(1.09) 0.250

Innerperfusiondensity(area,unitless) 0.36(0.29—0.38) 0.36(0.35—0.38) 0.770

Totalperfusiondensity(area,unitless) 0.32(0.05) 0.34(0.02) 0.180

Continuousvariablesarepresentedasmean(SD)ormedian(IQR)dependingontheirdistribution.bpm:beatsperminute;LVEF:left ventricularejectionfraction;FAZ:fovealavascularzone;E/A:earlytolatetransmitralflowvelocity;E/E:earlymitralannularvelocity.

Results

Overall,45patientswereincludedintheprospectivepilot study. At the 3-month follow-up visit, 33 patients had the comprehensive ophthalmic and cardiac examination.

Finally, retinal vessel density for both consultations was kept for 30 patients (no segmentation abnormality and signalstrength>7/10).Complementaryhemodynamiceval- uationwiththeFINAPRES® NOVAsystemwasperformedin 23 patients. The median (IQR) age was 64 (55—71) years with87%men(eTableinthesupplement).Atadmission,the

mean (SD)LVEF was 53% (11) and the meanindexed car- diacoutputwas2.70(0.83)L/min/m2(Table1).OnOCT-A, the mean inner retinal vascular density was19.09 (2.80) mm1. At the 3-month follow-up visit, there was no sig- nificantdifferenceforLVEF(55%[7],P=0.13)andindexed cardiac output(2.60 [0.71]L/min/m2, P=0.60)compared with baseline. Moreover, there was no significant change concerninginnerretinal vesseldensity betweenadmission and the 3-month follow-up visit (P=0.29). No significant association was found between the retinal vessel density and hemodynamic variables measured by the FINAPRES®

(6)

Version postprint

Table3 Correlation between retinal vascular density and hemodynamic variables of patients with acute coronary syndromeatadmissionandat3monthsfollow-up,n=30.

Retinalvasculardensityatadmission Retinalvasculardensityat3monthsfollow-up Correlationcoefficient(r) Pvalue Correlationcoefficient(r) Pvalue

Hemodynamicvariables

LVEF(%) 0.172 0.160 0.051 0.790

Aorticbloodflow (mL/s)

0.093 0.460 −0.126 0.520

Indexedcardiacoutput (L/min/m2)

0.164 0.180 0.185 0.350

Heartrate(bpm) 0.165 0.190 −0.455 0.017

E/A 0.128 0.300 0.030 0.880

E/E 0.174 0.160

Systolicbloodpressure (mmHg)

0.102 0.410 0.094 0.630

Diastolicbloodpressure (mmHg)

0.259 0.033 0.171 0.380

CorrelationspresentedareSpearmancorrelation.bpm:beatsperminute;LVEF:leftventricularejectionfraction;E/A:earlytolate transmitralflowvelocity;E/E:earlymitralannularvelocity.

(datanotshown).Inthesubgroupofpatientswithimpaired LVEF (<50%, n=13)at admission, therewasnosignificant change in retinal vessel density eventhough a significant improvementinLVEFwasobservedatthe3-monthfollow- up (Table 2).Finally, nosignificant correlation wasfound betweenacuteorchronichemodynamicvariablesandreti- nal vessel density (baseline and at 3 months follow-up) (Table3).

Discussion

In this pilot study, we found no significant association between retinal vessel density and cardiac hemodynamic variables,includingcardiacoutputasestimatedbyechocar- diographyorwithFINAPRES®.

Few studies focused on the variations in retinal microvasculature on OCT-A with systemic hemodynamic modifications.Incontrasttoourresults,variationsofreti- nalmicrovascularisationonOCT-Awereassessedinhealthy subjects,beforeandafterphysicalexercise[17,18].These contradictory results could be explained by the differ- ence in the study population. Furthermore, we assessed chronichemodynamicmodificationsandnottransientevo- lutionafteraphysicalexertion.

Our results suggest that retinal hemodynamic is self- regulated and independent from systemic circulation. In fact, local self-regulation of ocular blood flow makes it possibletomaintainaconstantsupplyofoxygenandnutri- entsdespitenormalrangevariationsinhemodynamicstatus.

Changesinarteriolardiameterarecontrolledbyvasoactive moleculesintheendotheliumofretinalcapillaries[19].As aresult,theassociationfoundintheEYE-MIstudybetween impaired LVEF anddecreased retinal vessel density would notberelatedtoadecreaseinretinalbloodflowbydefeat- ingself-regulationprocesses.Themechanismunderlyingthe relationbetweenretinalvesseldensityandLVEFisunclear based on the present data. However, impaired coronary

microvasculatureinpatientswithreducedretinalvascular densitycouldleadtolargerinfarct sizeandthus tolower LVEF,assuggestedbythehighertroponinpeakreleaseinthe lowretinalvasculardensitygroupoftheEYE-MIstudy[4,20].

This hypothesis is consolidated by resultsin the subgroup withinitialalteredLVEF.Despiteasignificantimprovement ofthe LVEFafter cardiacrevascularisationand rehabilita- tion,we didnotfindany significant change in theretinal vasculardensityonOCT-A.Theseresultsmightsupportthe thesisthatinhighcardiovascularriskprofilepatients,OCT-A couldprovide an insight of the long-term microvasculari- sation abnormalities and not hemodynamic modifications.

Future studies should be carried out to investigate the association between decreased retinal vessel density and impairedcoronarymicrostructure.

We acknowledge limitations to this study. Firstly, we included only patients with a relatively stable hemody- namicstatuscompatiblewithophthalmologicexamination, so these results cannot be extrapolated to more severe hemodynamicimpairments.Secondly, sincethisstudy was apilot study, only a limitednumber of participants were included,thuslimitingthevalueofthefindings.Thirdly,we werenotabletomeasurevesseldensityinthedeepcapillary plexusonOCT-Aandonlargersamples(suchas6×6mmor 12×12mmscans)withtheversionoftheangiographysoft- ware.Thislimitationshouldbeaddressedinfuturestudies.

Conclusion

Wefoundnosignificantassociation betweenretinalvessel density on OCT-A and hemodynamic variables, suggest- ing that retinal self-regulation compensates for mild and moderatechangesincardiacoutput.Moreover,OCT-Amea- surementswerestablebetweentheacutephaseofACSand after3monthsfollow-up,whichsupportsthehypothesisof a chronic microvascular process and excludes the role of acutehemodynamicalterationsonretinalvasculardensity

(7)

Version postprint

ARTICLE IN PRESS

6 L.Arnouldetal.

values.Further work is needed to clarify the chronologi- calassociationbetweenalteredretinalmicrovascularisation andsystemicmicrovascularisationandtoconfirmtheprog- nosticvalueofretinalbiomarkers.

Statement of ethics

The researchwas conductedethically in accordance with theWorldMedicalAssociationDeclarationofHelsinki.

Funding

Supported by the University Hospital of Dijon, the Asso- ciation de cardiologie de Bourgogne, and by grants from theAgencerégionaledesanté(ARS)deBourgogne,French Ministry of Research, Institut national de la santé et de la recherche médicale (INSERM), Fédération franc¸aise de cardiologie,Société franc¸aisedecardiologieand fromthe RegionalCouncilofBurgundy.

Acknowledgement

TheauthorsthankLindaNorthrupfortheEnglishrevisionof themanuscript,andMaudMazafordatacollection.

Disclosure of interest

Theauthorsdeclarethattheyhavenocompetinginterest.

References

[1]GBD2016CausesofDeathCollaborators.Global,regional,and nationalage-sexspecific mortalityfor 264causes ofdeath, 1980-2016:asystematicanalysisfortheGlobalBurdenofDis- easeStudy2016.Lancet2017;390:1151—210.

[2]GibsonCM,Cannon CP,MurphySA,etal.Relationshipofthe TIMImyocardialperfusiongrades,flow grades,framecount, andpercutaneouscoronaryinterventiontolong-termoutcomes afterthrombolyticadministrationinacutemyocardialinfarc- tion.Circulation2002;105:1909—13.

[3]CamiciPG,CreaF.CoronaryMicrovascularDysfunction.NEngl JMed2007;356:830—40.

[4]Arnould L, Guenancia C,Azemar A, et al.The EYE-MIpilot study:a prospectiveacutecoronarysyndromecohortevalu- atedwithretinalopticalcoherencetomographyangiography.

InvestOphthalmolVisSci2018;59:4299—306.

[5]KromerR,TiggesE,RashedN,PeinI,KlemmM,BlankenbergS.

Associationbetweenopticalcoherencetomographybasedreti- nalmicrovasculaturecharacteristicsandmyocardialinfarction inyoungmen.SciRep2018;8:5615—8.

[6]TangFY,NgDS, LamA, et al.Determinants ofQuantitative OpticalCoherenceTomographyAngiographyMetricsinPatients withDiabetes.SciRep2017;7:2575.

[7]Chua J, Chin CWL, Hong J, et al. Impact of hypertension onretinalcapillarymicrovasculatureusingopticalcoherence tomographicangiography.JHypertens2019;37:572—80.

[8]RivaCE,GeiserM,PetrigBL.Beijing100193,PRChinaOcular BloodFlowResearchAssociation.Ocularbloodflowassessment using continuous laser Doppler flowmetry. Acta Ophthalmol 2010;88:622—9.

[9]RivaC,RossB,BenedekGB.LaserDopplermeasurementsof bloodflowincapillarytubesandretinalarteries.InvestOph- thalmol1972;11:936—44.

[10]ZhangA,ZhangQ,ChenC-L,WangRK.Methodsandalgorithms foropticalcoherencetomography-basedangiography:areview andcomparison.JBiomedOpt2015;20:100901.

[11]vonElmE,AltmanDG,EggerM,etal.Thestrengtheningthe reportingofobservationalstudiesinepidemiology (STROBE) statement: guidelines for reportingobservational studies. J ClinEpidemiol2008;61:344—9.

[12]KurkiT,SmithNT,HeadN,Dec-SilverH,QuinnA.Non-invasive continuousbloodpressuremeasurementfromthefinger:opti- malmeasurementconditionsandfactorsaffectingreliability.

JClinMonit1987;3:6—13.

[13]RosenfeldPJ,DurbinMK,RoismanL,etal.ZEISSAngioplexTM SpectralDomainOpticalCoherenceTomographyAngiography:

TechnicalAspects.DevOphthalmol2016;56:18—29.

[14]LeeM-W,KimK-M,LimH-B,JoY-J,KimJ-Y.Repeatabilityof vesseldensitymeasurementsusingopticalcoherencetomog- raphyangiographyinretinaldiseases.BrJOphthalmol.[EPub aheadofprint]DOI:10.1136/bjophthalmol-2018-312516.

[15]AlnawaisehM,BrandC,BormannE,Wistuba J,Eter N,Hei- duschkaP.Quantitative analysisofretinalperfusioninmice usingopticalcoherencetomographyangiography.ExpEyeRes 2017;164:151—6.

[16]PonikowskiP,VoorsAA,AnkerSD,etal.2016ESCGuidelines for thediagnosis and treatmentofacuteand chronic heart failure. The TaskForce for thediagnosis and treatment of acute and chronic heartfailure ofthe European Societyof Cardiology(ESC) Developedwiththespecial contributionof theHeartFailure Association(HFA)ofthe ESC.EurHeartJ 2016;37:2129—200.

[17]Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N.

Short-term effects of exercise on optic nerve and macular perfusionmeasuredbyopticalcoherencetomographyangiog- raphy.Retina2017;37:1642—6.

[18]Kim SV, Semoun O, Pedinielli A, Jung C, Miere A, Souied EH.Opticalcoherencetomographyangiographyquantitative assessment of exercise-induced variations in retinal vascu- lar plexa of healthy subjects. Invest Ophthalmol Vis Sci 2019;60:1412—9.

[19]PournarasCJ,Rungger-BrändleE,RivaCE,HardarsonSH,Ste- fansson E. Regulation of retinal blood flow in health and disease.ProgRetinEyeRes2008;27:284—330.

[20]Reindl M, Reinstadler SJ, Feistritzer H-J, et al. Relation ofinflammatorymarkers withmyocardialand microvascular injury in patients with reperfused ST-elevation myocardial infarction.EurHeartJ2017;6:640—9.

Références

Documents relatifs

To test whether the KdpF peptide could interact with the KdpD sensor kinase of the KdpDE two-component system, we have used the bacterial two-hybrid (BACTH) system that has

Heatmap of abundant prokaryotic ASVs determined by relative abundances ( ≥ 1 % of total relative abundance in at least one sampling date) of the particle-attached community. Results

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

[r]

Strains Species Homemade Rapid Polymyxin NP a Industrial Rapid Polymyxin NP a MIC of colistin (μg/mL) Resistance mechanisms Reference Resistant isolates..

In all cases the measured SGS force is strongly aligned with the divergence of the stress given by the nonlinear model, however the relative position of the divergence of the

The partner in Paris has a long experience of vessel segmentation and improved, in the framework of this project, an approach based on minimal paths and front propagation