• Aucun résultat trouvé

METACYCLIC PROMASTIGOTES OF LEISHMANIA IN THE SALIVARY GLANDS OF EXPERIMENTALLY INFECTED PHLEBOTOMINE SANDFLIES

N/A
N/A
Protected

Academic year: 2022

Partager "METACYCLIC PROMASTIGOTES OF LEISHMANIA IN THE SALIVARY GLANDS OF EXPERIMENTALLY INFECTED PHLEBOTOMINE SANDFLIES "

Copied!
6
0
0

Texte intégral

(1)

METACYCLIC PROMASTIGOTES OF LEISHMANIA IN THE SALIVARY GLANDS OF EXPERIMENTALLY INFECTED PHLEBOTOMINE SANDFLIES

KILLICK-KENDRICK R.*, KILLICK-KENDRICK M.*, TANG Y.* & BASTIEN P.*

Summary:

Thirty one female Phlebotomus duboscqi experimentally infected with Leishmania tropica were found with metacyclic promastigotes in their salivary glands. The presence of parasites in the glands was correlated with heavy infections of metacyclic promastigotes in the stomodaeal valve and thoracic midgut of the fly and it is suggested that the parasites may have migrated through the gut wall into the glands which lie against the valve in the thorax of the fly. No evidence was found that gland invasion is an obligatory stage of the life-cycle of Leishmania, but reports of wild-caught flies with parasites in the glands, coupled with these laboratory

observations, raise the possibility that regurgitation of parasites or the migration of metacyclic promastigotes into the mouthparts may not be the only mechanisms of transmission by bite.

KEY WORDS : Leishmania tropica, Phlebotomus duboscqi, life-cycle, salivary glands, transmission.

For the past sixty years, there has b e e n m u c h discus- sion o n the p r e c i s e m e c h a n i s m by w h i c h a p h l e b o t o - m i n e sandfly deposits an infective d o s e o f leishmanial promastigotes into the skin o f a vertebrate host. Reports o f p a r a s i t e s in t h e p r o b o s c i s o f t h e fly ( A d l e r &

T h e o d o r , 1 9 2 9 , 1 9 3 0 , 1 9 3 5 ; Adler ET AL., 1 9 3 8 ) sug- g e s t e d that invasion o f the mouthparts w a s the cul- mination o f the d e v e l o p m e n t in the alimentary tract o f the vector, and that it w a s a prerequisite if the fly w e r e to b e a b l e to pass o n the infection (Killick-Kendrick, 1 9 7 9 ) . An alternative idea w a s b a s e d o n o b s e r v a t i o n s that the pharynx and o e s o p h a g u s o f infected flies w e r e s o m e t i m e s b l o c k e d by a mass o f parasites (Shortt ET AL., 1 9 2 6 ) . Influenced b y the discovery o f the trans- mission o f plague b y fleas with the alimentary canal b l o c k e d b y YERSINIA PESTIS ( s e e Parrot & D o n a t i e n , 1 9 5 2 ) , the notion a r o s e that a plug o f promastigotes in the foregut or anterior midgut o f the sandfly was regurgitated into the skin o f the invertebrate w h e n an infected insect t o o k a b l o o d meal (Shortt & Swaminath,

* Department of Biology, Imperial College at Silwood Park, Ascot, Berks SL5 7PY, UK.

Résumé : PROMASTIGOTES MÉTACYCLIQUES DE LEISHMANIA DANS LES GLANDES SALIVAIRES DE PHLÉBOTOMES INFECTÉS EN LABORATOIRE Des promastigotes métacycliques ont été observés dans les glandes salivaires de 3 I Phlebotomus duboscqi femelles infectées en laboratoire par Leishmania tropica. La présence de parasites dans ces glandes est corrélée à des infestations importantes de promastigotes métacycliques dans la valve stomodéale et la portion thoracique de l'intestin moyen du phlébotome, et il est suggéré que les parasites peuvent avoir migré à travers la paroi intestinale vers les glandes qui s'étendent le long de la valve thoracique du phlébotome. Aucune preuve n'a été apportée du caractère obligatoire d'une phase d'invasion des glandes dans le cycle des Leishmania; cependant, des observations de parasites dans les glandes de phlébotomes capturés dans la nature, couplées à ces observations de laboratoire, nous font émettre l'hypothèse que la régurgitation des parasites ou la migration de promastigotes métacycliques vers les pièces buccales ne sont peut- être pas les seuls mécanismes de transmission par piqûre.

MOTS CLES : Leishmania tropica, Phlebotomus duboscqi, cycle évolutif, glandes salivaires, transmission.

1 9 2 8 ; Napier, 1 9 4 6 ) . Adler and T h e o d o r ( 1 9 3 5 ) strongly o p p o s e d this idea o n the grounds that the b l o c k a g e w a s m o r e apparent than real. T h e y p o i n t e d out that t h e p h a r y n x w a s highly e x p a n d a b l e b y t h e l a r g e m u s c l e s that e n a b l e d it to w o r k as a p u m p , a n d pre- s e n t e d a formidable c a s e to support the idea that transmission w a s by small, highly active promastigotes in the mouthparts ( r e v i e w e d by Killick-Kendrick, 1979, 1 9 8 6 ) .

B y 1 9 8 5 , Adler's theory had r e c e i v e d strong support from reports o f promastigotes in mouthparts in 18 c o m - binations o f sandflies and LEISHMANIA s p e c i e s (Killick- Kendrick, 1 9 8 6 ) . D o u b t s w e r e then cast o n his ideas w h e n laboratory transmissions o f LEISHMANIA w e r e a c h i e v e d in the apparent a b s e n c e o f parasites in the proboscis (Lainson ET AL, 1 9 7 7 ; Pozio ET AL, 1985). After infected sandflies w e r e s h o w n to have difficulty in taking a b l o o d m e a l (Killick-Kendrick ET AL, 1 9 7 7 b ) , it w a s suggested that parasites in the b u c c a l cavity might interfere with the function o f internal receptors thereby changing the feeding b e h a v i o u r o f the fly and enhan- cing the c h a n c e s o f parasites from the foregut b e i n g d e p o s i t e d in the skin o f the vertebrate host (Killick- Kendrick & M o l y n e u x , 1 9 8 1 ) . H o w e v e r , a detailed

Mémoire

Parasite, 1996, 3, 55-60 55

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/1996031055

(2)

KILLICK-KENDRICK R., KILLICK-KENDRICK M . TANG Y S BASTIEN P.

study s h o w e d that, unlike other Diptera, p h l e b o t o m i n e sandflies s e e n to have n o c h e m o r e c e p t o r s in t h e ciba- rium (Jefferies, 1 9 8 7 ) , a n d it appears that this is n o t the e x p l a n a t i o n o f multiple probing b y infected flies.

A n e w explanation o f the c h a n g e d feeding behaviour e m e r g e s from highly original observations b y Schlein a n d c o l l e a g u e s w h o s h o w e d t h a t p r o m a s t i g o t e s e n c a s e d in the peritrophic m e m b r a n e in the midgut o f a sandfly p r o d u c e chitinolytic e n z y m e s that not only b r e a k d o w n the m e m b r a n e a n d permit the parasites to e s c a p e , but also d a m a g e the chitin o f the s t o m o - daeal valve (the cardia o f s o m e authors) (Schlein ET AL, 1 9 9 1 ) . Schlein ET AL. ( 1 9 9 2 ) published e l e c t r o n m i c r o - graphs o f a d a m a g e d valve a n d illustrated h o w they thought this c o u l d lead to its malfunction resulting in the d e p o s i t i o n o f p r o m a s t i g o t e s from t h e anterior midgut a n d foregut into the skin o f a vertebrate as an infected fly attempted to feed. T h e action o f the chi­

tinolytic e n z y m e s is inhibited b y h a e m o g l o b i n (Schlein

& J a c o b s e n , 1 9 9 4 ) , w h i c h e x p l a i n s t h e a b s e n c e o f signs o f d a m a g e in electronmicrographs o f the cuti­

cular intima o f t h e valve o r hindgut o f several diffe­

rent s p e c i e s o f flies infected with various parasites e x a ­ mined before, o r shortly after, the digestion o f the infecting b l o o d meal. Schlein's ideas o n the mechanism of transmission o f LEISBMANIA b y the bite o f an infected sandfly are plausible a n d offer an e x p l a n a t i o n o f mul­

tiple probing b y infected flies a n d t h e difficulty they have in obtaining a full b l o o d meal (Killick-Kendrick ET AL., 1 9 7 7 b , B e a c h ET AL., 1 9 8 5 ) .

T h e possibility a p p e a r s n e v e r to have b e e n c o n s i ­ dered that a n o t h e r m o d e o f transmission could s o m e ­ times b e b y promastigotes in the salivary glands b e i n g d e p o s i t e d in t h e skin o f the vertebrate host with the saliva. In the present p a p e r w e describe such infec­

tions in experimentally infected sandflies a n d suggest that there is p e r h a p s m o r e than o n e m e c h a n i s m o f transmission b y bite.

MATERIALS AND METHODS

Sandflies

T

h e flies w e r e from a laboratory c o l o n y o f PHLE­

BOTOMUS DUBOSCQI N e v e u - L e m a i r e set u p in J u n e , 1 9 8 8 , with the eggs o f females caught in CDC miniature light traps at Keur Moussa, Senegal. T h e m e t h o d s for the initiation a n d m a i n t e n a n c e o f the colony are given b y Killick-Kendrick & Killick-Kendrick ( 1 9 8 7 , 1 9 9 1 ) . T h e lines u s e d originated from the pro­

g e n y o f individual f e m a l e s that w e r e i n b r e d a n d s e l e c t e d for their susceptibility to infections b y LEISH­

MANIA TROPICA Wright. T h e observations reported in the present p a p e r w e r e m a d e o n t h e 13th to 24th g e n e ­ rations after inbreeding w a s b e g u n .

Parasite

The parasite w a s isolated in NNN m e d i u m from a cuta­

neous lesion o f a patient in Kabul, Afghanistan, in J u n e , 1988. It w a s typed at t h e Faculty o f M e d i c i n e , Mont- pellier, the Istituto Superiore di Sanita, R o m e , a n d the London S c h o o l o f H y g i e n e a n d Tropical M e d i c i n e a n d identified as L . TROPICA, z y m o d e m e M O N - 5 8 ( = LON- 2 0 ) . T h e strain, No M H O M / A I 7 8 8 / K K 2 7 ( = LEM 1422

= ISS 4 2 3 ) , w a s maintained in g o l d e n hamsters b y the p a s s a g e o f amastigotes ( B a s t i e n & Killick-Kendrick, 1 9 9 2 ) .

Infection o f sandflies

W a s h e d s u s p e n s i o n s o f amastigotes w e r e p r e p a r e d from infected hamster skin tissue. T h e parasites w e r e c o u n t e d b o t h in a h a e m o c y t o m e t e r a n d b y t h e m i c r o - b e a d m e t h o d o f Cenini ET AL. ( 1 9 8 9 ) . T h e proportion o f viable amastigotes w a s estimated with fluorescent illumination after staining with ethidium b r o m i d e a n d fluorescein diacetate (Cenini ET AL, 1 9 8 9 ) , a n d t h e sus­

p e n s i o n w a s diluted with inactivated rabbit b l o o d t o give an estimated 3 x 1 05 viable amastigotes per 1.0 ml.

T h e sandflies w e r e permitted to feed o n t h e suspen­

sion through a hamster c h e e k - p o u c h attached to a glass feeder w a r m e d b y circulating w a t e r ( B a s t i e n , 1 9 9 0 ) . E a c h fly with a full b l o o d meal w a s estimated to have taken about 100 parasites.

M a i n t e n a n c e a n d examination o f infected flies O n the d a y after the meal, fed flies w e r e individually tubed, provided with a solution o f s u c r o s e ( 5 0 : 5 0 v / v ) and kept at 2 5 °C. T h e y w e r e e x a m i n e d at least twice a day until they h a d laid eggs w h e n they w e r e i m m e ­ diately dissected a n d e x a m i n e d . T h e h e a d o f e a c h fly w a s cut off a n d an attempt w a s m a d e to dissect out b o t h salivary glands a n d mount them intact u n d e r a separate coverslip b e f o r e t h e gut w a s r e m o v e d . T h e y w e r e e x a m i n e d u n d e r p h a s e contrast o r interference illumination. Flies w e r e n o t c o n s i d e r e d t o h a v e nega­

tive salivary glands unless both glands w e r e e x a m i n e d . The intensity o f infection in different parts o f the ali­

mentary tract w a s subjectively a s s e s s e d a n d s c o r e d +++++, ++++, +++, ++ a n d +.

RESULTS

P

romastigotes w e r e s e e n in the salivary glands o f 31 sandflies 9-21 days after infection. In 22 o f t h e s e flies, o n l y o n e o f t h e t w o glands a p p e a r e d to b e infected. T h r e e flies h a d promastigotes in b o t h glands but, in six others, a gland w a s lost during dissection a n d only o n e w a s available for e x a ­ mination. T h e n u m b e r s o f parasites s e e n w e r e g e n e ­ rally low. O f 3 4 infected glands, 21 h a d 1-5 parasites,

56 Mémoire Parasite, 1996, .5, 55-60

(3)

METACYCLIC; PROMASTIGOTES OF

Leishmania

IN THE SALIVARY GLANDS

Parasite, 1996, 3, 55-60

Mémoire 57

Fig.l, 430X; Figs 2 & 4, 1180X; Fig. 3, 800X. — Metacyclic promastigotes of Leishmania tropica in freshly dissected salivary glands of experimentally infected Phlebotomus duboscqi. Phase contrast illumination.

(4)

KILLICK-KENDRICK R., KILLICK-KENDRICK M., TANG Y . & BASTIEN P.

five h a d 6 - 1 0 , t w o had 1 1 - 1 5 and six h a d > 2 0 . T h e r e w a s a strong correlation b e t w e e n infected glands and the intensity o f infection in the midgut, linked to the p r e s e n c e o f n u m e r o u s m e t a c y c l i c forms. T w e n t y four o f the flies with parasites in the glands h a d b o t h h e a ­ vily infected s t o m o d a e a l valves ( s c o r e d as +++++ or ++++) and thoracic midguts ( + + + + ) . Eighteen o f the 24 had extraordinarily large numbers o f metacyclic pro- mastigotes in t h e s e parts o f the alimentary tract.

Lightly infected glands initially s e e m e d often to b e negative. After long observation, the c o m m o n e s t first indication o f infection w a s an intermittently moving fla- gellum. It was n e c e s s a r y to wait until the parasite m o v e d revealing the body, and the parasite c o u l d then b e s e e n pushing b e t w e e n the cells o f the gland.

In glands with m o r e than a d o z e n parasites, the pro- mastigotes w e r e visible without difficulty with p h a s e contrast or interference microscopy (but not with bright field). Cells o f o n e infected gland a p p e a r e d to h a v e b e e n d a m a g e d b y the parasites (Fig. 3 ) . All parasites in the glands l o o k e d like m e t a c y c l i c promastigotes.

T h e y w e r e small with a b o d y length o f o n l y 5-10 um a n d a flagellum length at least twice that o f the b o d y (Figs 1-4). N o n e w a s in division.

It is not p o s s i b l e to estimate the true p r e v a l e n c e o f gland infections b e c a u s e it is certain that s o m e glands r e c o r d e d as negative w e r e infected, but the parasites w e r e i m p o s s i b l e to s e e . Nevertheless, n o parasites w e r e s e e n in the glands o f m a n y h u n d r e d s o f our experimentally infected flies and the overall prevalence w a s s e e m i n g l y low.

DISCUSSION

O

ur observations are insufficient e v i d e n c e by t h e m s e l v e s to c o n c l u d e that invasion o f the salivary glands o f sandflies by promastigotes is a normal part o f the life c y c l e o f LEISHMANIA. Fur­

thermore, our w o r k w a s with a LEISHMANIA s p e c i e s in a fly w h i c h is n o t its natural v e c t o r . T h e r e a r e , h o w e v e r , t w o reports from Brazil o f promastigotes in the salivary glands o f wild-caught sandflies. Arias ET AL.

( 1 9 7 8 ) found three female flies with infected glands a m o n g c a t c h e s m a d e in A m a z o n a s State. T h e identity o f t w o o f the flies is not clear, but the third w a s a m e m b e r o f the SHANNONI group w h i c h c o u l d not b e identified further b e c a u s e this g r o u p c o n t a i n s s p e c i e s with isomorphic females. T h e parasite from the midgut o f this fly failed to infect a hamster, a n d its identity remains u n k n o w n . In the s e c o n d report, Naiff ET AL.

( 1 9 9 1 ) found promastigotes in the salivary glands o f o n e o f t w o naturally infected s p e c i m e n s o f LU. SQUA- MIVENTRIS (Lutz & Neiva) caught at B a l b i n a , A m a z o n a s State. T h e midgut a n d Malpighian tubules o f the fly

w e r e heavily infected, but a hamster i n o c u l a t e d with the parasites did not develop a lesion. Eighteen months later, the strain w a s r e c o v e r e d b y culturing from the site o f inoculation a n d w a s t y p e d b y Grimaldi ET AL.

( 1 9 9 1 ) as LE. NAIFFI Lainson & S h a w ; it is r e a s o n a b l e to s u p p o s e that the promastigotes in the salivary glands w e r e the s a m e s p e c i e s .

T h e r e are t w o routes by w h i c h p r o m a s t i g o t e s c o u l d m o v e from the midgut to the salivary glands. Firstly, t h e y m a y p e n e t r a t e through the gut wall into t h e glands w h i c h lie p r e s s e d against the t h o r a c i c midgut (Jobling, 1 9 8 7 ) . Most flies with parasites in the glands had heavily infected s t o m o d a e a l valves a n d t h o r a c i c midguts and, from e l e c t r o n m i c r o g r a p h s , promastigotes are k n o w n to burrow into the cells o f the anterior midgut ( M o l y n e u x ET AL., 1 9 7 5 ; Killick-Kendrick ET AL, 1977'A). Furthermore, Adler & T h e o d o r ( 1 9 2 9 ) found parasites throughout the h a e m o c o e l o m i c cavity o f t w o sandflies that had b e e n i m b e d d e d a n d s e c t i o n e d ; curiously, they attached n o i m p o r t a n c e t o their o b s e r ­ vation. T h e s e c o n d , less likely, route is by the salivary duct w h i c h o p e n s towards t h e anterior tip o f the mouthparts (Jobling, 1 9 8 7 ) . This w o u l d b e likely only if the p r o b o s c i s w e r e infected.

M o r p h o l o g i c a l l y , t h e p r o m a s t i g o t e s in the salivary glands r e s e m b l e d parasites r e c o v e r e d from the pro­

b o s c i s o f infected flies (Adler & T h e o d o r , 1 9 3 1 , 1 9 3 5 ; Killick-Kendrick, 1 9 8 6 ) . T h e i r size a n d s h a p e w e r e the s a m e as m e t a c y c l i c p r o m a s t i g o t e s , t h e form p r e - adapted to life in the vertebrate host ( s e e review b y Killick-Kendrick, 1 9 9 0 ) , a n d it s e e m s p r o b a b l e t h e y would b e infective and b e deposited in the skin during the act o f biting. Such a m e c h a n i s m o f transmission c o u l d b e advantageous in the evolution o f LEISHMANIA spp. s i n c e there is n o w m u c h e v i d e n c e that sandfly saliva plays an important role enabling m e t a c y c l i c pro­

mastigotes to b e c o m e established in skin at the site o f the bite (Titus & Ribeiro, 1 9 8 8 ; S a m u e l s o n ET AL, 1 9 9 1 ; T h e o d o s ET AL, 1 9 9 1 ) .

Salivary glands are seldom e x a m i n e d and further obser­

vations o n b o t h natural and e x p e r i m e n t a l infections must b e m a d e b e f o r e the r e l e v a n c e o f promastigotes in the glands to transmission can b e judged. Light infec­

tions are almost i m p o s s i b l e to detect w h e n glands are e x a m i n e d with bright field illumination, and it is n e c e s ­ sary to use a 1 0 0 X oil-immersion o b j e c t i v e with either p h a s e contrast o r interference illumination. Even with this e q u i p m e n t , the glands h a v e often to b e o b s e r v e d for a long time b e f o r e it is certain they are infected.

A further difficulty in s e e i n g the promastigotes is that t h e y are o b s c u r e d b y d e g e r a t e cells a n d g r a n u l e s w h i c h a p p e a r with progressive c h a n g e s o f the glands following a b l o o d m e a l (Adler & T h e o d o r , 1 9 2 6 ) . A review o f publications o n transmission by bite leads to the c o n c l u s i o n that a s e a r c h for a single m e c h a n i s m

58 Parasite, 1996, 3, 55-60

Mémoire

(5)

may b e in vain. T h e r e is strong e v i d e n c e that parasites may b e regurgitated following d a m a g e to the s t o m o - daeal valve b y chitinolytic e n z y m e s p r o d u c e d b y t h e parasite ( S c h l e i n et al, 1 9 9 1 , 1 9 9 2 ) . It a l s o s e e m s highly p r o b a b l e that transmission c o u l d o c c u r b y the transfer o f parasites from heavily infected mouthparts into the skin in the act o f biting (Killick-Kendrick, 1 9 7 9 ) . Possibly invasion o f t h e salivary glands a n d t h e deposition o f m e t a c y c l i c promastigotes into the skin with the saliva is a third w a y .

ACKNOWLEDGEMENTS

W

e are grateful to t h e M e d i c a l R e s e a r c h C o u n c i l , L o n d o n , a n d t h e L e v e r h u l m e Trust for financial support. T h e Afghan strain o f L. tropica w a s isolated w h i l e R.K-K. w a s a Short T e r m Consultant for the W H O Eastern Mediter- r a n e a n Regional Office.

REFERENCES

ADLER S. & THEODOR O . The mouth parts, alimentary tract,

and salivary apparatus of the female in Phlebotomuspapa- tasi. Annals of Tropical Medicine and Parasitology, 1926,

20, 109-142.

ADLER

S. &

THEODOR O.

Attempts to transmit Leishmania tro- pica by bite: the transmission of L. tropica by Phlebotomus sergenti. Annals of Tropical Medicine and Parasitology,

1929,

23,

1-18.

ADLER

S. &

THEODOR O .

The exit of Leishmania infantum from the proboscis of Phlebotomus perniciosus. Nature, London, 1930, 126, 883-

ADLER S. & THEODOR O. Investigations on Mediterranean kala

azar. IX. Feeding experiments with Phlebotomus perni- ciosus and other species on animals infected with Leish- mania infantum. Proceedings of the Royal Society, B,

1935, 116, 5 1 6 - 5 4 2 .

ADLER S., THEODOR O . & WITENBERG G. Investigations on

Mediterranean kala azar. XI. A study of leishmaniasis in Canea (Crete). Proceedings of the Royal Society, B, 1938,

125, 4 9 1 - 5 1 6 .

ARIAS J.R. & DE FREITAS R.A. Sobre os vetores de leishmaniose

cutanea na Amazonia central do Brasil. 2: Incidencia de flagelados em flebótomos selváticos. Acta Amazónica,

1978, § 3 8 7 - 3 9 6 .

BASTIEN P. Hamster cheek pouches compared with chick skins for membrane feeding of phlebotomine sandflies. Tran- sactions of the Royal Society of Tropical Medicine and Hygiene, 1990, 84, 530.

BASTIEN

P. &

KILLICK-KENDRICK R.

Leishmania tropica infection in hamsters and a review of the animal pathogenicity of this species. Experimental Parasitology,

1 9 9 2 , 75, 4 3 3 - 4 4 1 . BEACH R., KILLU G. & LEEUWENBURG J . Modification of sand fly

biting behavior by Leishmania leads to increased parasite

transmission. American Journal of Tropical Medicine and Hygiene,

1 9 8 5 ,

34,

2 7 8 - 2 8 2 .

CENINI P., REEVE A.M. & NEAL R. TWO new techniques for

quantitative determination of Leishmania amastigotes.

Transactions of the Royal Society of Tropical Medicine and Hygiene,

1 9 8 9 ,

83,

1 9 4 - 1 9 5 .

GRIMALDI G., MOMEN H., NAIFF R.D., MCMAHON PRATT D. & BAR-

RETT T.V. Characterization and classification of leishmanial parasites from humans, wild mammals, and sand flies in the Amazon Region of Brazil. American Journal of Tro- pical Medicine and Hygiene,

1 9 9 1 ,

44,

6 5 4 - 6 6 1 .

JEFFERIES D. Labrocibarial sensilla in the female sand fly Lut- zomyia longipalpis Lutz & Neiva (Diptera: Psychodidae).

Canadian fournal of Zoology, 1987, 65, AAA-AAS.

JOBLING

B. Phlebotomus papatasi. In: Anatomical drawings of biting flies, British Museum (Natural History), London,

1987, 17-46.

KILLICK-KENDRICK M. & KILLICK-KENDRICK R. The initial esta-

blishment of sandfly colonies. Parassitologia, 1991, 33 (Supplì),

3 2 1 - 3 3 3 .

KILLICK-KENDRICK

R. Biology of Leishmania in phlebotomine sandflies. In: Biology of the Kinetoplastida (Lumsden, W.H.R. & Evans, D.A., eds). Volume 2, Academic Press,

New York, 1 9 7 9 , 3 9 5 - 4 6 0 .

KILLICK-KENDRICK R. The tranmission of leishmaniasis by the

bite of the sandfly. Journal of the Royal Army Medical Corps,

1 9 8 6 ,

/32,

134-140.

KILLICK-KENDRICK

R. The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Annales de Parasitologic humaine et com- parée,

1 9 9 0 , 6 5 , 3 7 - 4 2 .

KILLICK-KENDRICK R. & KILLICK-KENDRICK M. The laboratory

colonization of Phlebotomus ariasi (Diptera: Psychodidae).

Annates de Parasitologic humaine et comparée, 1987, 52,

3 5 4 - 3 5 6 .

KILLICK-KENDRICK R., LAINSON R., LEANEY A.J., WARD R.D. & SHAW

J J . Promastigotes of L.b. braziliensis in the gut wall of Bra- zilian sandflies. Transactions of the Royal Society of Tro- pical Medicine and Hygiene, 1977, 71, 381.

KILLICK-KENDRICK R., LEANEY A.J., READY P.D. & MOLYNEUX

D.H. Leishmania in phlebotomid sandflies. IV. The trans- mission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longi- palpis. Proceedings of the Royal Society, B, 1977, 196, 105-

115.

KILLICK-KENDRICK R. & MOLYNEUX D.H. Transmission of leish-

maniasis by the bite of phlebotomine sandflies: possible mechanisms. Transactions of the Royal Society of Tropical Medicine and Hygiene,

1 9 8 1 , 75, 152-154.

LAINSON R., WARD R.D. & SHAW J . J . Experimental transmission

of Leishmania chagasi, causative organism of Neotropical visceral leishmaniasis, by the sandfly Lutzomyia longi- palpis. Nature, London,

1977,

266,

6 2 8 - 6 3 0 .

MOLYNEUX

D.H.,

KILLICK-KENDRICK

R. &

ASHFORD R.W.

Leish- mania in phlebotomine sandflies. III. The ultrastructure of Leishmania mexicana amazonensis in the midgut and pharynx of Lutzomyia longipalpis. Proceedings of the Royal Society, B,

1 9 7 5 ,

190,

3 1 4 - 3 5 7 .

Mémoire 59

Parasite, 1996, 3, 55-60

METACYCUC PROMASTICOTES OF

LELSHMAXIA

IN THE SALIVARY GLANOS

(6)

NAIFF R.D., FREITAS R.A., NAIFF M.F., ARIAS J.R., BARRETT T.V., MOMEN H. & GRIMALDI G. Epidemiological and nosological

aspects of Leishmania naiffi Lainson & Shaw, 1989. Memo­

rias do Instituto Oswaldo Cruz, 1991, 86, 317-321.

NAPIER

L.E. Kala-azar. In: The Principles and Practice of Tro­

pical Medicine, Macmillan, New York, 1946, 137-196.

PARROT L. & DONATIEN A. Autres observations sur l'infection

naturelle des phlébotomes par la leishmaniose générale de l'homme et du chien en Algérie. Archives de l'Institut Pasteur d'Algérie, 1952, 30, 146-152.

Pozio E., MAROLI M., GRADONI L. & GRAMICCIA M. Laboratory

transmission of Leishmania infantun to Rattus rattus by the bite of experimentally infected Phlebotomus pemi- ciosus. Transactions of the Royal Society of Tropical Medi­

cine and Hygiene, 1985, 79, 524-526.

SAMUELSON J . , LERNER E., TESH R. & TITUS R. A mouse model

of Leishmania braziliensis infection produced by coin- jection with sand fly saliva. Journal of Experimental Medi­

cine, 1991, 173, 49-54.

SCHLEIN Y. & JACOBSEN R.L. Haemoglobin inhibits the deve­

lopment of infective promastigotes and chitinase secretion in Leishmania major cultures. Parasitology, 1994, 109, 23- 28.

SCHLEIN

Y.,

JACOBSEN

R.L. &

MESSER G.

Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proceedings of the National Academy of Science, USA, 1992, 89, 9944-9948.

SCHLEIN Y., JACOBSEN R.L. & SHLOMAI J . Chitinase secreted by

Leishmania functions in the sandfly vector. Proceedings of the Royal Society, B, 1991, 245, 121-126.

SHORTT H.E., BARRAUD P.J. & CRAIGHEAD A.C. Note on a mas­

sive infection of the pharynx of Phlebotomus argentipes with Herpetomonas donovani. Indian Journal of Medical Research, 1926, 26, 441-443.

THEODOS C, RFBEIRO J.M.C. & TITUS R.G. Analysis of enhan­

cing effect of sand fly saliva on Leishmania infection in mice. Infection and Immunity, 1991, 59, 1592-1598.

TITUS R.G. & RIBEIRO J.M.C. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infec- tivity. Science, 1988, 239, 1306-1308.

Reçu le 20 juin 1995 Accepté le 20 septembre 1995

6 0

Mémoire Parasite, 1996, 3, 55-60

Références

Documents relatifs

Serum from all patent dogs showed high antibody titers to rK39 in enzyme-linked immunosorbent assays (ELISA), and reacted by western blotting with several antigens, 12 to 120

We prepared three solutions in which parasites were suspended and encapsulated within giant liposomes: sucrose solution (360 mOsm), RPMI and RPMI-dextran solution.. The latter

La lumière de la glande alvéolaire est nettement plus grande que celle de la glande acineuse.. Tubuleuse

Preva- lence and Distribution of Leishmania RNA Virus 1 in Leishmania Parasites from French Guiana.. American Journal of Tropical Medicine and Hygiene, American Society of

Because decreased levels of Syt XI lead to increased TNF and IL-6 secretion (26), it is possible that degradation of Syt XI is responsible for the increase in

major promastigotes by macrophages promoted LC3 lipida- tion, recruitment of LC3 to phagosomes was inhibited through the action of the parasite sur- face metalloprotease GP63..

Here, in absence of genome data of VL causing parasites having different geographical origins, our main objective was to use RAPD as a screening technique and a geographically

To better understand the consequences of autophagy, we cultivated cells in PBS for 24 h and assessed autophagy by evaluating the percentage of autophagosome-containing