• Aucun résultat trouvé

Draft genome sequence of a novel Bacillus glycinifermentans strain having antifungal and antibacterial properties

N/A
N/A
Protected

Academic year: 2021

Partager "Draft genome sequence of a novel Bacillus glycinifermentans strain having antifungal and antibacterial properties"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-02409583

https://hal-amu.archives-ouvertes.fr/hal-02409583

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Draft genome sequence of a novel Bacillus glycinifermentans strain having antifungal and

antibacterial properties

A. Karim, Olivier Poirot, A. Khatoon, M. Aurongzeb

To cite this version:

A. Karim, Olivier Poirot, A. Khatoon, M. Aurongzeb. Draft genome sequence of a novel Bacillus

glycinifermentans strain having antifungal and antibacterial properties. Journal of Global Antimicro-

bial Resistance, Elsevier, 2019, 19, pp.308-310. �10.1016/j.jgar.2019.10.011�. �hal-02409583�

(2)

Draft genome sequence of a novel Bacillus glycinifermentans strain having antifungal and antibacterial properties

A. Karim

a,

*, O. Poirot

b

, A. Khatoon

a

, M. Aurongzeb

a

aJamil-Ur-RahmanCenterforGenomeResearch,DrPanjwaniCenterforMolecularMedicineandDrugResearch(PCMD),InternationalCenterforChemical andBiologicalSciences(ICCBS),UniversityofKarachi,Karachi75270,Pakistan

bAix-MarseilleUniversité,CNRS,StructuralandGenomicInformationLaboratory,UMR7256(IMMFR3479),163AvenuedeLuminy,Case934,13288, MarseilleCedex9,France

Objectives:Bacillusspp.havebeenusedasbiocontrolagentsagainstsoilbornepathogensbecausethey producesecondarymetabolitesthatexhibitawiderangeofantibacterialorantifungalproperties.Inthis study,anovelstrainofBacillusglycinifermentans sp.(JRCGR-1)wasidentifiedand itsgenomewas sequencedandannotated.Thegenomewasexploredforputativegenesinvolvedinantimicrobialactivity.

Methods:Whole-genomesequencingwasperformedonanIlluminaNextSeq500platform.Readquality waschecked byFastQC,paired-end readsweretrimmed using Sickle, and denovo assemblywas performedusingSPAdesv.3.11.11.QUAST5.02wasusedtoassessthequalityofcontigsandscaffolds.

Finally, the assembled scaffoldswere annotated by Prokka v.1.13.Genes involvedin antimicrobial metabolitebiosynthesiswerepredictedusingantiSMASH.Virulenceandantimicrobialresistancegenes werepredicted using BacWGSTdb and the Comprehensive Antibiotic ResistanceDatabase (CARD), respectively.

Results:ThegenomeofB.glycinifermentansJRCGR-1was4700692bpinsizewithaG+Ccontentof 45.52%.Finalassemblyofthegenomeresultedinto84contigsand83scaffolds(>500bplength).Overall, thegenomecomprises5174genes,32tRNAs,4rRNAs,1tmRNAand92misc_RNAs.Elevenputativegene clusters responsiblefor antimicrobial metabolitebiosynthesis were identified, including genes for biosynthesisofnon-ribosomal lipopeptidesandpolyketides.Virulence andantimicrobial resistance geneswerealsoidentifiedinthegenome.

Conclusion:ThepresenceofantimicrobialresistancegenesinthegenomeofB.glycinifermentansJRCGR-1 makesitapotentialbiocontrolagentagainstsoilbornepathogens.

Soilborne pathogens are emerging as a global threat to agriculturalproducts,andeachyearworldwidetheycausehuge economiclosses.Severalchemical-basedfertilisersandpesticides areusedtocontrolsoilbornepathogens.However,withlong-term use thesechemicals arehazardous tohumanhealth and cause environmentpollution.Analternativetoovercomethisproblemis theuseofbiocontrolagents[1].Specifically,thegenusBacillusisa potentcandidateforbiocontrolagentsagainstsoilbornepathogens as members of this genus producea wide range of secondary metabolites,hydrolyticenzymesandvolatileorganiccompounds withantibacterialorantifungalproperties.

Much workhasbeen donetoexplore thebiochemistry and physiology ofBacillusspp. Advancementsin thefieldofwhole-

genome sequencinghavegiven a new dimensiontomicrobial- basedproductsandprocesses.

In2015,twobacterialisolatesfromcheonggukjang,aKorean fermentedsoybeanpastefoodproduct,werefoundtocomprisea novelBacillussp.namedBacillusglycinifermentanssp.nov.[2].To date,onlyfiveB.glycinifermentansgenomesequencesareavailable inpublicdatabases,includingthreecompletegenomes(GenBank Assembly accession nos. GCA_900093775.1, GCA_002443095.1 andGCA_004103615.1)andtwodraftgenomes(GenBankAssem- blyaccession nos. LECV00000000.1and LECW00000000.2).To thebestofourknowledge,thisisthefirstdraftgenomesequenceof

B. glycinifermentansreportedfromPakistan.

TostudythegenomeofB.glycinifermentansstrainJRCGR-1,the strainwas first culturedonanutrient agarplate.Colonieswere theninoculatedinto10mLofLuriabrothandwereincubatedat 37Cfor 24h.The opticaldensitywas adjustedtoa McFarland

(3)

standard of 3–4nm. Following incubation, bacterial cells were collectedbycentrifugation(3000gfor15min).Thesupernatant wasremovedwithoutdisturbingthesedimentandtheDNAwas extractedusingacommercialDNAextractionkit(QIAamp1DNA MiniKit;QIAGEN,Hilden,Germany).AQubitTMdsDNABRAssaykit (Invitrogen;ThermoFisherScientific,Eugen,OR,USA)wasusedto calculate the amount of DNA using a Qubit1 2.0 fluorometer

(Invitrogen)accordingto themanufacturer’sinstructions.ANextera XTDNALibraryKit(IlluminaInc.,SanDiego,CA,USA)wasusedto constructapaired-endlibrary,andsequencingwasperformedona NextSeq500platform(IlluminaInc.)inpaired-endreadmode.The qualityofthereadswascheckedusingFastQCsoftware.Paired-end readswerethentrimmedusingSickleanddenovoassemblywas performedusingSPAdesv.3.11.11intocontigsandscaffolds(base

Table1

SecondarymetaboliteprofileofsixBacillusglycinifermentansstrains.

Strain/metabolitetype Mostsimilarknowncluster Similarity(%)

B.glycinifermentansGO-13

Lanthipeptide GeobacillinII 50

NRPS Lichenysin 100

T3PKS

NRPS Fengycin 26

Siderophore

β-Lactone Fengycin 53

Lassopeptide

NRPS Bacillibactin 53

NRPs,T1PKS,terpene Paenibacterin 60

B. glycinifermentansKJ-17

Thiopeptide,bacteriocin Butirosin 7

NRPS,terpene,T1PKS Paenibacterin 60

Lassopeptide

T3PKS

Lanthipeptide Geobacillin 50

Siderophore

NRPS Fengycin 33

NRPS Bacillibactin 46

NRPS Lichenysin 100

β-Lactone Fengycin 53

B. glycinifermentansBGLY

Sactipeptide SporulationkillingfactorSkfA 85

NRPS Lichenysin 100

Thiopeptide,bacteriocin Butirosin 7

Siderophore

β-Lactone Fengycin 53

Terpene

T3PKS

NRPS Bacitracin 88

NRPS Bacillibactin 53

B. glycinifermentansKBNO06PO3352

NRPS Fengycin 26

β-Lactone Fengycin 53

NRPS,T1PKS,terpene Paenibacterin 60

T3PKS

NRPS

Lassopeptide

Lanthipeptide Geobacillin 50

NRPS Lichenysin 100

Thiopeptide,bacteriocin Butirosin 7

Siderophore

B.glycinifermentansSRCM103574

Sactipeptide(head-to-tailcyclisedpeptide) SporulationkillingfactorSkfA 85

NRPS Lichenysin 100

Thiopeptide,bacteriocin Butirosin 7

Siderophore

β-Lactone Fengycin 53

Terpene

T3PKS

NRPS Bacitracin 88

NRPS Bacillibactin 53

B. glycinifermentansJRCGR-1

T3PKS

Terpene

β-Lactone Fengycin 53

NRPS Lichenysin 100

Head-to-tail SporulationkillingfactorSkfA 71

Siderophore

NRPS Bacillibactin 53

NRPS Bacitracin 66

Bacteriocin

NRPS

NRPS Bacitracin 33

NRPS,non-ribosomalpeptidesynthetase.

(4)

quality scores>Q20,k=39).Thequality ofcontigsandscaffoldswas evaluatedbyQUAST5.02.Theassembledcontigswereannotated usingProkka v.1.13[>500bp;e-valuecut-offdefault(10_6)]for rapidannotationofprokaryoticgenomes.tRNAscan-SEwasusedfor thepredictionoftRNA genes.Theplasmidwasassembledusing plasmidSPAdes (base quality scores>Q20, k=55), and gene annotationwasdoneusingProkkav.1.13[>500bp;e-valuecut- offdefault(10_6)].RNAmmerandBarrnapwereusedtoidentify RNAgenes.Putativegenesinvolved inantimicrobialmetabolite biosynthesiswerepredictedusingantiSMASHv.5.0.0rc1.Virulence geneswerepredictedusingtheBacWGSTdbservice(http://bacdb.

org/BacWGSTdb/index.php).Antimicrobialresistancegeneswere predictedusingtheComprehensiveAntibioticResistanceDatabase (CARD)(https://card.mcmaster.ca/home).

A total of 4 851 845 paired-end reads (276-bp) were generated with 32 coverage for strain JRCGR-1. The genome assembly contained 4700692 bp and with an average G+C contentof45.52%.Thefinalassemblycontains84contigsand83 scaffolds(>500bplength,N50of135232bp).Themaximumcontig sizewas384553bp.Overall,thegenomecomprises5174genes,32 tRNAs,4 rRNAs,1 tmRNAand 92 misc_RNAs. Theplasmid was assembledinto37scaffoldsusingplasmidSPAdes.Otherfeaturesof theplasmidincludeasizeof1113267bp,27tRNAs,4rRNA,1366 genes,21misc_RNAsand1314CDS(codingsequences).

Genesinvolvedinantimicrobialmetabolitebiosynthesiswere predictedusingantiSMASH.DraftgenomeanalysisofstrainJRCGR- 1revealed11putativegeneclustersresponsibleforantimicrobial metabolitebiosynthesis,amongwhichfiveencodenon-ribosomal peptidesynthetases(NRPS)(forbiosynthesisofonefengycin,one lichenysin,onebacillibactinandtwobacitracins)andonerelated toterpeneandβ-lactonebiosynthesis.Siderophores(bacillibactin) producedbybacteriaareinvolvedininhibitionofphytopathogen growthbydeprivingthemofessentialiron[3].

SupplementaryFigs.S1andS2showtwoputativegeneclusters ofstrainJRCGR-1(labelasquerysequence)involvedinbiosynthe- sisofsecondarymetabolites. Thesegeneshavesimilaritieswith non-ribosomallipopeptides(lichenysin,surfactin,fengycin,myco- subtilinand plipastatin) and polyketides (basiliskamides). Sup- plementaryFig.S1(A)showsthefirstputativegeneclusterofstrain JRCGR-1 involved in secondary metabolite biosynthesis and its similaritytolichenysin(100%),surfactin(47%)andbasiliskamides (9%).ComparisonofthisgeneagainstotherBacillusspp.shows94%

similaritywithB.glycinifermentansstrainGO-13,B.glycinifermen- tansstrainKBNO06PO3352and B.glycinifermentansstrainBGLY [SupplementaryFig. S1(B)]. Similarly, thesecond putative gene cluster presented similarities with fengycin (53% similarity), mycosubtilin (40% similarity) and plipastatin (30% similarity) [Supplementary Fig. S2(A)].Comparison of this predicted gene clusterofstrainJRCGR-1withotherBacillusspp.showedsimilarity between45–50%forsevenBacillusparalicheniformissp.and46%

genesimilarityforBacilluslicheniformisstrainB4123[Fig.S2(B)].

SecondarymetabolitesforfiveotherstrainsofB.glycinifermentans werealso predicted using antiSMASH. The finding reveals that fengycinandlichenysinwerepresentascoregenes,i.e.theywere present in all six strains. A putative gene for bacillibactin was absentinB.glycinifermentansstrainKBNO06PO3352.Sporulation killingfactorSkfAwaspresentinB.glycinifermentansstrainJRCGR- 1 and B. glycinifermentans strain SRCM103574. Details of the secondarymetaboliteprofileofsixstrainsofB.glycinifermentans sp.aregiveninTable1.ThepresenceoftheseNRPSgenescanbe linkedwiththebiocontrolpotentialofbacteria[4].Severalgene clusterwerealsoidentifiedthatcansuppressthegrowthofGram- positivebacteriabyproducingsynthetases(PKS),e.g.oleandomy- cin,β-lactamase, tetracenomycinand tetracycline.Putative bsIA (yuaB)andtasAgenesassociatedwiththeproductionofbiofilm

matrixandfungalcell-wall-degradingenzymes,respectively,were alsoidentified.InthegenomesofsixstrainsofB.glycinifermentans sp.,twoantimicrobialresistancegenes(bcrAandEscherichiacoli ampC1β-lactamase)werepresentasaccessorygenes.Thesegenes were present in three strains of B. licheniformis, including SRCM103574,BGLYandJRCGR-1.ThebcrAgeneisanATP-binding cassette(ABC)transporterfoundmostlyinB.licheniformissp.that confersbacitracinresistance[5].TheE.coliAmpC1β-lactamase resistancemechanismisbasedonantibioticinactivation,whereas forBcrAtheresistancemechanisminvolvesantibioticefflux.Inthe genomesofstrainsKBNO06PO3352andGO-13,onlyE.coliampC1 β-lactamasewaspredicted.Ontheotherhand,strainKJ-17lacksall of thesegenes.Wealsoidentified virulencegenesin thestrain JRCGR-1 genome, including capA, capB, capC and hlyIII, with similaritiesof83.25%,89.30%,88%and82.26%,respectively.

The aforementionedfindings revealthat B. glycinifermentans JRCGR-1 might be a potential candidate as a biological control agentagainstplantsoilbornediseases.

GenBankaccessionno

ThedraftgenomesequenceofB.glycinifermentansJRCGR-1was submittedtotheNCBIdatabasewithaccessionno.VHPY0000000.

Funding

This study was supported by funds from the International CenterforChemicalandBiologicalSciences(ICCBS),Universityof Karachi(Karachi,Pakistan),CampusFranceandEmbassyofFrance inPakistan.

Competinginterests Nonedeclared.

Ethicalapproval Notrequired.

Acknowledgments

TheauthorswouldliketothankMatthieuLegendre, Chantal Abergel, Sébastien Santini and Sébastien Nin [Aix-Marseille Université,CNRS,StructuralandGenomicInformationLaboratory, UMR 7256 (IMMFR 3479)] and Georges Massiot[Universityof Reims,Reims,France]fortheirvaluablesupport.

AppendixA.Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,atdoi:https://doi.org/10.1016/j.jgar.2019.10.011.

References

[1]CookRJ.Makinggreateruseofintroducedmicroorganismsforbiologicalcontrol ofplantpathogens.AnnuRevPhytopathol1993;31:53–80.

[2]Kim S-J, Dunlap CA, Kwon S-W,Rooney AP.Bacillus glycinifermentanssp.nov.,isolated fromfermentedsoybeanpaste.IntJSystEvolMicrobiol2015;65:3586–90.

[3]ChenXH,KoumoutsiA,ScholzR,EisenreichA,SchneiderK,HeinemeyerI,etal.

Comparativeanalysisofthecompletegenomesequenceoftheplantgrowth- promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 2007;25:1007–14.

[4]ZhangS,JiangW,LiJ,MengL,CaoX,HuJ,etal.Wholegenomeshotgunsequence ofBacillusamyloliquefaciensTF28,abiocontrolentophyticbacterium.Stand GenomicSci2016;11:73.

[5]PodlesekZ,CominoA,Herzog-VelikonjaB,Žgur-BertokD,KomelR,GrabnarM.

Bacilluslicheniformis bacitracin-resistance ABCtransporter: relationshipto mammalianmultidrugresistance.MolBiol1995;16:969–76.

Références

Documents relatifs

Céline Pesce, a,b Stéphanie Bolot, c,d Edwige Berthelot, a Claude Bragard, b Sébastien Cunnac, a Marion Fischer-Le Saux, e Perrine Portier, e,f Matthieu Arlat, c,d,g Lionel

Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany k ; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom l ; Division of

Citation Pesce C, Bolot S, Berthelot E, Bragard C, Cunnac S, Fischer-Le Saux M, Portier P, Arlat M, Gagnevin L, Jacques M-A, Noël LD, Carrère S, Koebnik R.. Draft genome sequence

Draft Genome Sequence of Xanthomonas sacchari Strain LMG 476 Isabelle Pieretti, a Stéphanie Bolot, b,c Sébastien Carrère, b Valérie Barbe, d Stéphane Cociancich, a Philippe Rott,

CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France a ; INRA, Laboratoire des Interactions Plantes Micro- Organismes

We report the draft genome sequence of the Xanthomonas cassavae type strain CFBP 4642, the causal agent of bacterial necrosis on cassava plants.. These data will allow the comparison

Draft Genome Sequence of Desulfovibrio BerOc1, a Mercury-Methylating Strain Marisol Goñi Urriza, a Claire Gassie, a Oliver Bouchez, b Christophe Klopp, c.. Rémy

Similarly, the RAST server predicted a total of 5202 features, of which 5125 represent coding se- quences (CDS), 6 rRNA and 71 tRNA genes. The annota- tion derived from the RAST