• Aucun résultat trouvé

AN EXPLICIT UPPER BOUND FOR THE LEAST PRIME IDEAL IN THE CHEBOTAREV DENSITY

N/A
N/A
Protected

Academic year: 2022

Partager "AN EXPLICIT UPPER BOUND FOR THE LEAST PRIME IDEAL IN THE CHEBOTAREV DENSITY"

Copied!
49
0
0

Texte intégral

(1)

ANNALES DE

L’INSTITUT FOURIER

LesAnnales de l’institut Fouriersont membres du Centre Mersenne pour l’édition scientifique ouverte

Jeoung-Hwan Ahn & Soun-Hi Kwon

An explicit upper bound for the least prime ideal in the Chebotarev density theorem

Tome 69, no3 (2019), p. 1411-1458.

<http://aif.centre-mersenne.org/item/AIF_2019__69_3_1411_0>

© Association des Annales de l’institut Fourier, 2019, Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France.

http://creativecommons.org/licenses/by-nd/3.0/fr/

(2)

AN EXPLICIT UPPER BOUND FOR THE LEAST PRIME IDEAL IN THE CHEBOTAREV DENSITY

THEOREM

by Jeoung-Hwan AHN & Soun-Hi KWON (*)

Abstract. — Lagarias, Montgomery, and Odlyzko proved that there exists an effectively computable absolute constantA1such that for every finite extensionK ofQ, every finite Galois extensionLofKwith Galois groupGand every conjugacy classCofG, there exists a prime idealpofKwhich is unramified inL, for which

L/K p

=C, for whichNK/Qpis a rational prime, and which satisfiesNK/Qp6 2dLA1. In this paper we show without any restriction thatNK/Qp6dL12577 if L6=Q, using the approach developed by Lagarias, Montgomery, and Odlyzko.

Résumé. — Lagarias, Montgomery, et Odlyzko ont démontré qu’il existe une constante absolue effectivement calculableA1telle que pour chaque extension finie K de Q, chaque extension galoisienne finie L de K à groupe de Galois G, et chaque classe de conjugaison C deG, il existe un idéal premier pdeK qui est nonramifié dans L, pour lequelL/K

p

=C, pour lequelNK/Qpest un nombre premier rationel, et qui satisfaitNK/Qp62dLA1. Dans cet article nous démontrons sans aucune restriction que NK/Qp6dL12577 siL6=Q, en suivant la méthode developpée par Lagarias, Montgomery, et Odlyzko.

1. Introduction

LetKbe a finite algebraic extension ofQ, andLa finite Galois extension of K with Galois group G. Let dL and dK denote the absolute values of discriminants ofLandK, respectively, and letnL= [L:Q],nK = [K:Q].

To each prime ideal p of K unramified in L there corresponds a certain

Keywords: The Chebotarev density theorem, Dedekind zeta functions, the Deuring–

Heilbronn phenomenon.

2010Mathematics Subject Classification:11R44, 11R42, 11M41, 11R45.

(*) The first author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF- 2013R1A1A2061231) and a Korea University Grant. The second author was supported by NRF-2013R1A1A2007418.

(3)

conjugacy classC of Gconsisting of the set of Frobenius automorphisms attached to the prime idealsPofLwhich lie overp. Denote this conjugacy class by the Artin symbolhL/K

p

i

. For a conjugacy classC ofGlet πC(x) =|{p |pa prime ideal ofK, unramified inL,

L/K p

=C, andNK/Qp6x}|.

The Chebotarev density theorem states that πC(x)∼|C|

|G|Li(x)

as x → ∞. (See [15], [53], [28], [39], and [50]. See also [47] for some ex- tensions of Chebotarev’s theorem and applications.) The error term of this theorem was estimated in [24], [41], and [59]. Lagarias, Montgomery, and Odlyzko estimated upper bound for the least prime idealpwithhL/K

p

i

=C under the Generalized Riemann Hypothesis (GRH), and unconditionally, in [24] and [23], respectively.

Theorem A(Lagarias and Odlyzko [24]). — There exists an effectively computable positive absolute constantA0 such that if the GRH holds for Dedekind zeta function of L6= Q, then for every conjugacy class C of G there exists an unramified prime idealpin Ksuch thathL/K

p

i

=C and NK/Qp6A0(logdL)2.

Oesterlé ([41]) has stated that if GRH holds, then one may haveA0= 70.

Bach and Sorenson ([4]) has improved this result in two ways: If GRH holds, then for any classC ofGthere is a primepinKof degree 1 overQ withhL/K

p

i

=C andNK/Qp 6(4 logdL+ 2.5nL+ 5)2. (See also [3], [38], and [22].) Let

P(C) =

p

pa prime ideal ofK, unramified inL, of degree one overQand

L/K p

=C

. Theorem B (Lagarias, Montgomery, and Odlyzko [23]). — There is an absolute, effectively computable constantA1 such that for every finite extensionKofQ, every finite Galois extensionLofK, and every conjugacy classCofG, there exists a prime pinP(C)which satisfies

NK/Qp62dLA1

.

(4)

See also [57]. WhenK=QandL=Q(e2πi/q), the conjucacy classes ofG correspond to the residues classes moduloqand Theorem B gives an upper bound for the least prime in an arithmetic progression ([24] and [23]). In this case Theorem B is weaker than Linnik’s theorem ([29], [30], [5]). For the least prime in an arithmetic progression, see for example [7], [8], [13], [14], [17], [18], [42], [43], [55], [56], and [61]. IfK=Q, L=Q(√

D), andρ is the non identity inGal(L/Q), Theorem B gives an upper bound for the least quadratic nonresidue moduleD. For this case no upper bound better than Theorem B is known ([54], [6], [24], [23], [2], [25], [26]). In this paper we compute the constantA1.

Theorem 1.1. — For every finite extensionK ofQ, every finite Galois extensionL(6=Q)ofK with Galois groupG, and every conjugacy classC ofG, there exists a prime idealp inP(C)which satisfies

NK/Qp6dLA1

withA1= 12577.

To compute the constantA1we follow the method developed by [23]. In particular, we express zero-free regions for Dedekind zeta functions, density of zeros of Dedekind zeta functions, and Deuring–Heilbronn phenomenon with explicit constants in Sections 5-7 below. Zaman showed in [63] that NK/Qp dL40 for sufficiently large dL. See also [51]. Winckler proved A1= 27175010 without any restriction in [60].

2. Outline of Lagarias–Montgomery–Odlyzko’s method Let<zand=zdenote the real part and imaginary one ofz∈C, respec- tively. We review the procedure for the proof of Theorem B in [23]. Let gC and

FC(s) =−|C|

|G|

X

ψ

ψ(g)L0

L(s, ψ, L/K),

whereψruns over the irreducible characters of GandL(s, ψ, L/K) is the Artin L-function attached toψ. The main parts of [23] consist of estimates of inverse Mellin transforms

1 2πi

Z 2+i∞

2−i∞

FC(s)k(s) ds

wherek(s) is a kernel function. The main steps of the proof of Theorem B in [23] are as follows:

(5)

(i) From the orthogonality relations for the charactersψit follows that for<s >1

FC(s) =X

p

X

m=1

θ(pm)(logNK/Qp)(NK/Qp)−ms

where for prime idealspofK unramified inL

θ(pm) =

1 ifhL/K

p

im

=C, 0 otherwise,

and|θ(pm)|61 ifp ramifies inL. So we can separate the pm with hL/K

p

im

=Cfrom the others. (See [24, Section 3].)

(ii) Using a method due to Deuring ([10] and [35])FC(s) can be writ- ten as a linear combination of logarithmic derivatives of Hecke L- functions instead of Artin L-functions. LetH =< g >be the cyclic subgroup generated byg,E the fixed field ofH. Then

(2.1) FC(s) =−|C|

|G|

X

χ

χ(g)L0

L(s, χ, E),

whereχruns over the irreducible characters ofH, andL(s, χ, E) is a Hecke L-function attached to fieldE withχ(p) =χhL/E

p

i for all prime idealspofE unramified in L. (See [24, Section 4].) So, all the singularities ofFC(s) appear at the zeros and the pole ofζL(s).

(iii) The kernel functions which weight prime ideals of small norm very heavily are used. Set

k0(s;x, y) =

ys−1xs−1 s−1

2

fory > x >1, k1(s) =k0(s;x, x2) forx>2,

and

k2(s) =k2(s;x) =xs2+s forx>2.

In the case that ζL(s) has a real zero very close to 1 we use the kernel k2(s). Otherwise we use the kernel k1(s). The use of the kernel functions is the main innovation of [23].

(6)

(iv) For u > 0 we denote by bk(u) the inverse Mellin transform of the kernel functionk(s). Then, for<s >1,

I= 1 2πi

Z 2+i∞

2−i∞

FC(s)k(s) ds

=X

p

X

m=1

θ(pm)(logNK/Qp)bk(NK/Qpm),

where the outer sum is over all prime ideals ofK. An upper bound E(logdL) for

(2.2)

I− X

p∈P(C)

(logNK/Qp)bk(NK/Qp)

6E(logdL) was estimated in [23, (3.15) and (3.16)].

(v) The integralIis evaluated by contour integration:

I= |C|

|G|k(1)−|C|

|G|

X

χ

χ(g)X

ρχ

k(ρχ) +O

|C|

|G|nLk(0) +|C|

|G|k

−1 2

logdL

, where ρχ runs over the zeros of L(s, χ, E) in the critical strip.

(See [23, Section 3].) So we get (2.3) |G|

|C|I>k(1)−X

ρ

|k(ρ)| −c6

nLk(0) +k

−1 2

logdL

, whereρ runs over the zeros of ζL(s) in the critical strip and c6 is some constant. Note thatζL(s) =Q

χL(s, χ, E), whereχruns over the irreducible characters ofH =Gal(L/E). From (2.2) and (2.3) it follows that

(2.4) X

p∈P(C)

(logNK/Qp)bk(NK/Qp)> |C|

|G|k(1)−|C|

|G|

X

ρ

|k(ρ)|

c6|C|

|G|

nLk(0) +k

−1 2

logdL

− E(logdL).

(vi) The sum

k(1)−X

ρ

|k(ρ)|

is estimated from below. To do this we need to know the location and the density of the zeros of ζL(s). If the possible exceptional zero exists, say β0, then k(β0) is large. The term k(1)− |k(β0)|

(7)

must be controlled compared toP

ρ6=β0|k(ρ)|. We need an enlarged zero-free region which makes possibleP

ρ6=β0|k(ρ)|to be small. The Deuring–Heilbronn phenomenon guarantees that the other zeros of ζL(s) can not be very close to 1.

(vii) We choosexof the kernelk(s) in terms ofdL so that the right side of (2.4) is positive.

Then Theorem B follows. In the remaining sections of this paper we will make explicit numerically the constants intervening in the zero free regions, the density of zeros, and Deuring–Heilbronn phenomenon of ζL(s), and ultimatelyA1.

3. Prime ideals in P(C) In this section we will estimate from above

I− X

p∈P(C)

(logNK/Qp)bk(NK/Qp) .

We will treat carefully their bounds in [23, Section 3]. We begin by recalling the inverse Mellin transform of the kernel functions. They can be easily computed. Forx>2 andu >0 we have

kb1(u) = 1 2πi

Z a+i∞

a−i∞

x2(s−1)xs−1 s−1

2 u−sds

=





u−1logxu4 if x36u6x4, u−1logxu2 if x26u6x3,

0 otherwise,

and

kb2(u) = 1 2πi

Z a+i∞

a−i∞

xs2+su−sds= (4πlogx)12exp (

− logux2

4 logx )

, wherea >12.

Lemma 3.1. — Let PR

denote summation over the prime idealsp of Kthat ramify inL. Forx>2 we have then

(1) XR

X

m=1

θ(pm)(logNK/Qp)kb1(NK/Qpm)6 2 logx x2 logdL;

(8)

(2) XR X

m>1 NK/Qpm6x5

θ(pm)(logNK/Qp)kb2(NK/Qpm)

6 5

2√

πlog 3(logx)12logdL. Proof.

(1). — Let p be a prime ideal of K that is ramified in L. Note that NK/Qp>2 andPR

logNK/Qp6logdL. We have XR

X

m=1

θ(pm)(logNK/Qp)kb1(NK/Qpm) 6logxXR

logNK/Qp X

m>1 NK/Qpm>x2

(NK/Qpm)−1

6logxXRlogNK/Qp NK/Qpmp

1 1−NK/Qp−1

62 logx x2 logdL, wheremp=l log(x2)

logNK/Qp

m .

(2). — Let NR be the number prime ideals of K that are ramified in L/K. Note thatdL>3NR. (See [46, Chapters III and IV]).) We have

XR X

m>1 NK/Qpm6x5

θ(pm)(logNK/Qp)kb2(NK/Qpm)

6(4πlogx)12XR

logNK/Qp X

m>1 NK/Qpm6x5

1

6(4πlogx)12XR 5 logx

6 5

2√

πlog 3(logx)12logdL. Lemma 3.2.

(1) (Rosser and Schoenfeld[44]) Forx >1, π(x)< α0 x

logx

with α0 = 1.25506, where π(x) is the number of primes p with p6x.

(9)

(2) Forx >1,

S(x)6 2α0 log 2

x,

where S(x) is the number of prime powers ph with h > 2 and ph6x.

(3) Forx>101

X

p prime ph>x2,h>2

p−h64.02α0

xlogx. Proof.

(1). — See [44, Corollary 1].

(2). — We have

S(x)6π

xlogx log 2 6 2α0

log 2

x by (1).

(3). — We have

X

p prime ph>x2,h>2

p−h= X

p prime

p−hp 1−p−1, wherehp= maxllog(x2)

logp

m,2

for each primep. We observe that X

p6x

p−hp 1−p−1 6 2

x2π(x)6 2α0 xlogx. Forx>101

X

p>x

p−hp

1−p−1 6X

p>x

p−2

1−p−1 6 x x−1

X

p>x

p−261.01X

p>x

p−2. By using the integration by parts and (1) we estimate P

p>xp−2 from above. Namely,

X

p>x

p−26 Z

x

1

t2dπ(t)6 Z

x

2π(t) t3 dt 6

Z x

0

t2logtdt6 2α0

logx Z

x

dt

t2 = 2α0

xlogx. Hence,

X

pprime

p−hp

1−p−1 64.02α0 xlogx,

which yields (3).

(10)

Lemma 3.3. — Fory6∞, letPP

y denote summation over those(p, m) for whichNK/Qpmis not a rational prime andNK/Qpm6y. Then

(1) forx>101 XP

θ(pm)(logNK/Qp)kb1(NK/Qpm)616.08α0nK

logx x ; (2) forx>1010

XP

x5θ(pm)(logNK/Qp)kb2(NK/Qpm)6α1nKx34(logx)32 with

α1= α0

3√ πlog 2

15

10472 log 10+ 7 + 37 1052

= 2.4234· · ·. Proof.

(1). — Since for a positive integerqthere are at mostnK distinct prime power idealspm withNK/Qpm=q, it follows that

XP

θ(pm)(logNK/Qp)kb1(NK/Qpm)6logxXP

(logNK/Qp)(NK/Qpm)−1 64(logx)2nK

X

pprime x26ph6x4,h>2

p−h.

Hence, by Lemma 3.2 (3) we obtain (1).

(2). — We have XP

x5θ(pm)(logNK/Qp)kb2(NK/Qpm)6nK X

pprime p26ph6x5

(logph)kb2(ph)

6nK

Z x5 4

(logu)kb2(u)dS(u), whereS(u) is as Lemma 3.2 (2). According to Lemma 3.2 (2), we have

S(u)6 2α0 log 2

u.

(11)

Hence, Z x5

4

(logu)kb2(u) dS(u) 6(logx5)kb2(x5)S(x5) +

Z x5 4

kb2(u)

logulogux 2 logx −1

S(u)du u 6 5α0

πlog 2x32(logx)12 + Z 4 logx

logx4

kb2(xet)

(t+ logx)t 2 logx

S(xet) dt

6 α0

3√ πlog 2

15

x94logx+ 7 + 37 x14

x34(logx)32. Lemma 3.4. — Forx>2, we have

X

p

X

m>1 NK/Qpm>x5

θ(pm)(logNK/Qp)kb2(NK/Qpm)6α2nKx(logx)12

withα2= 5π. Proof. — We have X

p

X

m>1 NK/Qpm>x5

θ(pm)(logNK/Qp)kb2(NK/Qpm)6nK

X

pprime ph>x5

(logph)kb2(ph)

6nK Z

x5

(logu)kb2(u) dT(u), whereT(u) is the number of prime powersphwithh>1 andph6u. Since T(u)6uforu >0, we have

Z x5

(logu)kb2(u) dT(u)6 Z

x5

kb2(u)

logulogux 2 logx −1

T(u)du u 6

Z 4 logx

kb2(xet)

(t+ logx)t 2 logx −1

T(xet) dt

6α2x(logx)12.

From Lemmas 3.1, 3.3, and 3.4 we deduce an upper bound for

Ij− X

p∈P(C)

(logNK/Qp)kbj(NK/Qp) forj = 1,2 as follows.

(12)

Proposition 3.5. — Letkj(s)be as above. Let Ij= 1

2πi

Z 2+i∞

2−i∞

FC(s)kj(s) ds.

Assume thatL6=Q. Then (1) forx>101 (3.1)

I1− X

p∈P(C)

(logNK/Qp)kb1(NK/Qp) 6 2 logx

x2 logdL+ 16.08α0nK

logx x 6α3

logx x logdL

with

α3= 2

101 +32.16α0

log 3 = 36.759· · · ; (2) forx>1010

(3.2)

I2− X

p∈P(C) NK/Qp6x5

(logNK/Qp)kb2(NK/Qp)

6 5

2√

πlog 3(logx)12 logdL+α1nKx34(logx)32 +α2nKx(logx)12 6α4x(logx)12logdL

with

α4= 1 log 3

10−9 4√

π +α1log 10 5√

10 + 2α2

= 5.4567· · ·.

Note thatdL>3nL/2fornL>2. It follows from the Hermite–Minkowski’s inequality dL > π3 4 nL−1

for nL > 1. For nL = 2, dL > 3, and for nL > 3, π3 4 nL−1

= 49 4nL

> 3nL/2. (See also [48, p. 140] and [23, p. 291].)

4. The Contour integral

In this section we will evaluate the integralsI1andI2by contour integra- tion. We will useL(s, χ) to denoteL(s, χ, E). LetF(χ) be the conductor

(13)

ofχandA(χ) =dENE/QF(χ). Let δ(χ) =

(1 ifχis the principal character, 0 otherwise.

We recall that for eachχthere exist non-negative integersa(χ),b(χ) such that

a(χ) +b(χ) = [E:Q] =nE, and such that if we define

γχ(s) =n

πs2Γs 2

oa(χ) πs+12 Γ

s+ 1 2

b(χ)

and

ξ(s, χ) ={s(s−1)}δ(χ)A(χ)s/2γχ(s)L(s, χ), thenξ(s, χ) satisfies the functional equation

ξ(1s, χ) =W(χ)ξ(s, χ),

whereW(χ) is a certain constant of absolute value 1. Furthermore,ξ(s, χ) is an entire function of order 1 and does not vanish ats= 0. By Hadamard product theorem we have for everys∈C

L0

L(s, χ) =1

2logA(χ) +δ(χ) 1

s+ 1 s−1

+γχ0

γχ

(s)

− B(χ)− X

ρχ∈Z(χ)

1

sρχ + 1 ρχ

, whereB(χ) is some constant andZ(χ) denotes the set of nontrivial zeros ofL(s, χ). (See [48] and [24].) According to [40, (2.8)]

<B(χ) =− X

ρχ∈Z(χ)

< 1 ρχ. Hence, for everys∈C

(4.1) <

L0 L(s, χ)

= 1

2logA(χ) +δ(χ)<

1 s + 1

s−1

+<γ0χ γχ

(s)

− X

ρχ∈Z(χ)

< 1 sρχ

. Forj = 1, 2 we have

Ij =|C|

|G|

X

χ

χ(g)Jj(χ) by (2.1),

(14)

where

Jj(χ) = 1 2πi

Z 2+i∞

2−i∞

L0

L(s, χ)kj(s) ds.

Assume that T > 2 does not equal the ordinate of any of the zeros of L(s, χ). Consider

Jj(χ, T) = 1 2πi

Z

B(T)

L0

L(s, χ)kj(s) ds

forj = 1, 2, whereB(T) is the positively oriented rectangle with vertices 2−iT, 2 +iT,−12+iT, and−12iT. By Cauchy’s theorem

(4.2) Jj(χ, T) =δ(χ)kj(1)− {a(χ)−δ(χ)}kj(0)− X

ρχ∈Z(χ)

|=ρχ|<T

kjχ)

forj = 1, 2.

Lemma 4.1. — Let Vj(χ) = 1

2πi

Z 12−i∞

12+i∞

L0

L(s, χ)kj(s) ds forj = 1,2. Then

(1) forx>101

|V1(χ)|6k1

−1 2

1logA(χ) +nEν1}, whereµ1= 0.75296· · · andν1= 19.405· · ·; (2) forx>1010

|V2(χ)|6k2

−1 2

2logA(χ) +nEν2}, whereµ2= 0.058787· · · andν2= 1.4793· · ·. Proof. — Lets=−12+it. By [59, Lemme 5.1]

L0 L

−1 2 +it, χ

6logA(χ) +nEv(t), where

v(t) = log r1

4+t2+ 2

!

+19683 812 .

(15)

Moreover, forx>101

k1

−1 2+it

6x−3(1 +x32)2

9 4+t2

=k1

−1 2

1 +x32 1−x32

!2

9 9 + 4t2

6k1

−1 2

v1(t) withv1(t) =

1+10132

1−10132

2

9 9+4t2

and forx>1010

k2

−1 2 +it

=x14−t2=k2

−1 2

x−t26k2

−1 2

v2(t) withv2(t) = 10−10t2. Hence,

1 2πi

Z 12−iT

12+iT

L0

L(s, χ)kj(s) ds 6 1

πkj

−1 2

Z T 0

{logA(χ) +nEv(t)}vj(t) dt.

Set

µj= 1 π

Z 0

vj(t) dt and νj = 1 π

Z 0

v(t)vj(t) dt.

The result follows.

On the two segments from 2±iT to−12±iT we proceed with the same way as [24, Section 6]. (See [23, Section 3], [59, Section 5], and [27].) Let Hj(T) = 1

2πi Z 14

12

L0

L(σ+iT, χ)kj(σ+iT)−L0

L(σ−iT, χ)kj(σ−iT)

dσ and

Hj(T) = 1 2πi

Z 2

14

L0

L(σ+iT, χ)kj(σ+iT)−L0

L(σ−iT, χ)kj(σ−iT)

dσ.

Then

Hj(T) +Hj(T)

= 1 2πi

(Z 12+iT 2+iT

L0

L(s, χ)kj(s) ds+ Z 2−iT

12−iT

L0

L(s, χ)kj(s) ds )

. Lemma 4.2. — Forj= 1,2we have

Hj(T) |kj(iT)|(logA(χ) +nElogT).

(16)

Proof. — Lets=σ±iT with−12 6σ6−14. Then L0

L(s, χ)logA(χ) +nElogT

by [24, Lemma 6.2] andkj(s) |kj(iT)|. The result follows.

Lemma 4.3. — Let−146σ62. Then, we have L0

L(σ±iT, χ)− X

ρχ∈Z(χ)

|=ρχ∓T|61

1

σ±iTρχ logA(χ) +nElogT.

Proof. — See [24, Lemma 5.6]. (See also [59, Lemma 4.8].) Therefore, forj= 1, 2

Hj(T)− 1 2πi

Z 2

14





kj(σ+iT) X

ρχ∈Z(χ)

|=ρχ−T|61

1 σ+iTρχ

−kj(σ−iT) X

ρχ∈Z(χ)

|=ρχ+T|61

1 σiTρχ





 dσ

|kj(iT)|(logA(χ) +nElogT) sincekj(σ±iT) |kj(iT)|for−14 6σ62.

Lemma 4.4. — LetρχZ(χ)witht6==ρχ. If|t|>2, then Z 2

14

kj(σ+it) σ+itρχ

dσ |kj(it)|

forj = 1,2.

Proof. — Suppose first that =ρχ > t. Let Bt be the positive oriented rectangle with vertices 2 +i(t−1), 2 +it,14+it, and14+i(t−1). By Cauchy’s theorem,

Z

Bt

kj(s) sρχ

ds= 0

for j = 1,2. However, on the three sides of the rectangle other than the segment from−14+itto 2 +it, the integrand is majorized by

α5|kj(it)|

for some positive constantα5 depending onx, which proves the result for

χ> t. A similar proof forχ< tuses the rectangle with vertices 2 +it, 2 +i(t+ 1),−14+i(t+ 1), and −14+it.

(17)

Forj= 1, 2 we have

1 2πi

Z 2

14





kj(σ+iT) X

ρχ∈Z(χ)

|=ρχ−T|61

1 σ+iTρχ

−kj(σ−iT) X

ρχ∈Z(χ)

|=ρχ+T|61

1 σiTρχ





 dσ

|kj(iT)|{nχ(T) +nχ(−T)}

|kj(iT)|(logA(χ) +nElogT) by [24, Lemma 5.4], wherenχ(T) denotes the number of zeros ρχZ(χ) with|=ρχT|61.

We may then conclude as follows.

Lemma 4.5. — Forj= 1,2we have

Hj(T) |kj(iT)|(logA(χ) +nElogT).

Lemma 4.6. — Forj= 1,2we have lim

T→∞

1 2πi

(Z 12+iT

2+iT

L0

L(s, χ)kj(s) ds+ Z 2−iT

12−iT

L0

L(s, χ)kj(s) ds )

= 0.

Proof. — By Lemmas 4.2 and 4.5

Hj(T) +Hj(T) |kj(iT)|{logA(χ) +nElogT}.

Since

|kj(iT)|6 ( 9

4x2(1+T2) ifj= 1, x−T2 ifj= 2,

the result follows.

LettingT → ∞in (4.2) and combining this and Lemmas 4.6 yield Jj(χ) +Vj(χ) =δ(χ)kj(1)− {a(χ)−δ(χ)}kj(0)− X

ρχ∈Z(χ)

kjχ)

(18)

forj = 1, 2. Hence, we have

|G|

|C|Ij=X

χ

χ(g)Jj(χ)

=kj(1)−kj(0)X

χ

χ(g){a(χ)−δ(χ)} −X

χ

χ(g)

 X

ρχ∈Z(χ)

kjχ)

−X

χ

χ(g)Vj(χ) forj= 1, 2. Note that by the conductor-discriminant formula ([46, Chap- ter VI, Section 3])

X

χ

logA(χ) = logdL. We therefore conclude as follows.

Proposition 4.7. — Forj= 1,2we have (4.3) |G|

|C|Ij >kj(1)− X

ρ∈Z(ζL)

|kj(ρ)| −µjkj

−1 2

logdL

nL

kj(0) +νjkj

−1 2

whereZL)denotes the set of all nontrivial zeros ofζL(s),µj andνj are as in Lemma 4.1.

5. Density of zeros of Dedekind zeta functions

To begin with, we recall that for every s∈Cwe have (5.1) <

ζL0 ζL(s)

= 1

2logdL+<

1 s+ 1

s−1

+<γL0

γL(s)− X

ρ∈Z(ζL)

< 1 sρ, where

γL(s) =n

πs2Γs 2

or1+r2 πs+12 Γ

s+ 1 2

r2

,

r1and 2r2are the numbers of real and complex embeddings ofL. (See [24, Lemma 5.1] or [48].)

For any real numbertwe let

nL(t) =|{ρ=β+|ζL(ρ) = 0 with 0< β <1 and|γ−t|61}|.

(19)

For any complex numbersand positive real numberr >0 we let n(r;s) =|{ρ∈ZL)| |ρ−s|6r}|.

From (4.1) Lagarias and Odlyzko deduced that nχ(t)logA(χ) +nElog(|t|+ 2)

for allt. (See [24, Lemma 5.4].) In this section we will bound nL(t) and n(r;s) from above using (4.1). To do this we need some lemmas.

Lemma 5.1. — Lets=σ+itwithσ >1. We have X

ρ∈Z(ζL)

< 1

sρ >f0(σ)nL(t), where

f0(σ) = 1 2min

( σ−1

(σ−1)2+ 1, σ12 σ122

+ 1 )

+1 2min

( σ12 σ122

+ 1 , σ

σ2+ 1 )

. Proof. — We have

X

ρ∈Z(ζL)

< 1 sρ >1

2 X

β+iγ∈Z(ζL)

|t−γ|61

σβ

(σ−β)2+ 1+ σ+β−1 (σ+β−1)2+ 1

>f0(σ)nL(t).

Lemma 5.2. — If<s=σ >1, then

<ζL0 ζL

(s)6nLf1(σ), where

f1(σ) =−ζQ0 ζQ(σ).

Proof. — For<s >1,

ζL0 ζL

(s) =X

P

logNP NPs−1 =X

P

logNP

X

m=1

NP−ms, whereP runs over all prime ideals ofL. Comparingζζ0L

L(σ) with −ζ

0 Q

ζQ(σ) yields

<ζL0 ζL(s)6

ζL0 ζL(s)

6−ζL0

ζL(σ)6nL

ζ0

Q

ζQ(σ)

.

(See [24, Lemma 3.2].)

(20)

See also [9], [31, Lemma (a)], [59, Lemma 3.2], [11, p. 184], and [33, Proposition 2].

Lemma 5.3. — Assume that<s > 12. We have (1) <Γ0

Γ(s)6log|s|+1

3 6α6log(|s|+ 2) withα6= 1.08;

(2) <Γ0

Γ(s)>log|s| −4

3 >log(|s|+ 2)−α7 withα7= 43+ log 5 = 2.9427· · ·. Proof. — For<s >0,

Γ0

Γ(s) = logs− 1 2s−2

Z 0

υ

(s2+υ2)(e2πυ−1)dυ.

(See [58, p. 251].) Since|s2+υ2|>(<s)2, we have

Z 0

υ

(s2+υ2)(e2πυ−1)dυ 6 1

(<s)2 Z

0

υ

e2πυ−1dυ= 1 24(<s)2. If<s > 12, then

0

Γ(s)6log|s|+ 1 12

1

(<s)2 6log|s|+1 3 and

0

Γ(s)>log|s| − 1 2|s| − 1

12 1

(<s)2 >log|s| −4 3. Setϕ1(υ) =α6log(υ+ 2)−logυ13 forυ > 12. Then,

ϕ01(υ) =(α6−1)υ−2

υ(υ+ 2) andϕ1(υ)> ϕ1 2

α6−1

>0.

Hence

0

Γ(s)6α6log(|s|+ 2).

Setϕ2(υ) = logυ43−log(υ+ 2) +α7 forυ > 12. Then ϕ02(υ)>0 andϕ2(υ)> ϕ2

1 2

= 0.

Hence

0

Γ(s)>log(|s|+ 2)−α7.

(21)

Lemma 5.4. — Lets=σ+it. Ifσ >1, then

<γL0

γL(s)6nL

f2(σ) log(|t|+ 2)−1 2logπ

, where

f2(σ) = α6

2

log(σ+ 5) log 2 −1

. Proof. — By definition and Lemma 5.3 (1) we have

<γL0 γL

(s) = (r1+r2) 2 <Γ0

Γ s

2

+r2 2<Γ0

Γ

s+ 1 2

nL 2 logπ 6α6

(r1+r2)

2 log

|s|

2 + 2

+α6

r2

2 log

|s+ 1|

2 + 2

nL

2 logπ 6 nL

2

α6log

|s+ 1|

2 + 2

−logπ

. It is sufficient to verify that

(5.2) log

|s+ 1|

2 + 2

6

log(σ+ 5) log 2 −1

log(|t|+ 2).

Note that|s+ 1|>2|t|if and only if|t|6(σ+ 1)/√

3. If|t|>(σ+ 1)/√ 3, then (5.2) holds. We suppose now that |t| < (σ+ 1)/√

3. Set ϕ3(υ) = ϕ5(υ)/ϕ4(υ) withϕ4(υ) =υ+ 2 andϕ5(υ) = 2 +p

(σ+ 1)2+υ2/2. Then ϕ03(υ)60 andϕ5(υ)6ϕ

5(0) ϕ4(0)

ϕ4(υ) for 06υ <(σ+ 1)/√

3. For 06υ <

(σ+ 1)/√

3 we have then (5.3) logϕ5(υ)

logϕ4(υ)6 logϕ4(υ) + logϕ5(0)−logϕ4(0) logϕ4(υ)

6 logϕ5(0)

logϕ4(0) =log(σ+ 5) log 2 −1,

which yields (5.2).

We are now ready to bound nL(t).

Proposition 5.5. — For allt we have

(5.4) nL(t)61.1 logdL+ 2.09 log{(|t|+ 2)nL}+ 0.56nL+ 4.05.

In particular, ifL6=Q, then

(5.5) nL(t)62.72 log{dL(|t|+ 2)nL}.

(22)

Proof. — Combining (4.1), Lemmas 5.1, 5.2, 5.3, and 5.4 yields f0(σ)nL(t)6 1

2logdL+ 1 σ+ 1

σ−1 +nL

f2(σ) log(|t|+ 2)−1

2logπ+f1(σ)

forσ >1. We write

(5.6) nL(t)6a1(σ) logdL+a2(σ) log{(|t|+ 2)nL}+a3(σ)nL+a4(σ) forσ >1, where

a1(σ) = 1

2f0(σ), a2(σ) =f2(σ)

f0(σ), a3(σ) = 1 f0(σ)

f1(σ)−1 2logπ

, and

a4(σ) = 1 f0(σ)

1 σ + 1

σ−1

. We choose now appropriateσ. Ifσ= (3 +√

17)/4, then (5.6) yields (5.4).

For the proof of (5.5), we choose σ = 2.45. In this case, a3(σ) < 0 and 2a3(σ) +a4(σ)>0. SincenL >2, it follows from (5.6) that

nL(t)6a1(σ) logdL+a2(σ) log{(|t|+ 2)nL}+ 2a3(σ) +a4(σ) 6B1logdL+B2log{(|t|+ 2)nL},

whereB1=a1(σ) +log 31 {2a3(σ) +a4(σ)}= 2.6885· · · andB2=a2(σ) =

2.7106· · ·. So, we obtain (5.5).

See also [21], [52], and [59, Lemme 4.6].

Proposition 5.6. — Letrbe a positive real number.

(1) Assume that

nL(t)6α8log{dL(|t|+ 2)nL} for someα8>0. Then we have

n(r;σ+it)6α8(1 +r) log{dL(|t|+r+ 2)nL}. (2) Assume thatL6=Q. Ifσ>1 and0< r61, then

n(r;σ+it)610

1 + 2f2(2)

5 rlog{dL(|t|+ 2)nL}

. Proof. — Set

Z(r;s) ={ρ∈ZL)| |ρ−s|6r}

and Z(t) ={β+ZL)| |γ−t|61}.

Note thatn(r;s) =|Z(r;s)|andnL(t) =|Z(t)|.

Références

Documents relatifs

It proves that this final time observability inequality implies four variants with roughly the same exponential rate everywhere (an integrated inequality with singular weights,

Using the modular symbols algorithm over finite fields with an improved stop criterion (see Section 3), we performed computations in M AGMA concerning the Gorenstein defect of

Estimation d’erreur pour des problèmes de propagation d’ondes en milieux élastiques linéaires hétérogènes [Error estimate for wave propagation problems in linear elastic

Keywords : stochastic differential equation, Euler scheme, rate of convergence, Malliavin calculus.. AMS classification: 65C20 60H07 60H10 65G99

Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions..

Gourdon, The 10 13 first zeros of the Riemann Zeta Function and zeros compu- tations at very large height,

We derive an explicit formula for the general solu- tion of the cubic Szeg˝ o equation and of the evolution equation of the corresponding hierarchy.. As an application, we prove

Boyd, Approximation of an analytic function on a nite real interval by a bandlim- ited function and conjectures on properties of prolate spheroidal functions, Appl.. Dickinson, On