• Aucun résultat trouvé

15 Supratransmission dans une ligne électrique de Klein-Gordon

N/A
N/A
Protected

Academic year: 2022

Partager "15 Supratransmission dans une ligne électrique de Klein-Gordon"

Copied!
1
0
0

Texte intégral

(1)

rencontre du non-lin´eaire 2017 1

Supratransmission dans une ligne ´ electrique de Klein-Gordon

S. Morfu1, B. Bodo2, P. Marqui´e1 & M. Ross´e1

1 Le2i FRE2005, CNRS, Arts et M´etiers, Univ. Bourgogne Franche-Comt´e, F-21000 Dijon, France.

2 Laboratory of Electronics, Department of Physics, University of Yaounde I, P.O. Box 812, Cameroon.

smorfu@u-bourgogne.fr

Construire des r´eseaux ´electroniques dont la tension est r´egie par des ´equations diff´erentielles non lin´eaires pr´esente deux avantages. Le premier est d’´etudier des ph´enom`enes naturels d´ecrits par ces mˆemes ´equations. On peut citer les ph´enom`enes de R´esonance Vibrationnelle et de R´esonance Stochas- tique qui interviennent dans les processus neuronaux de codage de l’information [1,2,3]. Divers models

´

electriques peuvent ˆetre d´evelopp´es pour ´etudier la propagation de l’influx nerveux [4,5], ou encore l’ana- lyse des propri´et´es de propagation des solitons [6]. Le second int´erˆet de ces r´eseaux ´electroniques consiste

`

a utiliser leurs propri´et´es `a des fins de traitement et de transmission de l’information [7,8]. Des r´eseaux

`

a une dimension permettent d’analyser la propagation de l’information [9,10] tandis que des r´eseaux `a deux dimensions autorise le traitement d’images [11,12]. On se propose de se limiter `a un r´eseau `a une dimension de type Klein-Gordon [13,14] afin de montrer l’effet de supratransmission [15,16,17], c’est `a dire la g´en´eration de modes non lin´eaires lorsque certains milieux sont excit´es hors de leur bande passante.

R´ ef´ erences

1. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic Resonance,Rev. Mod. Phys.,70, p223 (1998).

2. E. Ullner, A. Zaikin, J. Garc´ıa-Ojalvo, R. B´ascones, J. Kurths, Vibrational resonance and vibrational pro- pagation in excitable systems,Phys. Lett. A,312, p348-354, (2003).

3. M. Bordet and S. Morfu, Experimental and numerical study of noise effects in a FitzHugh–Nagumo system driven by a biharmonic signal,Chaos, Solitons and Fractals,54, p82-89, (2013).

4. J. Nagumo, S. Arimoto, S. Yoshisawa, An active pulse transmission line simulating nerve axon,Proc IRE 50, p2061–70 (1962).

5. V.I. Nekorkin, V.B. Kazantsev, S. Morfu, J.M. Bilbault and P. Marqui´e, Theoretical and experimental study of two discrete coupled Nagumo chains,Phys. Rev. E.64, 036602 (2001).

6. M. Remoissenet, Wave called soliton : concept and experimentsSpringer-Verlag, Berlin(1999).

7. L.O. Chua and L. Yang, Cellular Neural Networks : Applications,IEEE Tans. Circuits and Systems, 35, p1273-1290, (1988).

8. S. Morfu, P. Marqui´e, B. Nofiele, and D. Ginhac, Nonlinear systems for image processing, Advances in Imaging and Electron. Physics,152, p79-153, (2008).

9. S. Morfu, V.I. Nekorkin, J. M. Bilbault and P. Marqui´e, Wave front propagation failure in an inhomogeneous discrete Nagumo chain : Theory and experimentsPhys. Rev. E66, p.046127 (2002).

10. S. B. Yamgou´e, S. Morfu and P. Marqui´e, Noise effects on gap wave propagation in a nonlinear discrete LC transmission linePhys. Rev. E75, p.036211 (2007).

11. L.O. Chua, CNN : a paradigm for complexityWorld Scientific, Singapore (1998).

12. S. Morfu, On some applications of diffusion processes for image processingPhys. Lett. A373, p.2438 (2009).

13. B. Bodo, S. Morfu, P. Marqui´e and M. Ross´e, “A Klein-Gordon electronic network exhibiting the supra- transmission effect”,Electron. Lett.46, 123 (2010).

14. M. Peyrard and T. Dauxois, Physique des solitonsEDP Sciences, savoir Actuels, (2004).

15. J.-G. Caputo, J. Leon, A. Spire, Nonlinear energy transmission in the gapPhys. Lett. A,283, p. 129 (2001).

16. F. Geniet and J. Leon, Energy transmission in the forbidden Band Gap of a Nonlinear Chain,Phys. Rev.

Lett.,89, p134102, (2002).

17. J.E. Mac´ıas-D´ıaz, Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations,Communication in Nonlinear Science,46, p. 89 (2017).

c Non Lin´eaire Publications, Avenue de l’Universit´e, BP 12, 76801 Saint- ´Etienne du Rouvray cedex

Références

Documents relatifs

One of the first existence result of multi-solitons for non-integrable equations was obtained by Merle [34] as a by-product of the construction of a multiple blow-up points solution

The method of proof involves the generalization of previous works on supercritical NLS and gKdV equations by Martel, Merle and the first author [3] to the wave case, where we

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Theorem 1.1 is a version of the soliton resolution for global solutions of the one- dimensional damped nonlinear Klein-Gordon equation (1.1), with convergence for the whole sequence

Such solutions were constructed in the context of the nonlinear Schrödinger equations, the generalized Korteweg-de Vries equations, the Hartree equation, the energy critical

We consider here a parametric framework with distributions leading to explicit approximate likelihood functions and study the asymptotic behaviour of the associated estimators under

The wave equation (6) was also investigated on the 3–dimensional hyperbolic space by Metcalfe and Taylor [27], who proved dispersive and Strichartz estimates with applica- tions

The central result of the present work is that a duality identity extending (1) holds for general L´evy processes (possibly with positive jumps), and as a consequence so does