• Aucun résultat trouvé

Order convergence and compactness

N/A
N/A
Protected

Academic year: 2022

Partager "Order convergence and compactness"

Copied!
5
0
0

Texte intégral

(1)

C AHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

D. V AN DER Z YPEN

Order convergence and compactness

Cahiers de topologie et géométrie différentielle catégoriques, tome 45, n

o

4 (2004), p. 297-300

<http://www.numdam.org/item?id=CTGDC_2004__45_4_297_0>

© Andrée C. Ehresmann et les auteurs, 2004, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

297

ORDER CONVERGENCE AND COMPACTNESS

by

D. van der ZYPEN

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL V-4 (2004)

Rksum6. Soit

(P, )

un ensemble partiellement ordonn6 et soit T une topolo- gie compacte sur P qui est plus fine que la topologie d’intervalles. Alors T

est contenu dans la topologie de convergence d’ordre. 1

1 Topologies

on a

given poset

On any

given partially

ordered set

(P,!5)

there are

topologies arising

from

the

given

order in a natural way

(see

also

[2]). Perhaps

the best known such

topology

is the interval

topology.

Set S- -

f P B (x] :

x E

PI,

and

S+ = {PB[x) : x E P} where (x] = {y E P: y x} and [x) = {y E P : y &#x3E; x}.

Then s = S- U S+ is a subbase for the interval

topology T2(P)

on P.

There is another natural way to endow an

arbitrary poset ( P, )

with a

topol-

ogy. We want to describe this

topology

in the

following.

A

(set) filter

r on

(P, )

is a

nonempty

subset of the

powerset

of P such that

- lll § 0

(Note

that the above

concept

can of course be defined for

arbitrary sets.)

For

any subset A C P let the set

of

lower bounds

of A

be denoted

by Al - {x

E P : x a for all a E

A}

and the set of upper bounds

by Au = f x

E

P : x &#x3E; a for all a E A}. If S is a

collection of subsets of P then we set

Sl

=

U {Sl : S

E

S}, similarly

set su =

U{Su :

S E

S}.

Let A C P be a subset

of a poset

P and

y E P.

We say

that y

is the infimum

of A if y

is the

greatest

element

of Al

and write

/B

A = y.

Dually

we define

AMS subject classification (2000): 06B15, 06B30

Keywords: interval topology, order convergence, order topology, compact ordered spaces

(3)

298

the supremum of

A,

written

V

A. Note that in

general,

suprema and infima need not exist.

Let F be a filter on a poset P and let x E P. We say that F

order-converges to x,

in

symbols 0+z,

if

/B Fu

= x

= B/ Fl.

Note that the

principal

ultrafilter

consisting

of the subsets of P that contain x

order-converges

to x.

Now we are able to define the order convergence

topology To(P) (called

order

topology

in

[1])

on any

given poset

P

by:

ro(P) = {U

C P : for any x E U and any filter 0 with F --&#x3E;x

we have U E

F}.

It is

straightforward

to

verify

that this is a

topology. Indeed, To(P)

is the

finest

topology

on P such that order convergence

implies topological

con-

vergence

(which

is not hard to prove

either).

We will make constant use of

the

following

facts:

FACT 1.1. Let P be a poset, let F be

a filter

on P. Then:

3.

Suppose

F --&#x3E; x.

If x

a then

P B (a]

E F.

Dually if x 1:-

b then

PB[b) E F.

4.

If F --&#x3E; x and 9

is

a filter

on P

with G C

F then

G --&#x3E; x.

Proof

The

proofs

of assertions 1 and 2 are

straightforward,

and assertion 3 follows

directly

from

[1],

p. 3. We prove assertion 4. Since

G C Fu

it

suffices to show that

Gu

9

[x)

in order to

get /B Gu =

x. Assume that there

is y E Gu B [x). By

assertion

1, (y]

E

9.

Since we

have x

y, we

get

P B (y] E F C 9 (by

assertion

3).

So

(y]

n

(P B (y]) = 0

E

which

is a

contradiction. The statement

V 91

= x is

proved similarly.

0

2 The result

Note that

1.1,

assertion 3

implies

that for any

poset P,

the interval

topology ri(P)

is contained in the order convergence

topology To(P).

The

following

theorem connects the

concepts

of interval

topology,

order convergence and compactness.

(4)

299.

THEOREM 2.1. Let

(P, )

be a poset.

If T is a

compact

topology

on P

such that

T;(P)

C T, then T C

To(P).

Proof. Suppose

that

W E r B To(P).

Then there is x E W and a filter F on

P such that F --&#x3E; x and

W 1:.

F.

The

strategy

now is to find an ultrafilter on the closed set

Q

:=

P B

W of

(P, T)

that does not converge to any

point

of

Q

with

respect

to the

subspace topology

of

(P, T)

on

Q.

This will

imply

that

Q

is a

non-compact

closed subset of

(P, T),

which in turn

implies

that

(P, T)

is not

compact.

Note that every element of .F intersects

Q (otherwise

we would have W E

.

So 0 U

{Q} is a

filter base which is contained in some ultrafilter U.

Moreover, by 1.1,

assertion

4,

the ultrafilter Lf

order-converges

to x.

It is easy to check that

is an ultrafilter on

Q (this

uses of course the fact that

Q

is a member of

U).

Claim:

U|Q

does not converge to any y E

Q

with

respect

to

r|Q,

the

topol-

ogy on

Q

induced

by

T.

Proof of

Claim: Pick any y E

Q. First,

we know that x E W and y E

Q, whence x =1=

y.

Suppose

that the

following

holds in P:

(A)

For all z E Uu we have

y z

and for all z’

E Ul

we

have

y &#x3E;

z’.

Then

by

definition of order convergence this would

imply y

x, since

x =

AU’,

and

similarly

we would

get y &#x3E;

x, a contradiction

to x #

y.

So, (A)

must be

false,

and without loss of

generality

we may assume that there is a zo E ?,f"

with y i

zo.

By 1.1,

assertion

1,

we

get (z0]

E U which

implies

Since y f

zo we also have

Because T contains the interval

topology Ti(P),

statement

(*)

above

implies

that the set

(5)

300

is an open

neighborhood of y in (Q, r|Q).

But since B

E U|Q and V = QBB,

we have

V E U|Q,

so

U|Q

does not converge

to y

with

respect

to

7-L.

Since

y E

Q

was

arbitrary,

the claim is

proved.

The claim now shows that

Q

=

P B

W’ is a

closed, non-compact

subset of

(P,T).

So

(P,T)

cannot be

compact.

D

This theorem has a direct consequence for

Priestley

spaces, i.e.

compact totally

order-disconnected ordered spaces as introduced in

([3], [4]).

COROLLARY 2.2.

If (P,

T,

) is a Priestley

space, then T C

T,(P).

ACKNOWLEDGEMENT: The author wishes to thank Jana Flaskova for

point- ing

out a mistake in the

proof

of fact 1.1 and

providing

a more direct argu- ment.

References

[1] ] M.Erné, Topologies on products of partially ordered sets. III. Order convergence and order topology, Algebra Universalis 13 (1981), no. 1, 1-23.

[2] G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott: A Compendium

of Continuous Lattices, Springer-Verlag, 1980.

[3] H.A.Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.

[4] H.A.Priestley, Ordered topological spaces and the representation of distributive lat- tices, Proc. London Math. Soc. (3) 24 (1972), 5072014530.

D. van der Zypen

Mathematical Institute 24-29 St Gile’

Oxford OX 1 3LB Great Britain

vanderzy@maths.ox.ac.uk

Références

Documents relatifs

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation