• Aucun résultat trouvé

基于频移反馈激光器的高精度射频调制激光雷达

N/A
N/A
Protected

Academic year: 2021

Partager "基于频移反馈激光器的高精度射频调制激光雷达"

Copied!
168
0
0

Texte intégral

(1)

基于频移反馈激光器的高精度射频调制激光雷达

杨宏志

(2)

UDC 分类号:621.38

基于频移反馈激光器的高精度射频调制激光雷达

作 者 姓 名 杨宏志

学 院 名 称 光电学院

指 导 教 师 赵长明教授

答辩委员会主席 高春清教授

申 请 学 位 工学博士

学 科 专 业 电子科学与技术

学位授予单位 北京理工大学

论文答辩日期 2019 年 06 月

(3)

High-precision RF-modulated lidar by using a

frequency-shifting feedback laser

Candidate NameM YANG Hongzhi

School or Department: School of Optics and Photonics

Faculty Mentor: Prof. Changming Zhao

Chair, Thesis Committee:Prof. Chunqing Gao

Degree Applied: Doctor of Engineering

Major: Electronic Science and Technology

Degree by: Beijing Institute of Technology

The Date of DefenceM JuneK2019

(4)

(5)

Ƀ|ύϕňȦMǛȂxˑţ”ͽȓȫǗɃ|ĸdzŸȎƒˑdzŸVζͣ

ˑˤ˸ƌ™͚ƺˑˤ˸ǖɓFƃǗǛˡKȓaϽʹÝəʈĨ͎ΉˑĹțŌK

ţ”ͽȓaWîġ|Ə̢ĊͧǘȆÈίˑˤ˸ǖɓKoWîġe͚ƺ

ð{˂ƌŏţǘÂťȎ͂Ɇɑˑţ”ǘͿpǛ›ˉίˑɊȕFXǗRĜƌ

™ˑě™̻ŷɬˤ˸ƌ™Ǜ¬ˑˆ—΍ʼĻƏĸţ”ͽȓa™qȦ˧ˑ

ΆȦƛͧ˪qΉǐF

ʹɬˋȦF

̄ĝM ȡɀM

关于

于学

学位

位论

论文

文使

使用

用权

权的

的说

说明

Ƀ|ũºqͳð{˂ƌŏţȽ¿£̇E›ˉţ”ͽȓˑͰūKÂaî

DZM@ţɚȽɈ£̇EƛğȽ¿ώϪξxţ”ͽȓˑÆXŋü†NAţ

ɚĔƒϒˉƲüE̲üǘÂťŋßǜɰŋßƛ£šţ”ͽȓNBţɚĔ±

ͼţ”ͽȓͩɖϮǘ¨ϮNCţɚĔƒţɄxʎe˖ˑ

,ŋßΓξĨxǷ

ţ”ͽȓNDţɚĔƒ»Ƒţ”ͽȓˑºώǘώÔÆűI£Ŵţ”ͽȓĸ

ͳŴĞωŧɬͰūJF

̄ ĝM ȡɀM

Ÿƒ̄ĝM ȡɀM

(6)

摘要

ŹГ·ßʪ¶ЅήȫƒŹГ·ßʪ¶™eǼʐΥʇKŷ˖əζͣʐΛEʐχĨ ʹƴǼʐˑR˯ʪ¶ЅήKƒʪ¶™eǼʐΥʇKÃȽʪ¶Ѕή˹ϭÔΫʽОˑ ʹʮKĜȣąÜˉǬГzˈˑƼʇ¤ĘζͣǼʐKÃȽƼʇЅήΦƬˑǦŏɷƘǠ͆ æKȫR˯̣ěqʪ¶ЅήĨƼʇЅήĚ͌ŒʮKąĸRū˵ơU·Ⱦr̻WΚˑR ˯Țŀʪ¶ЅήFɃͽȓφίÔɒ˘ƘĈГʪ¶IR˯ʹɯ̊ŀˑŹГ·ßʪ¶Jˑ ǬГʹLJKȂÒqłsōʐƁ˘”ʐΛʅĨǬГōȰìʐχʅˑ˘ƘĈГʪ¶Ǽʐ– ßKũǖq˘ƘĈГʪ¶ЅήĂ˂ɛɆˑȄƣKƛζͣqŌĺŭННͿFφί΄̟Ô ɒ˘ƘĈГʪ¶ЅήˑʐΛEʐχĂ˂KǗ…ĊˀM1JƮ˖əΛ˭ǽβǘ̻̃sȒ ȑ¥ʐƁȣKűȧĊˈ˘”Νč̼ƧΖΛ˭ʐϖ΅ƎN2J•χ˖əˑΗ•ōȰìГ ˴ϬДImHz - HzJFeqȊĭUμϬДKɃȓφίÔɒГ˴ĉЙʿΜˑȣГʹLJK ÚȚLJĹȂÒqłsГ˴ĉЙʪ¶ˑОϵΈʇōȰìʐχʅĨŋěƦ͇É/˘”ʐΛ ʅKǼ̑qŹГ·ßʪ¶Ѕήĸ˖əχơEΛ˭ʐϖ̃БŁˑRwȚțʅKeε˯Ț –ßʪ¶ЅήˑĊƇƟˉŘūqRūˑǢɄł˦FϽɬjŌKɃͽȓĸ΄̟ÔɒГ˴ ĉЙʿΜˑł˦UKζRɭˤ˸qƬơ·ßE˘”·ßГ˴ĉЙʪ¶ˑȣГĪƟKК ɨĊˀqłsˌ¶Ƭơ·ßГ˴ĉЙʿΜˑĈ͇Éʪ¶EȣŁÔȑTalbot ȌƟƒćł sˌ¶˘”·ßГ˴ĉЙʿΜˑ¶Łŭȣ¯ϔėčǷ̃FɃͽȓˑfͬˤ˸ÆűîDZ ƒVÐțЋM I1JƤƇq˘ƘĈГʪ¶Ѕή̧̏ˤ˸F˘ƘĈГʪ¶ȫÜˉň¶˴ГĮɑƣ ˴ГЛΔȹƽžƘʕ„IMZIJKź÷Г˯Şʪ¶·ßǖ˘ƘĈГʪ¶ʢFɝǸЉƙͥ MZI ˘”įňɦŀEϿɆί˵˂ͽƒćОșːįňɦŀKͽȓ΄̟Ôɒqʪ¶˘”į ňEň¶ŹГįňŷ˘ƘĈГʪ¶ǬГˑƲĪKǿŸqǬГ¤ĘˑçʽΊŴơĨ˘” ΊŴơF˂ͽĨŭН̣ɓĜȣͧȦKĸˣ¶̕ƢȣˑMZI ̧̏aKŹГ˘”įňĔƒ ˗ǽΡǷeǬГˑ˘”įňKȫƲĪǬГįňˑȻfͬIJ̐FɃȓφίŷ˘ƘĈГʪ ¶Ѕή̧̏ˑƌ™Ă˂ĨĚ̞ǖώÔζͣʖ¹ˑÔɒXˤ˸KȄƣΖqRŗ˘ƘĈГ ʪ¶ЅήĂ˂ɛɆKƛĸŌĺŭˀq1.5 km˖əˑ8 mmˑʐϖ̍ơKȬ͜ȂОqŌĺ ʐϖΛ˭FĜȣKÜˉ˘ƘĈГʪ¶ŌƎƘʕzˈˑŹГ¤Ęŭˀq˴é˖əˑχơ ʐϖKʐϖ̍ơŒs0.5 m/sF

(7)

I2JƤƇqłsГ˴ĉЙʿΜˑŹГ·ßʪ¶ćÂОϵΈʇōȰìʐχˤ˸F КµKɃͽȓɝǸň¶Г˴ĉЙʿΜˑƢȣEГ˴ʹLJƣ˾qƢι͌ŌƎƘʕ˂ͽɦ ŀKȑ©‰˜qʪ¶ʿΜϩơE·ßГʽŷsŹГʇưˑƲĪKƒćȋŏĮņ˓̏ȑ ŷОϵΈʇϵɨˑƲĪFÂɨĸŭНUKφί̍˧Ǿßň¶·ßГʽXГ˴ĉЙʿΜ ϩơˑ¿̏KȣŁUzˈq͇ÉETͲʇEțʇ̃ʇưKГŁUͯŵÞqŲΊГʽɣF ȻĞɝǸǬГDoppler ʐχĂ˂KÔÝÜˉ 15thΈʇĨłƕ¤Ęŷ˴é˖əζͣqō ȰìГ˴ʐϖFŭН̣ɓͧȦОϵΈʇ͆ȽȌȊĭ•χ˖əˑɐ•ōȰìГ˴ϬДK Ȭ͜ȂОȻżĔǼʐχơĨχơÔΫʽF I3JƤƇqłsГ˴ĉЙʿΜˑŹГ·ß͇Éʪ¶ćÂО̍ơΛ˭ʐϖˤ˸F Ƀ|ȂÒqłs͇ÉVϺʃŹГ·ßˑŋěƦ͇É/˘”ʪ¶ʐΛǢɄK΃țʅ̣ěq ̢Äˑ͇ÉʐΛʅIÜˉ͇ÉUóʃ̌ˏʐϖJĨ˘”ʐΛʅIÜˉ͇ÉVϺʃˑŹ Г¤Ę̍˧ʐϖJζͣΛ˭ʐϖKȽȌĹȂОq͇ÉʐΛˑΛ˭ÔΫʽFeqȽȌĹ ̣ěȣϭЗͣʅĨ˘”ʐΛʅKεͬɺʪ¶ʢІĜȣÃȽ͇ÉĨŹГ·ßʹLJFĸɬ ̓ȱVKɃ|Üˉň¶ȗʇĮɑƣГ˴ĉЙʿΜKŭˀq˶ūˑ͇ÉÆŹГ·ßFŭ НUKφίŷɴÔɒŋěƦ͇É/˘”ʪ¶ʐΛǢɄĨ͇ÉʐΛǢɄĸWĜıʇ çʽVˑʐΛÔΫʽKͿȦqŋěƦ͇É/˘”ʪ¶ʐΛǢɄ͆ŎȽȌͦ®WĜ ıʇçʽƕɍˑʐϖ΅ƎKȻ̠ŭНUŭˀq 1.5 kmI¶̕JΛ˭ˑ 3 mm ÔΫ ʽˑО̍ơʪ¶ʐΛF΃ŋěƦ͇É/˘”ʐΛțʅȫŷ˘ƘĈГʪ¶ʐΛǢɄ ˑȽȌͦ³KĜȣŷsО̍ơʪ¶ʐΛˑĊƇoȂqRw˂ͽĨŭНł˦F I4JƤƇqГ˴ĉЙʪ¶ˑȣГʹLJˤ˸FɃͽȓĸƜʆ·ˤƖͰГ˴ĉЙʿ ΜˑȣГʹLJł˦UKɝǸWĜ·ß̊ŀˑГ˴ĉЙʿΜˑƢȣE˴ГʹLJKÚȚLJ ĹȂÒqłsГ˴ĉЙʿΜˑφˉƢȣ͌ŌƎƘʕ˂ͽɦŀFĸɬ˂ͽɦŀł˦UK

Ô݀˂ͽĨŭНUˤ˸qȒȑTalbot Ɍ†ĨÔȑ Talbot Ɍ†VˑƬơ·ßĨ˘”·

ßГ˴ĉЙʿΜˑȣГʹLJKȂÒqłsˌ¶Ƭơ·ßГ˴ĉЙʿΜˑĈ͇Éʪ¶E

ȣŁÔȑTalbot ȌƟĨłsˌ¶˘”·ßГ˴ĉЙʿΜˑ¶Łŭȣ¯ϔėčǷʹLJF

¿

¿ϣϣ΁΁MMГ˴ĉЙʪ¶N˘ƘĈГʪ¶ЅήNŹГ·ßʪ¶ЅήNȣŁTalbot ȌƟN

(8)

Abstract

Conventional lasers rely on multiple passes through a gain medium to reinforce a preselected frequency, thereby obtaining near-monochromatic output. For many purposes, such as optical arbitray waveform generation, it is desirable to have light spread over a broader range of frequencies. One means of fulfilling that objective is to introduce a frequency shifting element into the laser feedback loop such that successive passes of a wavepacket take place with different carrier frequencies. The operation of such a frequency shifting feedback (FSF) laser has been investigated by several research groups [1–46] and it has been used for a number of practical applications, including the ultrahigh repetition rates pulse, optical real-time Fourier transformation, RF-chirped waveform generation. In the early 1970’s, the concept of frequency shifted feedback loop incorporating an active medium was introduced for pulsed lasers as a possibility for electronic frequency control. The prediction was that cavity modes were chirped because of the frequency shift introduced during each transit through the cavity. By satisfying a resonant condition between the applied frequency shift and the loop fundamental frequency, it was possible to generate a pulsed output with a repetition rate equal to the modulator frequency. And a theoretical work has shown the possibility of further increasing the repetition rate by adjusting the frequency shift and the loop fundamental frequency as the ratio of two coprimes. Then some scholars provided an experimental demonstration of the idea by injecting a dye FSF cavity with a dye single-mode seed laser: the generation of 6-ps Fourier-transform-limited pulses was demonstrated with repetition rates tunable by steps of 80 MHz between 0.24 GHz and 36.6 GHz, this is, over two orders of magnitude. Finally, franch scholar H.Guillet de Chatellus explains this result in depth by providing an extensive description of the fractional Talbot effect in cw-seeded FSF lasers. Then we called the resonant condition as the integer Talbot condition and the fractional resonant condition as the fractional Talbot condition. When the modulating frequency is slightly detuned away from the integer Talbot case, the FSF loop seeded by a single CW laser is demonstrated to generate the RF chirp wavform. Based on these unique properties of the FSF laser, I propose some new methods to enhance the accuracy of the velocity and distance measurement by using the frequency shifting loop. Besides, I also do some researches on

(9)

the dual-sidebands frequency-shifting loop (FSL) and find some originally results, such as pulse doublets, optical real-time Fourier transformation and temporal fractional Talbot effect. In the following, I will present these academic researches systematically.

(1) The investigation of the coherent dual-frequency lidar-radar system. We construct a frequency-shift Mach-Zehnder Interferometer (MZI) to generate a fibered dual-frequency laser source and apply it to range measurement. Different from the traditional Mach-Zehnder interferometer in the case of long delay time, we theoretically investigates the beat phase noise under the case that delay length is far shorter than the laser coherent length. The effect of laser phase noise and acousto-optic frequency shifter (AOFS) noise in the beat note phase noise of the dual-frequency laser is theoretically investigated. General expressions are presented for the power spectral density and phase spectral density of the beat note. From the simulations, we find that high AOFS noise introduces a much greater phase jitter into the beat note noise conversion. Based on the theoretical results, an outdoor experiment is conducted to demonstrate the ability of the phase-shift method in the absolute distance measurement and beat note Doppler frequency-shift method in the velocity measurement. By conducting the experiment in the outdoor environment, we finally obtain 8 mm range resolution at a distance of 1.5 km and the velocity resolution is better than 0.5 m/s.

(2) The investigation on the RF up-conversion and waveform generation using a frequency-shifting amplifying fiber loop, application to Doppler velocimetry. RF-modulated laser based on the frequency-shifting amplifying loop has the ability of generating high-order harmonics. Here we focus on a direct application of this source: a velocity measurement with different order harmonics. The emitted wave from the frequency-shifting amplifying loop is directed through a fiber coupler with a splitting ratio of 1:99. The 99% output is connected to a fiber circulator, and the other one (1%) is directly detected by photodetector PD2 (3.5 GHz bandwidth) and used as a monitor signal. The light beam emitted by the circulator is collimated by a 10-cm-diameter lens and transmitted to the moving target. The target moves toward and away from the laser in one cycle at a speed ν adjustable from 0.1 m/s to 0.8 m/s. We find (i) a good linear dependency of the frequency shift versus motor velocity, and (ii) the expected n-fold

(10)

enhancement of the slopes. This measurement confirms that RF up-conversion permits to significantly improve the experimental accuracy at low velocities.

(3) The investigation on a novel hybrid TOF/phase-shift method for absolute distance measurement using a falling-edge RF-modulated pulsed laser. Traditional range-finding techniques often take advantage of two methods: pulsed TOF laser ranging and phase-shift laser ranging. The pulsed TOF laser ranging technique is appropriate for long-distance measurement because of the long unambiguous distance and high peak power. The range resolution, which is determined by the pulse width, is typically on the order of meters. In comparison, phase-shift laser ranging offers good precision but exhibits 2π phase ambiguity, making it suitable for measurements of incremental displacement. To address the limited ambiguous distance, two or more measurement rulers are usually used in the phase-shift rangefinder. Therefore, the TOF method has the characteristic of a long unambiguous distance, and the phase-shift method has the characteristic of a high precision. They are thus complementary in terms of the unambiguous distance and accuracy. Combining the characteristics of the long, unambiguous distance of the pulsed TOF method and the accuracy of the phase-shift measurement, a hybrid TOF/phase-shift method may achieve long-distance and high-accuracy absolute distance measurement. Then we investigate a falling-edge RF-modulated pulsed laser by using a frequency-shifted amplifying loop. A single-frequency fiber laser (seed laser) is coupled into a fiber link through coupler 1. The output port of coupler 1 is sent through an amplifier, followed by an acousto-optic (AO) switch back to the input of coupler 2. The second coupler allows us to extract a fraction of the optical field in the pulsed frequency-shifted amplifying loop. The AO switch is used as a frequency shifter and beam chopper. A Yb3+-doped fiber amplifier is inserted to compensate for the loss in the loop. The RF modulation within the pulse results from the interference of the frequency-shifted pulse with the seed laser. Then we directly use the falling-edge RF-modulated pulsed laser to measure the object distance. To verify the capability for long-range absolute distance measurement, we make a distance measurement inside the fiber by inserting a 2-km fiber in the receiving port. The experimental results show that the TOF/phase-shift method can compensate for the timing error caused by the TOF method and significantly improve the distance precision. Finally,

(11)

we show experimentally that the hybrid TOF/phase-shift method is a promising technique that achieves 3 mm precision in the 1.5 km measurement range (in fiber), corresponding to a relative precision of 2×10-6.

(4) The investigation on the temporal and spectral properties of frequency-shifting loop. Frequency-shifting loops usually rely on the use of an acousto-optic frequency-shifter. While it features high frequency conversion efficiency in the sub-100 MHz range, AOFS have limited efficiency in the GHz range, and offer limited tunability. In this respect, EOM offer much higher modulation frequency and bandwidth. Besides, EOM are compact and easy to integrate with other fibered devices. Thus we propose to investigate an all-fibered frequency-shifted feedback loop when a widely tunable common electro-optic amplitude or phase modulator (EOAM or EOPM) is employed. Instead of the single side-band AO frequency-shift, the EO loop will produce at each round-trip two side-bands with opposite frequency-shifts. The carrier will also circulate together with the multiple frequency-shifted sidebands. In order to predict the time response of the FSL, a general time-delayed interference model is deduced under the cases of the integer Talbot condition and fractional Talbot condition. When the integer Talbot condition is satisfied (𝑓𝑓 𝑓𝑓 = 𝑝𝑝), the output

traces show a periodic pulse. However, different modulators also show some differences. The phase-modulating FSL is demonstrated to achieve the optical real-time Fourier transformation. And the amplitude-modulating FSF loop features double-pulse regime which the interval between the two pulses can be continuously adjusted by changing the static phase retardance and the modulation depth. Besides, when the fractional Talbot condition is satisfied (𝑓𝑓 𝑓𝑓 = 𝑝𝑝 𝑞𝑞), the time response of the amplitude-modulating FSF

loop could observe the temporal fractional Talbot effect, that is a periodic pulse with the repetition rate 𝑞𝑞𝑓𝑓 = 𝑝𝑝𝑓𝑓. Phase-modulating FSF loop features the arbitrary waveform

generation due to the destructive interference of higher-order harmonics. Experiments involving the temporal and spectral properties of the amplitude-modulating FSL and the phase-modulating FSL are conducted to demonstrate the above results.

Key Words: Frequency-shifted feedback loop; Talbot laser; Frequency-to-time mapping;

(12)

目录

̂

1 ˿̩ͽ

... 1 1.1 Ƀͽȓˤ˸ˑ˖ˑĨǐi ... 1 1.2 Г˴ĉЙʪ¶ˤ˸ζƇ ... 2 1.3 Ƀͽȓˑfͬˤ˸Æű ... 20

̂

2 ˿ łsň¶˴Гˑ˘ƘĈГʪ¶Ѕή

... 29 2.1 Ƨ͵ ... 29 2.2 ĈГʪ¶ʢƒćįňÔɒM ... 30 2.2.1 ĈГʪ¶ʢ̞ǖ ... 30 2.2.2 ǬГ¤Ęˑįňɦŀ ... 31 2.2.3 ŭНˤ˸ ... 38 2.3 ˘ƘĈГʪ¶Ѕή ... 39 2.3.1 ˘ƘĈГʪ¶ЅήǼʐĂ˂ ... 39 2.3.2 ˘ƘĈГʪ¶Ѕή̞ǖ ... 44 2.3.3 ˘ƘĈГʪ¶ЅήŌĺǼʐŭН ... 55 2.4 ̣ͽ ... 57

̂

3 ˿ łsň¶Г˴ĉЙʿΜˑŹГ·ßʪ¶ćÂΈʇōȰìʐχ

... 57 3.1 Ƨ͵ ... 58 3.2 Г˴ĉЙʿΜˑ̞ǖ ... 58 3.2.1 ¶̾̕ěĮΩʹLJ ... 59 3.2.2 ¶̕ʿΜʹLJ ... 60 3.2.3 ň¶˴ГʹLJ ... 63 3.3 Г˴ĉЙʿΜ˂ͽÔɒ ... 65 3.4 Г˴ĉЙʿΜŭН ... 67 3.4.1 ˆǐʇưĊˈ ... 68 3.4.2 ŹГГʽUΡǷ ... 70 3.4.3 ϠɦʹLJ ... 71 3.5 ОϵΈʇ Doppler ʐχ ... 73

(13)

3.5.1 ǬГōȰìʐχĂ˂ ... 73 3.5.2 ОϵΈʇ Doppler ʐχŭН ... 74 3.6 Lj̣ ... 75

̂

4 ˿ łsГ˴ĉЙʿΜˑŹГ·ß͇Éʪ¶ćÂО̍ơΛ˭ʐϖ

... 76 4.1 Ƨ͵ ... 76 4.2 łsň¶ȗʇ·ßˑŹГ·ß͇Éʪ¶˂ͽÔɒ ... 77 4.2.1 ˂ͽɦŀ ... 77 4.2.2 ‰˜ ... 79 4.3 ŹГ·ß͇ÉŭН̣ɓM ... 81 4.3.1 ŭН̵ͪ ... 81 4.3.2 ŭН̣ɓ ... 81 4.4 О̍ơŹГ·ß͇Éʪ¶ʐΛ ... 85 4.4.1 ŋěƦ͇É/˘”ʐΛĂ˂ ... 85 4.4.2 О̍ơŹГ·ß͇Éʪ¶ʐΛŭНM ... 87 4.5 Lj̣ ... 91

̂

5 ˿ Г˴ĉЙʪ¶˂ͽɦŀć‰˜Ôɒ ...

93 5.1 Ƨ͵ ... 93 5.2 Talbot ȌƟ ... 93 5.2.1 ˹ϭŁ Talbot ȌƟ ... 93 5.2.2 ȣŁ Talbot ȌƟ ... 96 5.2.ˌ¶·ßĮˑΩʹLJ ... 96 5.2.1 ˌ¶˘”·ßʹLJ ... 96 5.2.2 ˌ¶Ƭơ·ßʹLJ ... 98 5.3 Г˴ĉЙʪ¶ˑφˉ˂ͽɦŀćÔɒ ... 98 5.4 łsˌ¶˘”·ßˑГ˴ĉЙʪ¶˂ͽɦŀ ... 100 5.4.1 Ȓȑ Talbot Ɍ† ... 100 5.4.2 Ôȑ Talbot Ɍ† ... 104 5.5 łsˌ¶Ƭơ·ßˑГ˴ĉЙʪ¶˂ͽɦŀ ... 107 5.5.1 Ȓȑ Talbot Ɍ† ... 108 5.5.2 Ôȑ Talbot Ɍ† ... 110

(14)

5.6 łsň¶Гʽ·ßˑГ˴ĉЙʪ¶˂ͽɦŀ ... 116 5.6.1 Ȓȑ Talbot Ɍ† ... 116 5.6.2 Ôȑ Talbot Ɍ† ... 118 5.7 Ƀ˿ẓ̇ ... 120

̂

6 ˿ ĈέƕГ˴ĉЙʪ¶ŭН

... 121 6.1 Ƨ͵ ... 121 6.2 ĈέƕГ˴ĉЙʪ¶ŭН;ͷ ... 121 6.2.1 ŭНțɠ ... 121 6.2.2 ¿ϣĮ† ... 122 6.3 łsˌ¶Ƭơ·ßˑГ˴ĉЙʪ¶ ... 125 6.3.1 Ĉ͇ÉŭН ... 125 6.3.2 ŹГʇưĊˈ ... 127 6.3.3 ȟ˯Şʪ¶ʈ¹ȣˑĈ͇ÉϠɦʪ¶ ... 129 6.3.4 Ôȑ Talbot ʪ¶ ... 130 6.4 łsˌ¶˘”·ßˑГ˴ĉЙʪ¶ ... 132 6.5 ̣ͽ ... 133

̣ͽ

... 140

Ą̺ȓʼ

... 143

(15)

1 章

章绪

绪论

1.1 本

本论

论文

文研

研究

究的

的目

目的

的和

和意

意义

Г˴ĉЙʪ¶ȫĸƖͰˑFabry-Perot ͉ǘ̻ʿư͉Æȃ¹˴ГĮ, ›ƺʪ¶ɳɨ φί˴ГĮȣ¶ʇГʽϏĊˈčïK˴ГĮˑƧ¹ƲĪq̧ʪ¶ˑρГɦƦK›ƺ Г˴ĉЙʪ¶ÃȽqWĜsƖͰʪ¶ˑȣϭ-ГʽʹLJFȢĸ 1970 ƚK̶ĵșĿˬŏ

ţƼʇŭНůˑWilliam Streifer Ĩ John R. Whinnery ȎǺĊˀKƮʪ¶͉Æè¹ň¶ ˴ГĮȣKΩÒˑθ̪ʪ¶ĥˀГʽīĬʹLJFϿĞK‹ōˤ˸ţ̻Ƥśˤ˸Г˴ĉ Йʪ¶ˑȣГʹLJKƛͿŭqÂĸΗОϕГ͇ÉEƼʇ¤ĘˑˆǐʇưĊˈEīĬ¶ ʢXŲΊ¶ʢzˈEŹГ·ßʪ¶ЅήE¶Łŭȣ¯ϔėčǷIʇϩ-ȣϭȩŹJ̃R ̏ÖțЋȽ˝ƜʆˑƟˉáȱF Ǵʳʪ¶͉ˑǵ͘Ɍ†KГ˴ĉЙʪ¶ĔƒÔe͉Æ͌ˊǵ͘Г˴ĉЙʪ¶Iȟ ˯޶ʈ¹JĨŌ͉ƦГ˴ĉЙʪ¶I˯Şʪ¶ʈ¹JF€̣ɑU˛K͉Æ͌ˊǵ͘ Г˴ĉЙʪ¶ĨféϠɦʪ¶β’FféϠɦʪ¶ȫĸʪ¶͉Æȃ¹RūГʽˑ·ß ĮKŷ¶ɋζͣǵƗ·ßǘ̻˘”·ßK›ƺĚ`ɦƦˑǵ͘ʪ¶̫DzĴūˑГʽϭ ЀĨĴūˑ˘ŷ˘”¿̏Kƒŭˀ͇Éʪ¶ˑΩÒFɝǸˀȽŭН̣ɓKƮ·ßГʽ Xʪ¶͉ϩơʤΚRūɌ†ȣK͉Æ͌ˊǵ͘ˑГ˴ĉЙʿΜ͆zˈ˶ūˑ͇Éʪ¶F ƃ̇XϠɦʪ¶ŭНˀ΋̊’K“ε˯ǎËVˑ͇ÉʹLJΦeŋɇKʕćÞņ˓~Ύ ˑéæţʹLJĨ¶ţЉ̝LJȌƟ̃F̼˘ɴ͌ˊǵ͘Г˴ĉЙʪ¶KŌ͉ƦГ˴ĉЙ ʪ¶͆ŎĸRū˵ơUϊ¸ʕćņ˓~ΎˑʹLJK̼ǣˤ˸ϕƾȋĸГ˴ĉЙ͉ɃΞ ˑʹLJUFɃȓǛˤ˸ˑГ˴ĉЙʪ¶fͬȫdzŌ͉ƦГ˴ĉЙʪ¶F Ō͉ƦГ˴ĉЙʪ¶IŚWʹdzKVȓǛΆГ˴ĉЙʪ¶ĻƈsŌ͉ƦJȻȢȫ ˊ̶ĵˤ˸ţ̻F.V. Kowalski[1-3] ȂÒMźθ̪ He-Ne ʪ¶ʈ¹ÞȟʢГ˴ĉЙ͉Æ Iȟʢʹdz͉ÆʂȽ¶ţȋŏĮ†JKφί·͒ň¶˴Гϖ̃sȒȑ¥ˑȟʢ͉łГK ƺÞqns̗ˑ͇ÉΩÒFϿĞK‹ōˤ˸ţ̻ƤśŷГ˴ĉЙʿΜˑ͇ÉʹLJζͣˤ ˸KŭНUzˈqΗˣIpsϖ̗JEΗОϕГIÐòGHzJˑ͇ÉFĸε`ί˵aK ˤ˸ţ̻ĊˀφίĸГ˴ĉЙʿΜaƧ¹¶ţȋŏĮKĔƒͦ®ʪ¶ĸ͉ÆˑΩǶ œK›ƺ˯Şʪ¶ĸʿΜaˑГ˴ɨȑŏŏņèFĸɬł˦UKГ˴ĉЙʪ¶ĸŹГ

(16)

ˆǐʇưEŹГīĬʇưĨɵ̉ʇzˈ̃Ƽʇ¶ŞţБŁ͚ƺqȬ͜ǖɓKȬ˪q ϕͬˑˤ˸‡©FƼʇ¶ŞţȫβƚɍÀΖˑRϪˤ˸ƼʇĨ¶ţ˘t™ˉˑxĆţ ˰KÂ˖ˑȫÜˉˀ‚¶ŞǢɄˑŏŲƕĨ•Ƕ̽ʹLJͳÊƼʇƌ˵БŁˑ˅ВϬДK ˤ˸ÆűfͬîDZƼʇ¤Ęˑ¶ŞzˈEʼn˂EΩĨǾßFГ˴ĉЙʪ¶ĸƼʇ¤ Ęˑ¶ŞzˈțЋƺÞqƜʆˑˤ˸F˘ɴƼʇˑ¶ţzˈțƦKГ˴ĉЙʪ¶ ÃȽ̣ɑ̅÷EȌʽОE˶ūLJƬ̃ŒʮF ϽɬjŌKƒГ˴ĉЙʪ¶™eʪ¶ʢˑŹГ·ßʪ¶ЅήoƺÞqƜʆˤ˸F ŹГ·ßʪ¶ЅήIîDZ˘ƘĈГʪ¶ЅήJȫƒʪ¶™eΥʇKŹГ™eǼʐ¤ĘK φίǼʐ˖əȏŹˑıʇKƺÞ˖əˑΛ˭Eχơƒć˹ϭ”̵̃¤NjˑR˯Ѕή̏ ̧F˘ɴsƼʇЅήKʪ¶ЅήΥʇˑʇϩˣEГʽОKĔƒŭˀОˑ˹ϭÔΫʽN ˘ɴsȰφʪ¶ЅήK¤NjˑȂċɍ͌sŹГ¤ĘKÃȽƼʇЅήΦƬˑǦŏɷƘ Ǡ͆æFIJɬĔƒΆKŹГ·ßʪ¶Ѕήọ̈̄ěqʪ¶ЅήĨƼʇЅήĚ͌ŒʮˑR ˯Ț–ßʪ¶ЅήFWίKŹГ·ßʪ¶ЅήoЋc˝RwЁДKŚǬГ¤Ęˑ˘” ϠūϬДIýϺįϬДJK•χ˖əˑΗ•ōȰì˴ГImHz-Hz ͗ijJͳ̆ϬД̃F ̼Ō͉ƦГ˴ĉЙʪ¶IJÂОГ·ßEŲƕГʽīĬEГʽɣʹLJ̃eͳÊUμϬД ȂqR˯ĔͣˑțɠKƺÞqƜʆˑˤ˸F Г˴ĉЙ͉ÅÃʪ¶͉ˑρГʹLJĨʿΜГ˴ʹLJK›ÂÃȽqWĜsƖͰʪ¶ ˑȣϭ-ГʽʹLJKĸƼʇ¶ŞţĨŹГ·ßʪ¶ЅήБŁȽ˝Ȭ͜ˑƟˉáȱFɃͽ ȓƓȿφίŷГ˴ĉЙ͉ˑˤ˸KǼ̑ŹГ·ßʪ¶Ѕήĸ˖əχơEΛ˭ʐϖ̃Б ŁˑȚțʅKeε˯Ț–ßʪ¶ЅήˑĊƇƟˉŘūRūǢɄł˦NĜȣoƓȿeŹ ГˆǐʇưĊˈK¶Łŭȣ¯ϔėčǷKОϕГ͇ÉˑzˈȂR˯Ĕ¨ϘˑțƦF

1.2 频

频移

移反

反馈

馈激

激光

光研

研究

究进

进展

ɝǸГ˴ĉЙʪ¶ˑˤ˸ÆűKź€ƒVÐțЋƇƤM1JΗˣEΗОϕГ͇É ʪ¶N2JГʽīĬʪ¶N3J¶Łŭȣ¯ϔėčǷN4J¶ţˆǐʇưĊˈEɵ̉ʇ zˈ̃N5JŹГ·ßʪ¶ćÂĸʪ¶ЅήˑƟˉFÂaK̶ĵˤ˸ţ̻ F.V. Kowalski Ĩʅĵˤ˸ţ̻H.Guillet de Chatellus ȫ΍ʼΦŏˑ^”ţ̻K…ŷГ˴ĉЙʪ¶ ζͣqϩɀEʖ¹ˑˑˤ˸K͚ƺqͼōǖɓF I I1JJΗΗˣˣEEΗΗООϕϕГГ͇͇ÉÉ

(17)

1987 ƚK̶ĵˤ˸ţ̻ F.V. Kowalski Ȼµˤ˸q÷Гθ̪ He-Ne ʪ¶ʈ¹ȟʢ Г˴ĉЙʿΜȣˑ͇ÉΩÒʹLJKŚĶ1.1IaJǛ˪F÷Г˯Şʪ¶̢ĉŹϧ M1 Ĩ M2 Ğʈ¹ÞГ˴ĉЙʿΜaKʿΜˊ M3-M6 İ`ĉŹϧĨň¶˴ГĮ̞ǖI8 Šŀ ʿΜJF˯Şʪ¶WȘˑĸ M3-M4-M5-M6-AOM-M3…jϭƻʿKZɳɨφίň¶˴ ГĮȣʪ¶ГʽźņèǘÎŽň¶Г˴ϖ𝑓𝑓FŭН;ū𝑓𝑓 = 80 MHzKφί·͒İ`ĉ Źϧˑ˘ŷ”̵K›ƺʿΜłГIý̛ɦϭЀKʿΜłГ𝑓𝑓 = c LKce¶χKLʿΜ ϩơJ̃sň¶˴ГϖK𝑓𝑓 = 𝑓𝑓FŭНUͯŵÞqϕГ80 MHzK͇Ų2 nsˑΩÒ͇ÉK ŚĶ1.1IbJǛ˪F Ķ1.1IaJȟʢГ˴ĉЙʿΜ̣ɑNIbJ˪ʇĮΩÒ͇ÉǙĶ ϿĞKF.V. Kowalski ̃|ʖ¹ˤ˸q÷Гθ̪ʪ¶ʈ¹ȣˑГ˴ĉЙʪ¶˂ͽɦ ŀKƛɝǸ˂ͽɦŀǿʐƮʿΜÆˑГ˴ϖXʿΜłГʤΚ𝑓𝑓 𝑓𝑓 = 𝑝𝑝 𝑞𝑞I𝑝𝑝K 𝑞𝑞ÔÝ etΎȒȑJȣK͆ΩÒϕŋГʽe𝑞𝑞𝑓𝑓ˑ͇Éʪ¶F1993 ƚKøŨȰȐŏţˑ M.W.Phillips ̃|ĸГ˴ĉЙ͉Æè¹qņ˓~ΎNdMYLFKˉɍͦ®˯Şʪ¶ĸʿ ΜaΩˑǶ̽KȂО˯Şʪ¶ĸʿΜaˑГ˴ɨȑKŭН̣ɑŚĶ1.2 Ǜ˪Fʇϩ e1047 nm ˑ÷Гθ̪˯Şʪ¶Iª;¶Гʽe𝑓𝑓JφίM3 ʈ¹ÞГ˴ĉЙ͉aK ̢ίň¶˴ГĮĞzˈ+1̗ͤŹ¶I¶Гʽe𝑓𝑓+ 𝑓𝑓, 𝑓𝑓eň¶˴ГϖJƛ̢ºĉϧĉ ŹKÇɨφίň¶˴ГĮK^ɨ˴ГĞI¶Гʽe𝑓𝑓+ 2𝑓𝑓Jˑ˯Şʪ¶̢M3 Ĩ M2 ĉŹζ¹ņ˓~ΎNd: YLFaζͣȋŏKͦ®ʿΜaˑǶ̽Kņ˓~Ύɂ̀ϥ͊Ƚ 1047 nmºĉK802 nmņσˑĉŹ͊ M1KȋŏĞˑ˯Şʪ¶̢σϧ M2KM3 ĉŹÇ ɨφίň¶˴ГĮKĉŋUμί˵Fň¶˴ГĮˑЉͤŹ¶ΩÒǽ¶ˌǼʐĮĨ¶Ί

(18)

„KˉɍͯŵΩÒГ˴ĉЙʪ¶ˑȣГŁʹLJFň¶˴ГĮˑaƾГʽ𝑓𝑓 = 80 MHzK ˊsʪ¶ĸ͉ƏΩRħȣ^ɨφίň¶˴ГĮKŭϸUƧΖˑГ˴ϖe2𝑓𝑓 = 160MHzFφί·͒ĉŹϧK›ƺň¶˴Гϖ̃Xʪ¶͉łГˑ^¥Ký𝑓𝑓 𝑓𝑓 = 2F ŭНUͯŵÞqΩÒ¶ΊŲơe140 GHzĨǽβ¯ϔėΡǷɐϻˑ31 psΗˣ͇ÉF Ķ1.2 ˯Şʈ¹ˑГ˴ĉЙ͉Kʪ¶͉ÆȽ Nd:YLF ņ˓~Ύ 2004 ƚKk·½ĵŰ˰ţϼʸ˂ˤ˸Ǜˑ Yatsenko ̃|̬ějáˑˤ˸ǖɓK Φȩ̏EºЋˑˤ˸qГ˴ĉЙʪ¶ˑȣГʹLJKîDZ͇ÉʹLJEГʽīĬʹLJ̃K ƛϚŷÂʹLJƣ˾qГ˴ĉЙʪ¶ˑ˂ͽɦŀK΄̟Ôɒq͇ɃćГʽīĬzˈˑ ĂIJF΃͇É˂ͽɦŀȠîDZqŋɇˑņ˓~ΎʹLJEГ˴ĉЙ͉ˑ˴ГEρГʹLJK o³Ô̺͟qʿΜņ˓ĨǶ̽ĄȑŷΩÒ͇ÉˑƲĪFȻ̠φίȑ©‰˜ζRɭͿŭ qƮʿΜˑ˴ГϖXʿΜłГʤΚ𝑓𝑓 𝑓𝑓 = 𝑝𝑝 𝑞𝑞ȣKĔƒzˈϕŋГʽe𝑞𝑞𝑓𝑓ˑ͇Éʪ ¶K‰˜̣ɓŚĶ1.3 Ǜ˪F Ķ1.3 Г˴ĉЙʿΜˑ͇ÉʹLJM𝑓𝑓 𝑓𝑓ÔÝe1K3 2K4 3K5 4

(19)

ŒïŭН̣ɑź͇ÉˑϕŋГʽȂО͍37 GHzKÂŭН̣ɑŚĶ 1.4IaJǛ˪F÷ɦ

ʪ¶ISM laserJφίň¶ 0 ̗ͤŹ”̵ʈ¹ÞГ˴ĉЙʿΜaK˯Şʪ¶ΩÒçʽ

e30 mWKʇϩe580 nmFň¶˴Гϖe40 MHzKˊs^ɨφίň¶˴ГĮKIJɬ ˯Şʪ¶ΩRħƧΖˑГ˴e80 MHzFΩÒ̾ěĮ TS1 ˉsǾßГ˴ĉЙʪ¶ˑ ΩÒKeq͆θ̪·͒Г˴ĉЙʿΜˑϩơKTS1 Ũͪĸˌé”˴ĕUƒǾßʿΜˑ ϩơFφί·͒ʿΜϩơKŭˀqʿΜłГ€240 MHzÞ280 MHzjϭˑθ̪Ĕ·F ĜȣKeqǤßʿΜaņ˓~Ύˑ͌ĊΨŹƧΖˑ͌ʪЇ͘I͌ǵ͘Г˴ĉЙ͉JK ·͒˯Şʪ¶ˑˑƌ™Гʽ”s«˭͌ĊΨŹaƾГʽ̖100 GHz ʼnKŚĶ 1.4IbJ Ǜ˪F Ķ1.4IaJГ˴ĉЙʪ¶ŭН̵ͪNIbJ͌ĊΨŹĨ˯Şʈ¹ˑГ˴ĉЙʪ¶¶Ί Ķ1.5 Ǜ˪eΩÒˑГ˴ĉЙʪ¶ГΊĶF̂Rͣˑ^Ķe͌ˊǵ͘Г˴ĉЙʪ ¶ˑǬГçʽΊN̂rĨ̂Tͣe÷Г˯Şʪ¶ʈ¹ȣWĜʪ¶͉łГǛzˈˑǬГ çʽΊFŭНUÔÝ·͒ʿΜϩơITS1 ˑ”̵JK›ƺ·ßГʽ𝑓𝑓XʿΜłГ𝑓𝑓ʤ Κ𝑝𝑝 𝑞𝑞 = 1 3 , 2 7 , 4 13 , 8 25K€ĶaĔƒ˛Òʪ¶ГƎe𝑞𝑞𝑓𝑓ˑʪ¶ʇϩ˘Ƙ ˘ϩKȦȬОsГʽK€ȣŁUͯŵƀͧˀeϕŋГʽe𝑞𝑞𝑓𝑓ˑʪ¶͇ÉFȻ̠K φߌị̈ɑŭˀq¶ΊŲơ150 GHzƒćŷƟ6 psˑ¯ϔėΡǷɐϻ͇ÉFŭНU ƺÞq€0.24 GHzÞ37 GHzˑθ̪ϕŋГʽĔ·͇ÉF΃ŭН˗ǽͿȦqMƮ·ßГ ʽĨʪ¶łГʤΚ𝑓𝑓 𝑓𝑓 = p qȣKĔzˈϕŋГʽe𝑞𝑞𝑓𝑓͇Éʪ¶Fýφίě˂;̵ʿ Μ͉ϩĨ·ßГʽˑ¿̏KĔƒŭˀ•ГŹГ¤ĘzˈΗОϕГ͇ÉKεeОϕГ͇ ÉˑzˈȂqR˯̅÷EОȌˑțʅF

(20)

Ķ1.5 Г˴ĉЙʪ¶ΩÒǬГˑçʽΊM͑͝eȟ˯Şʪ¶ʈ¹ȣˑ͌ˊǵ͘¶ΊN̔͑ÔÝe p, q = 1,3 , 2,7 , 4,13 , (8,25)ȣˑΩÒʪ¶çʽΊŴơ

ĜƚKH.Guillet de Chatellus ɝǸГ˴ĉЙʪ¶ˑ˂ͽɦŀKζRɭǿŸqÔȑΈ

ǵɌ†𝑓𝑓 𝑓𝑓 = 𝑝𝑝 𝑞𝑞VˑГ˴ĉЙʪ¶˂ͽɦŀKĊˀÂĚϵɨΈʇˑ˘”IJŞĨʪ¶

ĸʿΜaˑГ˴ɨȑĥrɨț¿̏KXȣŁÔȑTalbotȌƟ˘ĤěKƛĸɬł˦UȂ

ÒqÔȑΈǵɌ†VˑГ˴ĉЙʪ¶ȫR˯ʉ‘ʪ¶ITalbot LaserJFTalbot ȌƟȻ

ÛȫdzR˯͌ǖ°ȌƟKÖeƮ÷͑ƙЋʇʳŹÞħɀLJ¶ɘȣK€¶ɘĞˑɔw

ʹūΛ˭ĔƒͯŵÞħɀLJˑ¶ɘ͌ǖ°FϿĞKȣŁ Talbot ȌƟoϿjzˈKÂ

(21)

ƦF˖áKȣŁTalbot ȌƟˑR`fͬƟˉțğȫŭˀ͇ÉϕГˑ¥ГFłsГ˴ĉ

ЙʿΜˑTalbotʪ¶ŚĶ 1.6 Ǜ˪KÂaĶ 1.6IaJeГ˴ĉЙʪ¶ˑĂ˂ĶKĶ 1.6

IbJe˂ͽ¶ΊĶF

Ķ1.6 IaJ÷Гθ̪ʪ¶ʈ¹ˑГ˴ĉЙʪ¶ɦŀMAOFS eň¶˴ГĮNIbJГ˴ĉЙʪ¶ˑ

ΩÒ¶ΊMωe˯Şʪ¶ГʽKωeň¶˴ГϖN∆ωe¶ΊŲơNge¶Ίî̥ I I2JJГГʽʽīīĬĬʪʪ¶¶ Г˴ĉЙʪ¶ˊsĸΈǵ͉ÆƧ¹qГ˴K›ƺʪ¶ɳɨ̢ί˴ГĮĞГʽϏĊ ˈȊčKε˥ļq̧ʪ¶ˑρГɦƦK›ÂÃȽqʻʹˑȣГŁʹLJFɝǸáȓǛ μKΈǵɌ†VΩÒˑГ˴ĉЙʿʪ¶eΗˣEΗОϕГ͇ÉF“Ʈ·ßГʽXʿΜ łГWʤΚΈǵɌ†ȣKɬȣˑГ˴ĉЙʪ¶ØͧˀeŲƕθ̪ʪ¶ΩÒFˊsΩÒ

ˑŲƕʪ¶ʂȽĴūˑ̛ɦKIJɬ˳jeȟɦʪ¶IModeless LaserJFȻȢˤ˸΃ˀ

΋ˑȫ̶ĵșĿˬŏţˑWilliam Streifer Ĩ John R. WhinneryF1988 ƚK̶ĵˤ˸ţ

̻F.V. Kowalski ŷ΃ˀ΋ζͣq΄̟Eʖ¹ˑˤ˸KŭН̵ͪŚĶ 1.7IaJǛ˪Mɕ

ȕņ˓~Ύ R6G ȋ̵sʿΜaưǖq͌ˊǵ͘ˑГ˴ĉЙ͉Fφί·͒ň¶˴Гϖ

ĨʿΜϩơK›ƺ^̻WʤΚΈǵɌ†KŭНaͯŵÞq0.75 nmˑθ̪Ųƕʪ¶Ω

ÒKŭН̣ɓŚĶ1.7IbJǛ˪FϿĞKIan C.M. Littler ̃|ζRɭĹˤ˸qĸʪ¶

(22)

Ķ1.7IaJłsГ˴ĉЙʪ¶ˑŲƕθ̪ʪ¶KÂa AOM eň¶˴ГĮKDJ eņ˓~Ύ R6GN M1-M4 eĉŹϧIbJГ˴ĉЙʪ¶ΩÒθ̪¶ΊK¶ΊŲơ̖e0.75 nm ϿĞKîDZ F.V. Kowalski ĸÆˑ‹ōţ̻Ƥśˤ˸Г˴ĉЙʪ¶ˑŲƕ¶Ίʹ LJKƛĊˀÂÃȽ¶ГīĬʹLJF1993 ƚKIan C.M. Littler ̃|Üˉ^`ň¶˴ГĮ IÔÝeʪ¶ГʽUΡǷĨVΡǷJˑ˴ГГƎKŭˀq͉Æ200 kHzÞ8 MHzˑθ̪ ˴ГKŭН̣ɑŚĶ1.8 Ǜ˪FˊsʂȽ˯Şʪ¶ʈ¹K΃̣ɑoȫ͌ˊǵ͘ˑГ˴ ĉЙʪ¶KZʿΜˑłГГʽe188 MHzKηŏsň¶˴ГГʽF^`ň¶˴ГĮˑ ͤŹȌʽÔÝe87%Ĩ93%FĸʿΜaȃ¹^`əÍÃɍǾßʿΜǵ͘ˑ¶ΊŲơK Â͌ˊ¶Ί͗ijÔÝe200 GHzĨ100 GHzFƮ·͒ň¶˴ГĮ›ƺȽȌГ˴e 200 kHzȣKΩÒʪ¶¶ΊŲơήÞ1.5 GHzFĶ 1.9IaJĨIbJÔÝeГ˴ĉЙʪ¶ ̢ЉǟȁFP ĞˑȣŁÔƑĨ̢ǟȁ FP ĞΩÒˑʪ¶ƬơXǟȁГʽjϭˑ¿̏Fφ ί˂ͽÔɒĊˀKʪ¶ˑīĬχʽ̃s𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑣𝑣 𝜏𝜏KÂa 𝑣𝑣ͧ˪ʿΜaˑȽȌ Г˴ϖK𝜏𝜏eʪ¶ĸʿΜaΩRħˑȣϭĨsʿΜłГˑ¦ȑJFĶ 1.9IcJ-IeJÔÝeʿΜȽȌГ˴e320 kHzK640 kHz Ĩ1280 kHzȣˑŹГīĬȣŁÔƑĶF Ʈ𝑣𝑣 = 320 𝑘𝑘𝑘𝑘𝑘𝑘ȣKʪ¶īĬχʽ𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 6×10 𝑠𝑠KÂa𝜏𝜏 = 5.3 𝑛𝑛𝑛𝑛F€Ķ 1.9 IcJĔƒ˛ÒKʪ¶Гʽ€0.25 µsϷβƤśτʜņŏKÞ̖e1 µsȣǬГГʽήÞ 60 MHzFŷɴĶIcJ,IdJĨIeJĊˀKǬГīĬχʽϿ˝ň¶˴Гϖˑņŏ̼ņ ŏF

(23)

Ķ1.8 łsГ˴ĉЙʪ¶ˑ¶ГīĬʹLJŭН̣ɑĶ Ķ1.9IaJΩÒʪ¶̢ FP Ƙʕ„ĞˑȣŁĶNIbJΩÒʪ¶̢ǟȁƦ FP Ƙʕ„Ğˑʪ¶¤ĘX ʪ¶Гʽˑ¿̏KĶaîDZ^`ǟȁħɀNIcJ-IeJeГ˴ĉЙʿΜΩÒʪ¶X˯Şʪ¶ŌƎ ƘʕĞˑŹГǬГ¤ĘKÂaГ˴ϖÔÝe320 kHzK640 kHzĨ1280 kHzF ƒ K.Nakamura e‚ͧˑˤ˸ţ̻ŷĚ˯ņ˓~Ύˑ¶ГīĬˀ΋ζͣqˤ˸K ƛτɭίʝÞÜˉЉΈǵɌ†VˑГʽīĬʪ¶ζͣȐÖˑƟˉˤ˸KîDZ¶ГŁ

ʐΛE¶͑̕ȏʐϖEŲƕŹГīĬ¤Ęˑzˈ̃F¶ГŁʐΛIOptical frequency

(24)

Ă˂KφίǼʐıʇʪ¶XĄ̺ʪ¶ˑǬГƎɍŭˀŷΜƵƎˑʐϖF¶ГŁʐΛʅ ÃȽʐϖ̍ơОEʐ˵ηˑʹʮFГ˴ĉЙʪ¶ĸЉΈǵɌ†V͆zˈīĬχʽɐО ˑГʽ·ßʪ¶KЉƖοě™e¶ГŁʐΛˑʪ¶ʢF2000 ƚKK.Nakamura ̃ˤ˸ |ĦÜˉГ˴ĉЙ͉zˈˑГʽīĬʪ¶ζͣq¶ГŁʐΛțʅˑˤ˸KГ˴ĉЙʪ ¶ŚĶ 1.10IaJǛ˪F¶ГŁʐΛʅˑʪ¶ʢϒˉNd: YVO4™eņ˓~ΎKЇ͘ϯ ©e70 mWKȖȌʽ0.3FĶ 1.10IbJǛ˪eīĬ¶ʢˑȣϭ-ГʽʹLJK¶ГīĬχ

ʽe𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑣𝑣 𝜏𝜏KŭНaʪ¶͉Гe𝑣𝑣 = 1 𝜏𝜏 = 1.265 GHzKň¶˴Гe 𝑣𝑣 = 80 𝑀𝑀𝑀𝑀𝑀𝑀Kʪ¶īĬχʽήÞ𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 202 𝑃𝑃𝑃𝑃𝑃𝑃/𝑠𝑠F¶ГŁΛ˭ʐϖŭН̣ɑŚ Ķ1.11 Ǜ˪MГ˴ĉЙʪ¶̢1: 1ÔɋϧÔe^ɋ¶ĞKÔݙeĄ̺¶Ĩ¤Ę¶ζ ¹ΰ·žςƘʕ„aKˉɍʐϖƘʕ„^ɌȈΜˑΜƵƎFŭНUÜˉ19832ϵɨˑ ǬГ¤Ęŭˀq18.6 kmϩơVˑ20 mmˑʐϖ̍ơF Ķ1.10 IaJłsГ˴ĉЙʿΜˑГʽīĬʪ¶NIbJīĬГʽɣˑȣϭ-ГʽʹLJ Ķ1.11 łsГ˴ĉЙʪ¶ˑ¶ГŁʐΛŭН̵ͪ

(25)

łsГ˴ĉЙ͉ˑθ̪īĬʪ¶δĔƒˉsʐϖ¶͑̕ȏˑŏżF¶͑̕ȏφƖ ȫdzˊsWĜГʽIǘʇϩJˑ¶¤Ęĸ¶̕aƒWĜˑχơȅKƮΩRūΛ˭ ĞWĜГʽˑ¶ƢȣWĜR˯ʸ˂ˀ΋FφƖK¶͑̕ȏʐϖȫÜˉWĜʇϩˑʪ¶ φί¶̕ĞˑȣϭƎɍĉʨÒ¶̕ˑ͑ȏʹLJFłsЉΈǵɌ†ˑГ˴ĉЙʪ¶ȫR ˯ŲƕīĬʪ¶KƮÂĸ¶̕aΩȣKˊs͑ȏˑƲĪWĜГʽˑ¶χơWĜK Ÿ͎Ųƕ¶ʢˑīĬχʽĊˈȊčKφίʐϖΩRūϩơĞˑīĬχʽˑȊčϖĔ ƒͷ̆Ò¶͑̕ȏˑŏżKĂ˂ŚĶ1.12 Ǜ˪F łsЉΈǵɌ†ˑГ˴ĉЙʪ¶ʐϖ¶͑̕ȏˑŭН̵ͪŚĶ1.13 Ǜ˪Kʇϩe 1.48 µmˑʊʑʪ¶φίʇÔŋˉĮIWDMJʈ¹¶̕ʿΜaKȀ Er3+¶̕ȫ͌ˊǵ ͘Г˴ĉЙʪ¶ˑņ˓~ΎF¶̕Ѐ˭Įϊ¸qʊʑ¶ĸʿΜaˑǵ͘KZ¢›Г˴ ĉЙʪ¶}͆ʃ˝πȣϚțğΩF«ǵǾßĮˉɍǾßʿΜaˑʪ¶«ǵǃK¶ţ ƕφʥʇĮˉsǾßʿΜaǵ͘ʪ¶ˑʇϩI1.55 umJĨГΊŲơFφίĸʿΜa è¹90: 10¶̾̕ěĮKŭˀГ˴ĉЙʪ¶ˑΩÒFň¶˴ГĮˑМéГʽe120 MHzK ʿΜˑłГe7.6 MHzKŷƟˑʪ¶īĬχʽe912 THz/sFˊsΩÒˑʪ¶çʽΦżK ĸʐϖ¶͑̕ȏjáµŷÂζͣ¶̕ȋŏFȋŏĞˑʪ¶φί¶̾̕ěĮĨʿưĮɑ ǖƘʕ„KÂaƘʕ„ˑRɌȈΜUȽƶʐϖˑ¶̕KȻж̕Ƙʕ„ΩÒˑǬГ¤ Ęǽ¹ГΊ„aKφίͯŵǬГ¤ĘˑīĬχʽŭˀŷ¶͑̕ȏˑʐϖF Ķ1.12 ГʽīĬʪ¶ʐϖ¶͑̕ȏˑĂ˂ĶMƍĶeŲƕ¶ʢΩÒʇϩXȣϭˑ¿̏IȖʽeī ĬχʽJNĖĶe̢ίƶʐ¶̕Ğˑȣϭ-ʇϩ¿̏Ķ

(26)

Ķ1.13 łsГ˴ĉЙʪ¶ˑ¶͑̕ȏʐϖ

ŹГīĬ¤ĘIRadio-frequency chirped waveforms: RFCWJˑ¶ţzˈțʅȫƼ ʇ¶Şţˑˤ˸ʰʮjRFťφƖȫdz˞ȣГʽϿ˝ȣϭĊˈȊčIīĬʹLJJZĔ ƒǾßIĔ̯˵LJJˑŲƕƼʇ¤ĘK΃¤ĘͩƜʆˉsЅή̧̏aKÃȽΦОˑˤ ˸ĨƟˉ‡©F̧ˑŹГīĬ¤ĘȫˊˆǐʇưĊˈĮIˌŞĮ†JzˈˑK“ šĸȐÖϬДKŚƌ™ƕŲφƖΦ•IR͏ĸ10 GHz ϷβJK¤ĘˑȣϭƕŲ˲Č Þˌ޲Į†ˑϻßȟʅȬ͜ȂО̃F˘ɴˌŞţțʅK¶ţțʅzˈˑŹГīĬ¤ ĘÃȽƕŲОKįň•̃ʹʮFɝǸáȓǛμKЉΈǵɌ†VˑГ˴ĉЙʪ¶ÃȽ¶ ГīĬʹLJKIJɬφίʪ¶ŌƎƘʕˑțʅĔŭˀ¶ţГʽīĬÞŹГГʽīĬˑΡ ǷKȇ™̅÷ОȌF2018 ƚKʅĵˤ˸ţ̻ H.Guillet de Chatellus ŷ΃ʹLJζͣq΄ ̟Ĺ˂ͽÔɒĨŭННͿKφί›ˉΗ˼̝Ųʪ¶ʢĨº£«Į†ŭˀqŹГƕŲ 28 GHzKȣϭƕŲ˲ŏs 1000 ˑŹГīĬ¤ĘˑzˈKŭН̵ͪŚĶ 1.14 Ǜ˪F Г˴ĉЙʿΜϒˉΗ˼̝Ųʪ¶™e˯Şʪ¶K̢̾ěĮÔe^ɋKÂaRɋζ ¹Г˴ĉЙʿΜaKđRɋ™e¤Ę¶XΩÒˑГ˴ĉЙʪ¶ζͣǬГKŭˀīĬʪ ¶ÞŹГˑΡǷF¶̕˼ƕʥʇĮIƕŲe200 GHzJˉsǤßʿΜˑ͌ʪǵ͘K£ ͿʿΜƌ™s˯Şʪ¶˴ГˑɦƦF¶̕ȋŏĮˉsͦ®˴ГĞˑʪ¶¤ĘKȂО˴ Г¶ˑƕŲIoȫΩÒŹГ¤ĘˑƕŲJFň¶˴ГĮˉsŭˀʪ¶Гʽˑ·ßKŭ НÔeM1JОГ·ßKý÷`ň¶˴ГĮĨ 2J•Г·ßKý^`ň¶˴ГĮIÔÝ ŷƟГʽUΡǷĨĨVΡǷJ^ώÔɍÔɒГ˴ϖŷΩÒŹГīĬ¤ĘˑƲĪF

(27)

Ķ1.14 ЉΈǵɌ†VˑГ˴ĉЙʿΜzˈŹГīĬ¤ĘˑŭН̵ͪMÂa TBPF eĔ·Έƕφʥ

ʇĮNEDFA e¶̕ȋŏĮNAFG eˆǐÓȑĊˈĮNAOFS eň¶˴ГĮ

Ķ1.15 Ě`ŭНĄȑŷŹГīĬ¤ĘˑƲĪMIaJ¶ГīĬˑȣϭ-Гʽͧ˪NIbJΩÒŹГī

Ĭ¤ĘˑĚ`ĄϖͧήƦ

(28)

ÔɒœΈϖ∆𝑓𝑓I𝑓𝑓− n𝑓𝑓Kn ȒȑK𝑓𝑓eʪ¶͉łГJŷΩÒīĬ¤ĘˑƲĪFĸœΈ ˑǎËVK˂ͽɦŀX͇Éʪ¶ˑ͑ȏɦŀ˘βKφίŷɴÔɒǿŸÒqœΈϖE· ßГʽƒćʿΜϩơŷŹГīĬχʽEŹГƕŲEīĬȣϭŲơˑƲĪḲɓŚĶ1.15 IaJĨIbJǛ˪F Ķ1.16 Ǜ˪eWĜŹГГʽIŷƟWĜˑœΈϖJVˑŹГīĬ¤ĘˑȣŁÔƑ ƒćŷƟˑ̫ɞ̚ÔƑFφƖK¯ϔėčǷˉsŭˀ˶ǃʇưˑȣϭŁ-ГʽŁΡǷF ŷsЉ˶ǃʇưK¯˾ėčǷƛȟʅºЋĹÔɒÂʹLJF̼̫ɞ̚ÔƑ(Wigner Distribution Function)ƖͩˉɍÔɒЉ˶ǃ¤Ęˑȣϭ-ГʽʹLJFƮ·ßГʽe -77.353 MHz ȣIŚĶ 1.16IaJĨIcJǛ˪JKĔƒ˗ͯĹ˛ÒŹГ¤ĘˑГʽĥˀ īĬʹLJKZτʜņèFĜȣŷ΃¤Ęζ̫ͣɞ̚ÔƑͷ̆KĔƒĊˀϿ˝ȣϭˑņ èKŹГГʽϿjņèKͧȦ΃ŹГ¤ĘÃȽ̝LJГʽīĬʹLJFƮ·ßГʽϺ•͍ -77.303 MHz ȣIŚĶ 1.16IbJĨIdJǛ˪JK€ȣŁÔƑĨ̫ɞ̚ÔƑoĔƒ˗ͯ ˑ˛ÒKŹГ¤ĘĥˀȬ͜ˑīĬʹLJFXĶ1.16IaJĨ 1.16IcJ˘ɴKÂŹГī Ĭțğ˘ĉFεȫIJeƮ·ßГʽȊčȣKЉΈǵГƎ∆𝑓𝑓ˑ́ĘĊˈȊčI ∆𝑓𝑓 ƛɁ ȊčJKĉƟĸȣГŁUýȫŹГīĬˑțğȊčF Ķ1.16 ΩÒˑŹГīĬ¤Ę̣ɓNÂaIaJĨIbJeŹГ¤ĘȣŁÔƑĶKIcJĨIdJeʐ ϖƺÞŹГ¤Ęˑ̫ɞ̚ÔƑNIaJĨIcJˑГ˴ϖe-77.353 MHzKIbJĨIdJˑГ˴ϖe-77.303 MHz I I3JJ¶¶ГГŁŁŭŭȣȣ¯¯ϔϔėėččǷǷ

(29)

¶Łŭȣ¯ϔėčǷφƖȫdzÜˉГʽ-ȣϭȩŹIfrequency-to-time mapping, FTMJǢɄź¶¤ĘˑçʽΊŴơIГʽJŭȣȩŹÞȣϭΤUKƒɬɍÔɒ¶¤Ę ГʽʹLJˑR˯ǢɄFƮáK¶ГŁŭȣ¯ϔėčǷIǘ̻ΆГʽ-ȣϭȩŹJfͬȫ łs~Ύˑ͑ȏʹLJźWĜГʽˑ¶ʃ˝ȣϭΤÔƤF“ȫˊs~Ύˑ͑ȏȽϻKφ Ɩ¤ĘІ̢ͬί˘Ʈϩˑ͑ȏ~ΎǝĔƒźWĜГʽˑ¶ũºÔƤKεɐŏĹϻßq ΃ǢɄˑƟˉF̼Zĸ͑ȏŏżĴūˑǎËVK¶ГˑÔΫʽΘОǛІͬˑΩΛ˭ ƀΘηF 2016 ƚKʅĵţ̻ Chatellus ̃|ĸƢȣ͌ŌƎƘʕɦŀˑł˦UKˤ˸qȒȑ Talbot Ɍ†VГ˴ĉЙʿΜˑ͇ÉȣŁÔƑXʈ¹ˑ˯Şʪ¶Гʽjϭˑ¿̏K‰˜ ̣ɓŚĶ1.17 Ǜ˪F€ĶaĔƒ˛ÒKƮʈ¹ˑʪ¶ˊō`Гʽ̞ǖȣKĸГ˴ĉЙ ʿΜˑΩÒ̀K¶͇Éʃ˝ȣϭΤũ̶ĹȩŹqΩ¹ˑ˯Şʪ¶¶ΊK˂ͽUͿȦq Г˴ĉЙʿΜˑГʽ-ȣϭȩŹʹLJF Ķ1.17 Г˴ĉЙʿΜˑʈ¹ʪ¶ГʽXΩÒʪ¶͇ÉȣŁÔƑˑ¿̏ łsГ˴ĉЙʿΜˑŭȣ¯ϔėčǷŭН̵ͪŚĶ1.18 Ǜ˪Kň¶˴ГĮМéГ ʽ80 MHz ± 5 MHzK˯Şʪ¶ʇϩ1550 nmK̝Ų100 HzK¶ţƕφʥʇĮƕŲ 200 GHz K Г ˴ ĉ Й ʿ Μ ˑ ł Г 𝑓𝑓 = 12.89 MHz F ŭ Н a ň ¶ М é Г ʽ ; ū e 𝑓𝑓 = 6𝑓𝑓 = 77.34 MHzKƒʤΚʪ¶͉ˑȒȑ Talbot Ɍ†KΩÒ͇Éʪ¶FeqͿȦ Г˴ĉЙʿΜˑГʽ-ȣϭȩŹʹLJK˯Şʪ¶µ̢ίˌ¶˘”·ßĮzˈō`Гʽέ ƕKʲĞź̢ί·ßˑ˯Şʪ¶ʈ¹ÞГ˴ĉЙʿΜaKŭН̣ɓŚĶ1.19 Ǜ˪FƮ ˯Şʪ¶̢ί˘”·ßĮzˈ^`ГƎe450 kHzˑέƕȣKΩÒˑГ˴ĉЙʪ¶ĸ ȣŁUĜɛͯŵÞβ’˯Şʪ¶¶Ίˑ͇ÉÔƑFεͿȦqГ˴ĉЙʪ¶ĔƒȽȌĹ ŭˀʪ¶Гʽ-ȣϭˑȩŹKýŭȣ¶Ł¯ϔėčǷKZÔΫʽήÞqkHzϖ̗F

(30)

Ķ1.18 łsГ˴ĉЙʿΜˑГʽ-ȣϭȩŹŭН̵ͪM˯Şʪ¶̢ˌ¶˘”·ßĮIEOPMJzˈ

έГKМéʢeˆǐÓȑĊˈĮIAFGJ

Ķ1.19 łsГ˴ĉЙʿΜˑГʽ-ȣϭŹГŭНĶM˯Şʪ¶ˊō`Гʽ̞ǖȣˑΩÒ͇ÉʹLJK

Âa͑͝e·ßГʽ50 kHzK̔͑e450 kHzK̭͑e1050 kHz I

I4JJƼƼʇʇ¶¶ŞŞţţББŁŁMM¶¶ţţˆˆǐǐʇʇưưĊĊˈˈEEООГГƼƼʇʇ¤¤ĘĘˑˑzzˈˈ

(31)

˯ϕͬțƦFƮáK¶ţˆǐʇưĊˈōϒˉŲƕϠɦʪ¶™e¶ʢKφί͇Éǖŀ

ĮIPulse ShaperJĨ͑ȏȌƟKǾß͇ɶˑŲơE˘”ĨƬơKƒŭˀˆǐ¶ţʇ

ưˑzˈF“ȫČϻs͇ÉǖŀĮˑГΊÔΫʽIGHzϖ̗JKzˈˑʇưˑȣϭϩơ φƖĸnsϖ̗FβɀKChatellus ̃|Ċˀφί·ßГ˴ĉЙʿΜˑ˯Şʪ¶ŭˀq¶ ţˆǐʇưˑĊˈFГ˴ĉЙʿΜˑŭН̣ɑŚĶ 1.20IaJǛ˪Mʪ¶ĸʿΜa ΩRħˑȣϭe𝜏𝜏 = 105 𝑛𝑛𝑛𝑛IŷƟˑʿΜłГe𝑓𝑓 = 9.482 MHzJKÜˉ^`Г˴țğ ˘ĉˑň¶˴ГĮŭˀГ˴ϖ𝑓𝑓 = 𝑓𝑓FˊsʤΚʿΜȒȑTalbot Ɍ†KГ˴ĉЙʿΜ ΩÒ͇Éʪ¶FeqŭˀŹГˆǐʇưĊˈKŷʈ¹ʿΜˑ˯Şʪ¶Ĝȣζͣň¶Ƭ ơĨ˘”·ßKƒǾßʈ¹ʪ¶ˑ˞ȣƬơĨ˞ȣ˘”Fň¶·ßĮˑ·ßƕŲe 100 MHzKˊˆǐʇưĊˈĮǾßFź·ßĞˑ˯Şʪ¶ʈ¹ʿΜaKˊs͇Éϕŋ Гʽ𝑓𝑓żsň¶·ßĮˑ·ßƕŲKĔŭˀȣϭϩơĔǾEŹГƕŲήÞ25 GHzˑ¶ ţˆǐʇưˑĊˈF Ķ1.20 IaJłsГ˴ĉЙʪ¶ˑ¶ţˆǐʇưĊˈNIbJΩÒʇưˑȣŁʨč Ƽʇ¤Ęˑ¶ţzˈțʅoȫƼʇ¶ŞţˑR`fͬˤ˸ÆűKŒʮĸsĔ ƒƩͦˌŞţțʅĸОГƼʇzˈEįňǾß̃țЋˑWΚKZ˘ɴˌŞţțʅÂÃ

Ƚç̽•Ẹɑ̅÷EǦˌ˨ƘǠ̃ŒʮF2010 ƚʩŏÜvǍƂŏţ Robert A. Minasian

ȎǺ̃|łsГ˴ĉЙʪ¶ˑŲƕГʽɣʹLJKφίʪ¶˘ƘǾßˑțʅzˈq 30 GHzˑɵ̉ʇF΃țʅzˈˑɵ̉ʇÃȽ̝Ų˼I< 100 HzJKέƕǤßɴО I> 30 dBJˑʹʮKŭН̵ͪŚĶ 1.21IaJǛ˪F

˯Şʪ¶çʽe10 dBmKʇϩe1559.5 nmNň¶˴ГĮƌ™s750 MHzFŭН

(32)

˯Şʪ¶ĸ̢ί˘”·ßĮĞˊs¢”ϿɆčïKȣϭ˘ƘLJ_ϕνïFϿĞK˯ Şʪ¶̢ίЉƙͥЛΔ-ȹƽžƘʕ„IMach-Zehnder interferometer, MZIJKÂaRΜ

Ƣι̝ΦˣKđRΜƢιȣϭΦϩTFMZI ΩÒĞˑ˯Şʪ¶ʈ¹Г˴ĉЙʿΜaζ ͣ¶ţГ˴Kʪ¶ĸʿΜaΩRħǛІȣϭeTFª;TĨTηŏsʪ¶˘ƘȣϭK ZT T = ρFˊsTηŏsʪ¶˘ƘȣϭKϋhĜRʪ¶̢ίГ˴ĞƏΗίqʪ¶˘ ƘȣϭK¢ƘLJ_ϕνïKȟʅzˈ˶ūˑǬГF“ІͬʈǐˑȫKˊsЉƙͥ MZI ȽRΜʪ¶̢ίqϩȣϭˑƢȣTKýƮʪ¶ĸʿΜaΩȣϭeρTKXЉƙ ͥMZI ƢιȣϭT˘ĜȣK^ɋʪ¶ˊs̢ÿq˘ĜˑƢιȣϭKIJɬ£DzqΦО ˑ˘ƘLJKĔƒzˈ˶ūˑǬГ¤ĘFŭНUφίǾßMZI ˑƢιȣϭƒćГ˴ĉЙ ʿΜˑϩơKŭˀq•Г·ßГʽˑUΡǷFʿΜaƧ¹¶̕ȋŏĮͦ®qʿΜˑǶ ̽KȂОqUΡǷˑŹГϵɨFˊs¶̕ȋŏĮ͌ĊΨŹIASEJˑƲĪKʿΜaè ¹q¶ţ˼ƕʥʇĮƒȂО͌ĊΨŹǵ͘ˑϯ©KĜȣʥϽʿΜa¶ţįňKĶ 1.21IbJǛ˪ezˈˑ11.25 GHzI15 ϵJĨ30 GHzI40 ϵJˑƼʇ¤ĘF

Ķ1.21IaJłsГ˴ĉЙʿΜˑƼʇ¤ĘzˈŭН̵ͪNIbJzˈƼʇ¤ĘˑçʽΊŴơ

I

I5JJĈĈГГʪʪ¶¶˘˘””ϠϠūūĨĨŹŹГГ··ßßʪʪ¶¶

ĈГʪ¶ȫdzRɋʪ¶ĜȣġȽ^`WĜˑ¶ţГʽKφί¶ţǬГˑțƦĔƒ ŭˀ¶ГÞŹГǘƼʇˑΡǷKȫR˯ʹɯ̊ŀˑŹГ·ßʪ¶FƮĈГʪ¶ˑ˘”

ɁϠūȣKǬГzˈˑŹГ¤ĘW˶ūEįňΦŏFʅĵЅNĴRŏţˑMarc Brunel

ȎǺ̃|ȂÒÜˉГ˴ĉЙʿΜĔƒŭˀĈГʪ¶ˑ˘”ϠūFŭН̵ͪŚĶ1.22Ǜ

˪Fʪ¶Įϒˉ͉ϩ75 mmˑƙÑ͉;ͷKÂaϒˉ808 nmˑôŸ–ʪ¶Į™eʊʑ

(33)

ĉŹ͉Æǵ͘ʪ¶KIJɬϥʊʑ¶808 nmОσE1064 nmОĉ͊F̾ěΩÒϧM2ȶ ʽôƵ200 mmK1064 nmσίʽe1%Fφίĸʪ¶͉Æȃ¹FPρГĮ†K˧£ΩÒ 1064 nmˑ÷̛ɦʪ¶FĔИĨģȉ–ˉs·͉͒ÆǶ̽Kzˈ·Q͇ÉFĜȣeq ŭˀĈГʪ¶ˑΩÒKʪ¶͉Æȃ¹^`λ/4ʇʶKφί·͒^`ʇʶjϭǁΤIǘ ǒΤJˑͲơɍȊčĈГʪ¶ĮΩÒ¶ˑГƎŏżFeqϠūΩÒˑĈГʪ¶˘”K źĈГʪ¶ʈ¹ÞȟʢГ˴ĉЙʿΜaKÂaĉЙıɍˑώÔ˴Гʪ¶Çɨζ¹ʪ¶ ͉ÆĄXʪ¶͉ˑǵ͘KφίUμί˵ǖçŭˀqĈГʪ¶ˑ˘”ϠūK͚ƺq•į ňEГƎ˶ūˑĈГʪ¶F Ķ1.22 łsŌ͉ƦГ˴ĉЙʿΜˑĈГʪ¶˘”ϠūŭН̵ͪ ĈГ͇Éʪ¶ˑǬГçʽΊŴơŚĶ 1.23 Ǜ˪FǬГ¤ĘƊ©ŷƟˑГʽe 176 MHzKÂƕŲIôОºŲJe12 MHzKŷƟ͇ÉŲơ85 nsFeqζRɭͯŵǬ Г¤Ęˑ̙ÌơIįňʹLJJKІͬ·•ГΊŲơƒȂО̧̏ÔΫʽKŭНaͯŵÞ qГƎe3.5 kHzˑГʽɣIГƎˊ͇ÉϕŋГʽÊūJKZ÷`Гʽɣˑ̝ŲŒs 1Hz IˊƼʇɃǵʢГʽʹLJÊūJKͧȦĈГ͇ɢ”ϠūZ˘tjϭÃȽɐОˑȣϭ ˘ƘLJKŚĶ1.23(b)Ǜ˪F ϿĞKMarc Brunel ̃|Üˉ΃˘”Ϡūˑ͇ÉĈГʪ¶ʢŷWĜαéɦƦˑůÆ ˖əζͣqDoppler χơʐϖFŭН̣ɓͧȦKWͽȫƙ˴αéδȫȞΡαéˑě™ ˖əK͇ÉĈГʪ¶ϏĔƒȽȌĹʐϖÒıʇ¤ĘaˑōȰìГ˴Kƛφί Doppler Ă˂ͳ̆Ò˖əˑƵğχơ¤NjFĜȣφίÔɒıʇ¤ĘˑçʽΊŴơKĔƒĊˀW ĜαéʺǃVKıʇ¤ĘˑГΊÔƑX͌ΞˑαéưƦȽRū¿̿KÜˉ΃ʹLJĔƒ ŭˀWĜαé˖əˑ΀ÝF

(34)

Ķ1.23 ǬГ¤ĘГʽŴơM(a)ГΊŲơ500 MHzKГʽÔΫʽ30 kHzN(b)ГΊŲơ30 kHzKГʽ ÔΫʽ30 HzF

2015 ƚKð{˂ƌŏţ Haiyang ZHANG ĨʅĵЅή̂Rŏţˑ Marc Brunel ̃

|ˤ˸qłsɸVǼʐˑŹГ·ß̭͇͝Éʪ¶KŭН̵ͪŚĶ1.24 Ǜ˪FГ˴ĉЙ ͉ˑ˯Şʪ¶eôŸ–808 nmʊʑˑNd: YAG· Q ͇Éʪ¶Kʇϩ1064 nmKƊ©ç ʽ224 WK͇ÉŲơ28 nsKϕГ 3.5 kHzF͇Éʪ¶ʈ¹Г˴ĉЙ͉aK;̵ň¶· ßГʽe85 MHzKˊs˯Şʪ¶^ɨφίň¶˴ГĮKIJɬŭϸĸГ˴ĉЙ͉ÆˑȽ ȌГ˴e170 MHzFΩÒˑГ˴ĉЙ͇Éʪ¶̢ίKTPȳ–ŭˀ¶ţ¥ГȌƟƺÞ 532 nm̭͝ʪ¶Fφίʐϖ̭͝¶ˑǬГçʽΊKĔƒĊˀŹГ·ßГʽήÞq 1.02 GHzI6 ϵΈʇJK·ßʖơ100%FIJɬKφί͉Ō·ß̔Ō͇Éʪ¶ƒć¶ţ ¥ГȌƟǖçzˈq532 nmˑŹГ·ß̭͝ʪ¶K΃ʪ¶ĔƜʆƟˉsʪ¶ЅήɸV Ǽʐ̃БŁF Ķ1.24 łsȟʢГ˴ĉЙ͉ˑŹГ·ß͇Éʪ¶

1.3 射

射频

频调

调制

制激

激光

光雷

雷达

达的

的国

国内

内外

外研

研究

究进

进展

ŹГ·ßʪ¶ЅήȫÜˉŹГ·ßʪ¶™eǼʐΥʇKŹГ¤Ęζͣ˖əǼʐˑ

(35)

R˯Ț–ßʪ¶ЅήKĸ˖ə΀ÝEǖ°EߟEɸVǼʐ̃БŁȽ˝ƜʆˑƟˉF I I1JJɸɸVV˖˖əəǼǼʐʐʹʹLJLJ ˊsƼʇ¤ĘĸɸVΩȣˑǶ̽ΦŏKIJɬƼʇЅή̧̏ΦŽƌ™sɸVFe qȽȌÜˉƼʇЅήĸ˖əǼʐaˑǖʵǢɄKˤ˸ţ̻ȂÒqƒŹГ·ßˑ̭͝ʪ ¶™eǼʐΥʇKŹГ¤Ęζͣʒʌ˖əǼʐˑțʅF 2000 ƚKʅĵͫƑÖŃƂŏţˑ F.Pellen ̃|ŷŹГ·ßʪ¶ĸʒɸaˑĞğȏ ŹʹLJζͣqʖ¹ˑ˂ͽÔɒĨŭННͿKŚĶ1.25 Ǜ˪Fˤ˸̣ɓͧȦKʒɸÃȽ •φʥʇʹLJKƛZГʽĪƟˑǙɪГʽXʒɸˑʛȲơȽŴÕˑ¿̏KεŷŹГ· ßʪ¶Ѕή̧̏ĸɸV˖əǼʐБŁˑƟˉȂqΦОˑdzŸǐiFeqͿȦUμ̣ ͽK…Üˉ¶ţƢιˑțʅKzˈq·ßГʽe1.5 GHzK͇ÉŲơe3 nsˑ 4 ͇É ʪ¶KΩÒʇϩe532 nmFɝǸt˘¿Ĩ˼ƕʥʇ̆ʅKŷıʇ¤Ęζͣqʼn˂Kŭ ˀqɸV˖əˑǼʐFŭН̣ɓͧȦKϒˉ΃˯–ßˑʪ¶ЅήÃȽΦОˑ̧̏¤į ɴKĔƒȽȌˑǤßɇʇƘǠKȂċÒ˖ə¤NjF  Ķ1.25 łsŹГ·ß͇Éʪ¶ˑɸV˖əǼʐ̧̣̏ɑĶ 2017 ƚ 7 ȼKʅĵͫƑÖŃƂŏţˑ F.Pellen ̃|K;ͷqR˯Ō͉ƦŹГ·ß

ˑ͇Éʪ¶KŚĶ1.26 Ǜ˪F΃·ßĮîDZ Nd:YAG ˒˱ʪ¶ĮE𝜆𝜆 4 ʇʶE¥Гȳ

–IDKDPJEΩ¹/ΩÒσϧƒćƕφʥ¶ʶFϠɦ͇Éʪ¶ˑaƾʇϩe 1064nmE

͇ÉŲơ100psE̝«ǵΩÒEϕŋГʽ 10HzF𝜆𝜆 4 ʇʶˑ¶ΤX̝«ǵ¶ˑ«ǵț

ğŕͲe457Kŭˀ̝«ǵ¶Þķ«ǵ¶ˑΡǷFΩ¹ϧ M1 e 532nm ºĉŹK1064nm

(36)

Isecond-harmonics generationJȳ–e DKDPKŭˀ̔Ōʪ¶I1064nmJÞ̭͝¶

I532nmJˑΡǷFeqϺ• 1064nm ʪ¶ˑΩÒKϒˉ IF1 Ĩ IF2 ^ʶƕφʥ¶ʶK

ÂaƾГʽĨôŲºОÔÝe532nm ± 2nmE531nm ± 28.1nmF Ķ1.26 Ō͉ƦŹГ·ßʪ¶˪ǐĶ Ω¹ΩÒϧɑǖq̢Äˑ FP ͉KÜˉ̔Ō͇É̢ί¥Гȳ–ĞˑōɨƳγKư ǖʪ¶ɋˑΩÒKΩÒȣϭϭЀe2𝐿𝐿 𝑐𝑐KŚĶ 1.27IaJǛ˪F€ГŁͲơ˛Kȣϭ ϭЀĴūˑ͇ÉbĸГŁUošĸ·ßʹLJKŚĶ1.27IbJǛ˪FɝǸ FP ͉ˑʹLJK φί·͉͒ϩĔƒŭˀ532nm ͇Éʪ¶ˑWĜГʽ·ßKεĸʪ¶ЅήɸVǼʐБŁ ÃȽЉƖƜϱˑƟˉF Ķ1.27 ŹГ·ßʪ¶ˑȣŁĶIaJƒćГŁĶIbJ I I2JJǦǦŏŏɷɷǠǠéé͆͆ææ ˘ƘĈГʪ¶ȫdzRɋʪ¶ġȽ^`WĜ¶ţГʽKφί¶ţǬГˑțƦŭˀʪ ¶ˑŹГ·ßKȫR˯ʹɯ̊ŀˑŹГ·ßʪ¶Fð{˂ƌŏţ¶ˌŞˤ˸ǛȫĵÆ ΦȢƤśŷĈГʪ¶Ѕή̧̏ˤ˸ˑɆɑF2010 ƚKʾó̃|ŷ˘ƘĈГʪ¶ˑǦŏ ɷƘǠʹLJζͣq˘¿ˑŭНˤ˸KŭН̵ͪŚĶ1.28 Ǜ˪FLD ʊʑˑ÷ĽЉƙЋ

ʿư͉Ĵ–ʪ¶Į™e÷Г˯ŞʢK̢ί˴ГMZI Ƙʕ„KƺÞqГƎe 100 MHz

(37)

E Ķ  ĈГʪ¶ЅήǦŏɷʟʎǠéʹLJŭН̧̏Ķ Кµ;ͷƛèƌqŏɷʟʎɦǯ̵ͪKŚĶ 1.28IaJǛ˪F΃̵ͪĔˉszˈ ƬơĔ·ˑʟʎŏɷFφίŷɴWĜʟʎƬơVK÷Гʪ¶XĈГʪ¶ǛzˈˑƘʕ Ɍ̜ŷɴơIŚĶ 1.29IbJJKŷ˘ƘĈГʪ¶ˑǦŏɷƘǠʹLJζͣŭНˤ˸Fŭ Н̣ɓͧȦKϿ˝ʟʎƬơˑņŏK÷Гʪ¶Ɍ̜ŷɴơVϺ˵ơͬОsĈГʪ¶K εͧȦĈГʪ¶ČʟʎˑƲĪ˵ơͬƫs÷Гʪ¶KͿȦqĈГʪ¶ˑǦŏɷʟʎƘ Ǡ͆æF Ķ I'Jŏɷʟʎɦǯ̵ͪĶNI(JWĜʞơVƘʕɌ̜ŷɴơ 2016 ƚKύƴ̃|ζRɭǼ˸qŏɷʟʎŷʪ¶˘ƘǼʐˑƲĪ,ŭН̵ͪŚĶ 1.29 Ǜ˪FŭНί˵aKÜˉň¶˴ГĮzˈqГƎe 100 MHz ˑ˘ƘĈГʪ¶Kƛ źÂφίŏɷʟʎɾFŭН̣ɓͧȦMϿ˝ŏɷʟʎƬơˑȂОK÷Гʪ¶˘ƘǼʐ ʺǃVKƎГ¤ĘČŏɷʟʎˑƲĪΦŏK¤įɴτʜϺ•K̼ŷs˘ƘĈГʪ¶Ǽ

(38)

ʐKƎГ¤Ęˑ¤įɴłɃUʂȽčïFIJɬƀĈГǬГ¤Ęˑ¤įɴ̼͵K˘ƘĈ Гʪ¶ǼʐŷŏɷʟʎˑčïWȍǑKÃȽRūˑǦŏɷƘǠ͆æF

Ķŏɷʟʎŷʪ¶˘ƘǼʐƲĪŭН̧̏ɟĶ I

I3JJȏȏȔȔįįňňǤǤßßʹʹLJLJ

2012 ƚKĕʡĵ˾ʛõŏţˑ Chih-Hao Cheng ̃|€˂ͽUdzÒÜˉĈГʪ¶ ζͣōȰìʐχKĔƒȽȌˑϺ•ȏȔįňŷıʇ¤ĘˑƲĪKȂО̧̏ˑχơÔΫ ʽKƛφίŭН̧̏ŷÂζͣqНͿKŭН̵ͪŚĶ1.30 Ǜ˪F Ķ   ĈГʪ¶ōȰìʐχ„ŭН̵̣ͪɑĶ Mfʪ¶ĮN#M€ʪ¶ĮN#MôŸ–¶ţȋŏĮN #M«ǵÔ¶ϧN#MЀ˭ĮN"M ʅǫ̂ȞΡĮN& MrÔjRʇʶN!& MİÔjRʇʶN%MĔčͨÎĮNM̾ěσϧNM ¶̾̕ěĮNMσϧN M«¶ϧNMĉŹϧN MЃƋ¶ˌǼʐĮN#MƼʇГʽěǖĮN #M¶Ί„N#MГΊ„N#M˪ʇĮF ŭН̣ɓͧȦKϿ˝˖əɧğχơˑȂОIȏȔįňƬơˑȂОJK̧ˑ÷Г ʪ¶ōȰìʐχ„ISF-LDVJˑ̧̏ˑχơÔΫʽτʜčƎK̼ĈГʪ¶ōȰìʐ χ„IDF-LDVJˑχơÔΫʽʂȽőŏčïƛś̠Œsá̻FƮ˖əɧğχơĴū C L Target PD SFL FS AOM FC OS ATG ADC SP 1 2 FC

(39)

ȣKȊç̌̏ˑ™ˉΛ˭KSF-LDV ˑχơÔΫʽϿΛ˭ˑņèĜɛτʜčƎKDF-LDV

ĸˆ—Λ˭VˑχơÔΫʽϏ£DzΦОˑɸƙFȻ̠Kˤ˸|Ħŷ˖əΛ˭e108 mK

Ƶğχơe 4cm/sKɧğχơe 5m/s ˑ˖əζͣqχơʐϖKŭН̣ɓͧȦMÜˉ

DF-LDV ͚ƺq 0.31mm/s ˑχơÔΫʽK֏̧ˑ SF-LDV ȂОq 8000 ¥F

2014 ƚKChih-Hao Cheng ̃|ĸUμ̣ɑˑł˦UKź͌ʘГǢɄƧ¹̧̏aK

ǖçŭˀqR˯͌ʘГƦĈГʪ¶ōȰìʐχ̧̏Ķ̣̏ɑŚĶ1.31 Ǜ˪F΃̧̏ φίź˖əĉŹıɍˑʪ¶¤ĘÇɨĉЙζ¹€ʪ¶ĮKĸʪ¶ĮΈǵ͉aŭˀ͌ʘ ГKφίɤʐ€ʪ¶ĮˑΩÒ¡Ĕƒ͚ƺ˖əˑōȰì¤NjF΃̧̏W}ÜˉqĈГ ʪ¶ŷȏȔįňˑǤß͆æKήÞqΦОˑχơÔΫʽKδÜˉq͌ʘГˑțƦKȊ ĭqıʇ¤Ęˑ¤įɴKȂОq̧̏ˑǼʐʭȍơF Ķ  ͌ʘГƦĈГʪ¶ōȰìʐχ̧̏ ŭН̣ɓͧȦKƮĉЙçʽe2.5 µWȣĶ̏ˑ¤įɴȻŏe23 dBF˖əɧğ χơˊ0 m/sÞ5 m/sȊčȣĶ͚̏ƺq0.42 mm/sˑχơÔΫʽĨ22.1 dBˑ¤įɴK ֏̧ˑ÷Гʪ¶ĸÔΫʽUȂОq 20 ¥K¤įɴUȂОq8 dBF̼ZKƮ˖əɧ ğχơηηОsƵğχơȣKφίĞ̀¤Ęʼn˂ǢɄĶ̏ĔƒȽȌˑñÔÒ˖əƵ ğαéˑțğF

1.4 本

本论

论文

文的

的主

主要

要研

研究

究内

内容

ɃͽȓfͬîDZ^ŏώÔÆűM1JŹГ·ßʪ¶Ѕή̧̏ˤ˸MîDZ˘ƘĈГ ʪ¶ЅήĨłsГ˴ĉЙʪ¶ˑŹГ·ßʪ¶ЅήN2JГ˴ĉЙʪ¶ˑȣГʹLJˤ ˸FŹГ·ßʪ¶ЅήȫƒŹГ·ßʪ¶™eǼʐΥʇKÃȽʪ¶Ѕή˹ϭÔΫʽО ˑʹʮKĜȣąÜˉǬГzˈˑƼʇ¤ĘζͣǼʐKÃȽƼʇЅήǦŏɷǠé͆æK

(40)

ȫR˯̣ěqʪ¶ЅήĨƼʇЅήĚ͌ŒʮKąĸRū˵ơU·Ⱦr̻WΚˑR˯Ț ŀʪ¶ЅήFɃȓφίʖ¹Ôɒ˘ƘĈГʪ¶ˑȣГʹLJKȂÒqłsōʐƁ˘”ʐ ΛʅĨƎГōȰìʐχʅˑ˘ƘĈГʪ¶Ǽʐ–ßFeqНͿ˘ƘĈГʪ¶ˑО̍ơ ʐΛEʐχ͆æKȄƣq˘ƘĈГʪ¶ˑĂ˂ɛɆKƛĸŌĺζͣqŭННͿFĸƤ Ƈ˘ƘĈГʪ¶Ѕή̧̏ˤ˸ˑĜȣKϚŷ˘ƘĈГʪ¶ˑȣГʹLJKˤ˸q÷Г˯ Şʪ¶ʈ¹Г˴ĉЙʿΜȣˑȣГʹLJĪƟKÚȚLJĹȂÒqłsГ˴ĉЙʪ¶ˑО ϵΈʇDoppler ʐχʅĨŋěƦ͇É/ŹГʐΛʅ̃FĜȣʖ¹ˤ˸qWĜ·ß̊ŀГ ˴ĉЙʿΜˑȣГĪƟKКɨĊˀƛͿȦqłsƬơ·ßГ˴ĉЙʿΜˑĈ͇Éʪ¶E ȣŁÔȑTalbot ȌƟƒćłs˘”·ßГ˴ĉЙʿΜˑ¶Łŭȣ¯ϔėčǷFͽȓ¾ îġ7 ˿Kfͬˤ˸ÆűîDZM ̂R˿e̩ͽFɃ˿€Г˴ĉЙʪ¶X̧ʪ¶ˑñÝ˝ǜKÔɒqÂʻʹˑȣ ГʹLJɍʢFĸɬł˦U΄̟Ĺ~̡qГ˴ĉЙʪ¶ˑˤ˸ζƇKÔɒqÂĸƼʇ¶ ŞţKʪ¶Ѕή̃БŁˑˤ˸ζƇF ̂r˿e˘ƘĈГʪ¶Ѕή̧̏ˤ˸F˘ƘĈГʪ¶ЅήȫÜˉĸȣϭUĨ˹ϭ Uũºϕěˑ˘ƘĈГʪ¶™eǼʐʇŷ˖əˑΛ˭EχơζͣʐϖFˊs^`¶Г ʽČÞŏɷʟʎˑƲĪȫĜ˘ˑKĔƒ˘tǩʔKIJɬ΃˯–ßˑʪ¶ЅήÃȽǦŏ ɷƘǠˑ͆æFĸζͣʪ¶ǼʐȣKĈГʪ¶КµÔeɃǵʪ¶ĨǼʐʪ¶KÂaǼ ʐʪ¶™ˉs˖əͩȏŹĞˊǽȉ¶ţ̧̏ǽȉKʲĞ^Μʪ¶̢ǼʐĮǽȉKưǖ Ą̺¤ĘĨǼʐ¤ĘKÜˉ^Μ¤ĘˑГʽƎǘ˘”ƎK͚ƺ˖əˑ˘¿¤NjFIJɬ ˘ƘĈГʪ¶Ѕή̧̏ÅÃʪ¶ЅήО˹ϭÔΫʽˑʹʮKą¨ϘƼʇЅήǖʵˑ¤ Ęʼn˂ǢɄKȫ̬ěqʪ¶ЅήXƼʇЅήr̻ŒêˑR˯Ț–ßʪ¶ЅήFͽȓК µ€˂ͽUˤ˸q˘ƘĈГʪ¶ˑǬГįňʹLJK΄̟ÔɒqƲĪǬГ¤Ęˑįňɍ ʢIîDZʪ¶˘”įňEň¶˴Гįň̃JKȂÒq˘ƘĈГʪ¶ˑŌƎƘʕįň˂ ͽɦŀF˂ͽĨŭН̣ɓĜȣͧȦKĸˣ¶̕Ƣιˑ͌ŌƎƘʕ¶ţ̧̏aKŹГ˘ ”įňĔƒ˗ǽΡǷeǬГˑ˘”įňKȫƲĪǬГįňˑȻfͬIJ̐Fĸɬł˦U ŷ˘ƘĈГʪ¶ЅήǼʐ̧̏ˑƌ™Ă˂ĨĚ̞ǖώÔζͣqʖ¹ˑÔɒXˤ˸Kƛ ȄƣΖRŗ˘ƘĈГʪ¶ЅήĂ˂ɛɆKĸŌĺŭˀq1.5km ˖əˑ 8mm ̍ơˑʐ ϖNĜȣŷ˴é˖əˑχơζͣʐϖKНͿq˘ƘĈГʪ¶ЅήˑƎГōȰìʐχĂ ˂F ̂T˿ełsň¶Г˴ĉЙʿΜˑŹГ·ßʪ¶ćÂОϵΈʇōȰìʐχˤ˸F

(41)

Г˴ĉЙʪ¶ȫdzĸƖͰˑFabry-Perot ͉(ǘ̻ʿư͉)Æȃ¹˴ГĮ, ›ƺʪ¶ɳɨ φί˴ГĮȣГʽϏĊˈčïKφίÔɒĚϵΈʇƬơƒć˘”ʹLJKŭˀΗˣEΗ ОϕГ͇ÉzˈE¶Łŭȣ¯ϔėčǷE¶ţГʽɣEīĬ¶ʢXŲΊ¶ʢˑzˈ̃F ɃȓɝǸГ˴ĉЙʿΜˑρГE˴ГʹLJƣ˾qƢȣŌƎƘʕ˂ͽɦŀKȑ©‰˜q ʪ¶ʿΜϩơEň¶˴ГϖE¶̕ȋŏĮņ˓̏ȑŷŹГ·ßʪ¶ȣŁʇưĨГΊŲ ơˑƲĪFŭНUŷUμ˂ͽɦŀζͣqНͿKφίě˂;̵ʿΜϩơEň¶˴Гϖ zˈq͇ÉETͲʇEțʇ̃ʇưFeȊĭ˘ƘĈГʪ¶Ѕήĸχơʐϖȣɐ•ōȰ ìГ˴ˑϬДKКɨȂÒqłsГ˴ĉЙʪ¶(FSL)ˑОϵΈʇōȰìʐχʅF΃ț ʅȫłsГ˴ĉЙʪ¶ˑŹГUΡǷʹLJKÜˉzˈˑОϵŹГΈʇζͣ˖əˑ Doppler ʐϖF˘ɴs˘ƘĈГʪ¶ЅήKÂȽȌĹȊĭq•χ˖əˑɐ•ōȰìГ ˴ϬДKȬ͜ȂОqȻżĔǼʐχơĨχơÔΫʽF ̂İ˿ełsГ˴ĉЙʿΜˑŹГ·ß͇Éʪ¶ćÂŋěƦ͇É/˘”ʐΛŭНF ˘ƘĈГʪ¶ЅήȫÜˉōʐƁ˘”ʐΛˑțʅŭˀ˖əˑΛ˭ʐϖK“ŭНί ˵ašĸ˘”Νč̼ƧΖʐϖ΅ƎˑϬДKĜȣˊsōʐƁʐϖțʅƧ¹KŸ͎ ˌΜ;ͷΦeŋɇK˶ūLJϺ•FeqͳÊUμϬДKɃ|ȂÒqłs͇ÉVϺ ʃŹГ·ßˑŋěƦ͇É/ŹГʪ¶ʐΛǢɄK΃țʅ̣ěq̢ÄˑȣϭЗͣʅ ʐΛǢɄIÜˉ͇ÉUóʃ̌ˏʐϖJĨŹГʐΛIÜˉ͇ÉVϺʃˑŹГ̍˧ ʐϖJζͣΛ˭ʐϖKȽȌȂОq͇ÉʐΛˑΛ˭ÔΫʽFeqȽȌḶ́ěȣϭ ЗͣʅĨ˘”ʐΛʅKεͬɺʪ¶ʢІĜȣÃȽ͇ÉĨŹГ·ßʹLJFĸɬ̓ȱ VKɃ|Üˉň¶ȗʇĮɑƣГ˴ĉЙʿΜKŭˀq˶ūˑ͇ÉÆŹГ·ßFČ ϻs͇Éʪ¶çʽKǗ…φίůÆʐϖ¶̕ϩơŷ΃ŋěƦ͇É/˘”ʐΛʅζ ͣqĂ˂LJНͿFȻ̠Kŭˀq1.5 km ϩơ¶̕Uˑ 3 mm ʐΛ̍ơI˘ŷʐ Λ̍ơ 2810-6JF΃ŋěƦ͇É/ŹГʐΛțʅȫŷ˘ƘĈГʪ¶ʐΛǢɄˑȽ Ȍͦ³KŷsО̍ơ͇Éʪ¶ʐΛζͣqȂqR˯ĔͣˑțʅF ̂u˿eГ˴ĉЙʪ¶˂ͽɦŀć‰˜ÔɒFɃ˿ɝǸWĜ·ß̊ŀˑ ΩÓȑʹLJĨʿΜˑρГʹLJKȂÒqГ˴ĉЙʿΜˑφˉ˂ͽɦŀK΃˂ͽɦ ŀĔˉsˤ˸WĜ·ß̊ŀˑГ˴ĉЙʪ¶ˑȣГŁʹLJFĸɬł˦UK΄̟Ô ɒqȒȑ Talbot Ɍ†ĨÔȑ Talbot Ɍ†VˑƬơ·ßĨ˘”·ßГ˴ĉЙʿΜ ˑΩÒʹLJKȑ©‰˜·ßГʽE·ßʖơE«̵˘”EʿΜłГĨ˯Şʪ¶Г ʽ̃IJ̐ŷΩÒʇưˑƲĪKКɨȂÒqłsˌ¶Ƭơ·ßГ˴ĉЙʿΜˑĈ͇

(42)

É˂ͽɦŀĨȣŁÔȑ Talbot ȌƟƒćłsˌ¶˘”·ßГ˴ĉЙʿΜˑГʽ-ȣϭȩŹʹLJF ̂¼˿eГ˴ĉЙʪ¶ŭНFĸ̂u˿˂ͽÔɒˑł˦UKζRɭƤƇŭН ˤ˸KНͿłsĈέƕ·ßˑГ˴ĉЙʪ¶ˑȣГʹLJKfͬîDZłsˌ¶Ƭơ·ß ˑĈ͇ÉʹLJKȣŁÔȑTalbot ȌƟĨłsˌ¶˘”·ßˑʪ¶Гʽ-ȣϭȩŹʹLJF ŭН̣ɓX˂ͽÔɒЉƖĤěKeОϕГ͇ÉzˈEˆǐʇưĊˈE¶Łŭȣ¯ϔė čǷ̃ȂqR˯ȚˑDŽΜF ̂S˿eºȓLj̣F

(43)

2 章

基于

于声

声光

光移

移频

频的

的相

相干

干双

双频

频激

激光

光雷

雷达

2.1 引

引言

˘ƘĈГʪ¶ЅήȫÜˉĸȣϭUĨ˹ϭUũºϕěˑ˘ƘĈГʪ¶™eǼʐ ʇŷ˖əˑΛ˭EχơζͣʐϖFˊs^`¶ГʽČÞŏɷʟʎˑƲĪȫĜ˘ˑKĔ ƒ˘tǩʔKIJɬ΃–ßˑʪ¶ЅήÃȽΦОˑǦŏɷƘǠ͆æFĸζͣʪ¶ǼʐȣK ĈГʪ¶КµÔeɃǵʪ¶ĨǼʐʪ¶KÂaǼʐʪ¶̢˖əͩȏŹĞˊǽȉ¶ţ̏ ̧ǽȉKʲĞ̢ί¶ˌΡǷưǖĄ̺¤ĘĨǼʐ¤ĘKÜˉ^Μ¤ĘˑГʽƎǘ˘” ƎK͚ƺ˖əˑ˘¿¤NjFIJɬ˘ƘĈГʪ¶Ѕή̧̏ÅÃʪ¶ЅήО˹ϭÔΫʽˑ ʹʮKą¨ϘƼʇЅήǖʵˑ¤Ęʼn˂ǢɄKȫ̬ěqʪ¶ЅήXƼʇЅήr̻Œê ˑR˯Ț–ßʪ¶ЅήF ˘ƘĈГʪ¶ȫdzRɋʪ¶aĜȣġȽ^`Оơ˘Ƙˑ¶ţГʽI𝜔𝜔E𝜔𝜔JKφ ί¶ţǬГI𝜔𝜔− 𝜔𝜔 JˑțƦŭˀ¶ţГʽÞŹГIǘƼʇJˑΡǷF˖á˘ƘĈ Гʪ¶ˑzˈțƦȽͼō˯KŚłsň¶˴ГˑЛΔȹƽž͌ŌƎƘʕ„IMZ-DSHIJE Ĉλ/4ʇʶIĈǧŹȌƟJEńȸȌƟ̃KÂaΦeǖʵˑR˯țʅȫź÷Гθ̪ʪ¶ Ôe^ɋKÂaRɋ¶φίň¶˴ГĮ†ȊčÂГʽKÇź^ɋ¶ζͣěɋK΃̣ɑ φƖ˳jeЛΔȹƽž͌ŌƎƘʕ„Fˊs^ɋʪ¶φίqWĜˑΩΜƵKĸěƛ eRɋȣšĸRūˑƢιȣϭKεĸRū˵ơƲĪǬГ¤Ęˑ̙ÌơFЛΔȹƽž ͌ŌƎƘʕ„IMZ-DSHIJȫR˯Äŀˑ¶ţƘʕ„KÂƜʆƟˉsʪ¶˘”įňʐ ϖĨ¶ţ˘ƘȘƅǟȁ̃БŁFĸUμƟˉaKǬГˑ˘”įňÞqƜʆˑˤ˸KŚ Armstrong˂ͽÔɒq^ɋʪ¶˘”Љɫx«̵ǎËVˑɥʽŴơÓȑĨ˘”ΊÓȑN MohammadǿŸqʪ¶ГʽįňEːįňƒć÷ɦ¶͑̕ȏŷƘʕ„̧̏ˑƲĪKƛ ƺÞqįňçʽΊÔƑÓȑ̃FϿ˝ˤ˸ˑʖ¹KφίĸƘʕ„ˑRɋ¶ΜUƧ¹Г ʽ·ßĮ†KĔƒźǬГaƾГʽ€ЄГ”˴͍·ßˑŹГʇɰK΃țʅȬ͜Ϻ•q ЄГϷβįňŷ̧̏ʐϖˑƲĪFɃ˿φί;ͷЛΔȹƽž͌ŌƎƘʕ„ŭˀq÷Г θ̪ʪ¶ğ˘ƘĈГʪ¶ˑΡǷKƛZɝǸϿɆί˵˂ͽǿŸq˘ƘĈГʪ¶ˑǬГ ¤ĘçʽΊŴơĨ˘”įňÔƑˑͧήƦK΄̟Ôɒqʪ¶̝ŲEň¶ŹГʢ̝ŲĨ Ƣιȣϭŷ˘ƘĈГʪ¶ǬГˑƲĪF˂ͽ̣ɓͧȦKĸˣ¶̕ƢιˑЛΔȹƽž͌ ŌƎƘʕ¶ţ̧̏aKŹГ˘”įňĔƒ˗ǽΡǷeǬГˑ˘”įňKȫƲĪǬГį

(44)

ňˑȻfͬIJ̐FĸÔɒqĈГʪ¶˘”įňˑł˦UζRɭǼ̑˘ƘĈГʪ¶Ѕή ĸΛ˭EχơǼʐțЋˑLJ͆F ˘ƘĈГʪ¶Ѕή̧̏fͬîDZİ`ώÔKÔÝe˘ƘĈГʪ¶¶ʢEʪ¶ĊŹ /ǽȉώÔE¶ˌǼʐ̧̏Ĩ¤Ęʼn˂ćȬǾ̧̏FÂaK˘ƘĈГʪ¶ȫÜˉŌ·ß ň¶˴ГĮ̞ǖ¶̕ЛΔȹƽžIMZJƘʕ„Kŭˀq÷Гθ̪ʪ¶Þ˘ƘĈГʪ ¶ˑΡǷFʪ¶ĊŹώÔÜˉÔɋɴe1:99¶̾̕ěĮź˘ƘĈГʪ¶ÔǖĄ̺¶ɋ ĨǼʐ¶ɋKǼʐ¶ɋ̢¶̕ȋŏĮȋŏĞˊĊŹ¶ţ̧̏ĊŹ͍Ǽʐ˖əUFǽȉ ¶ţ̧̏ź˖əȏŹıɍˑ¶¤Ę˗ǽ̾ěζōɦ¶̕aF¶ˌǼʐ̧̏ũǖǼʐ¶ ɋĨĄ̺¶ɋˑ¶ˌΡǷKƛǤßĚ˯įňKȂОǬГ¤Ęˑ¤įɴF¤Ęʼn˂ώÔ ÔeT`ϵɰM̂Rϵɰȫŷ¶ˌǼʐĮΩÒˑǬГ¤Ęζͣɦǯʼn˂KfͬîDZŹ Г•įňȋŏEʘГĨʥʇF̂rϵɰȫŷaГ¤ĘζͣȑŠïʼn˂KũǖȑŠ¤Ę ˑʥʇĔʅʼn˂̃ƌ™FȻĞR`ϵɰȫɝǸ̆ʅʐϖ˖əˑΛ˭Eχỡ¤NjF Ƀ˿φί΄̟Ôɒ˘ƘĈГʪ¶Ѕή̧̏ˑǼʐĂ˂Ẹɑ̞ǖKˤ˸qłsº˘” FFTΊÔɒˑ˘”ʐΛʅĨłsǬГōȰìГ˴ˑʐχʅKũǖq˘ƘĈГʪ¶Ѕή ˑȒ–țɠ;ͷKȄƣΖRŗ˘ƘĈГʪ¶ЅήĂ˂ɛɆKƛĸŌĺŭˀq1.5 km˖ əˑ8 mmˑʐϖ̍ơKȬ͜ȂОqŌĺʐϖΛ˭FĜȣKÜˉ˘ƘĈГʪ¶ŌƎƘʕ zˈˑŹГ¤Ęŭˀq˴é˖əˑχơʐϖKʐϖ̍ơŒs0.5 m/sF

2.2 相

相干

干双

双频

频激

激光

光源

源以

以及

及噪

噪声

声分

分析

析:

2.2.1 ˘˘ƘƘĈĈГГʪʪ¶¶ʢʢ̞̞ǖǖ ˘ƘĈГʪ¶ʢϒˉŌ·ßň¶˴ГĮ̞ǖ¶̕ЛΔȹƽžIMZJƘʕ„Kŭ ˀq÷Гθ̪ʪ¶Þ˘ƘĈГʪ¶ˑΡǷKŚĶ2.1Ǜ˪F÷Гθ̪ʪ¶θǽ182̾ě ĮˑΩ¹̀źʪ¶Ôe^ɋKÔɋɴeρFÂaRɋʪ¶̢ίň¶˴ГĮIAOFSJĞ θǽ͍281̾ěĮˑR`Ω¹̀KđRɋʪ¶̢ίƢι¶̕IDelay fiberJĨ«ǵǾ

ßĮIPolarization ControllerJĞθǽ͍281̾ěĮˑđRΩ¹̀I«ǵǾßĮˉs·

͒ʪ¶ˑ«ǵǃȂО^ɋʪ¶ˑǬГȌʽJN˴Г¶ĨЉ˴Г¶φί281̾ěĮěɋK

ưǖ˘ƘĈГʪ¶FŌ·ß÷Гʪ¶ŭˀˑ˘ƘĈГʪ¶ÃȽƒVʹʮM1Jº¶̕

̣ɑKЂǖơОEȧsȇ™N2JǬГ˘”įň˘ŷΦ•N3JГƎˊň¶˴ГĮÊūK

φƖĸ100 MHzϖ̗N4J^`¶ГʽˑƬơĔƒφί·͒̾ěĮˑÔɋɴĨň¶˴Г

(45)

Ķ2.1 łsЛΔȹƽžƘʕ„ˑĈГʪ¶ 2.2.2 ǬǬГГ¤¤ĘĘˑˑįįňňɦɦŀŀ łsЛΔ-ȹƽžƘʕ„ˑ˘ƘĈГʪ¶ʢȫφί÷Гʪ¶·ßzˈˑKÂɃΞš ĸRūĴȽįňKfͬîDZʪ¶ʢƧ¹ˑƬơĨ˘”įňEň¶·ßĮƧΖˑŹГį ňF÷Гʪ¶ʢƬơįňfͬȫˊʪ¶ĮΩÒçʽW˶ūψǖˑKεĨʪ¶zˈˑɆ ˂˘¿KŚņ˓~ΎˑʰW˶ūLJEʊʑçʽˑƊEˌ޲Į†ˑǥéEŌˎʿŅ ˑʞơčïEǵé̃Fʪ¶ƬơįňIRINJˑūieM÷”ȣϭÆʪ¶ĮΩÒ¶ç ʽƊˑƙĻ©δP 𝑡𝑡 Ͻƒ÷”ȣϭÆˑʪ¶ĮƙĻΩÒçʽ P 𝑡𝑡 KýM RIN =      I2.1J RINφƖˉdB/Hzͧ˪RūƕŲÆˑʪ¶ƬơįňFŭНˉʪ¶ĮeNKT Photonics»ęˈzˑŀĘeY10ˑ÷Гθ̪ʪ¶ĮKÂRINįň•s-140 dB/HzFXʪ ¶ʢ˘”įň˘ɴKˊƬơǥéƧΖˑįňƷżKĔǂˏWͷFVЋfͬÔɒʪ¶˘ ”įňĨň¶ŹГįňŷǬГ¤ĘˑƲĪF łsň¶˴ГˑЛΔȹƽžƘʕ„ŚĶ2.1Ǜ˪M÷Гθ̪ʪ¶̢Í˗ϧĞ̾ěζ ¹1×2¶̾̕ěĮI1×2 CouplerJKÂaRɋʪ¶̢ň¶·ßĮ˴ГKđRɋʪ¶̢ί RɰƢι¶̕Ĩ«ǵǾßĮK^ɋʪ¶φί2×1̾ěĮěɋKÂaЛΔȹƽžƘʕ„ ˑ^͋ϩjƎeΔLIƢιȣϭeτ=nΔL/cKne¶̕ǧŹʽKce¶χJK¶ˌǼʐĮĪ ƟǬГ¤ĘF 2.2.2.1 ççʽʽΊΊŴŴơơ Ω¹ˑ÷Гʪ¶ˑˌĺͧήƦŚVM

( )

[

]

0 0exp ( o( )) E t =E j t

ω θ

+ t (2.2) Âaʪ¶ˌĺǵƗeE KͲГʽe ωK˘”ǥéͧ˪e ( )0 θo t F1×2 ¶̾̕ěĮź÷Г

(46)

ʪ¶Ôe^ɋKÂaRɋ̢ίň¶˴ГĮKÔÝͧήŚVM

( )

[

]

1 = ρ 0exp (ω θ+ o( )) E t E j t t

( )

(

)

[

]

2 1 0exp (( ) o( ) e( )) E t = η −ρ E j ω+ Δω θt+ tt (2.3)

ÂaΔωeň¶˴ГĮˑ·ßГʽKρe 1×2 ̾ěĮˑÔɋɴKηeň¶˴ГĮˑȌʽK

( ) e t θ ȫˊň¶·ßĮƧ¹ˑ˘”ǥéF˴Г¶XЉ˴Г¶I“ȽRūˑȣϭƢȣJě ɋưǖĈГʪ¶KÂͧήƦŚVM

( )

1

( )

2

( )

out

E t E t

=

+ +

τ

E t

(2.4)

Âa˘ƘĈГʪ¶ĺe

E t

out

( )

K¶̕Ƣιȣϭe𝜏𝜏KɝǸ¶ˌǼʐĮˑƙțƸĪƟʹ

LJKǼʐĮΩÒˑxʎ¤Ęɫɴs𝐼𝐼 𝑡𝑡 M

( )

*

( )

(

)

2

( )

( )

0

( ) Re * 2 1 cos( , )

out out out o e

I t = E t E t= ηρ −ρ E Δ ⋅ − ⋅ + Δω t ω τ θ tτ θ+ t (2.5) ÂaΔθo

( )

t,τ eȣϭƎe𝜏𝜏ˑ^ɋʪ¶˘”ƎǥéFŷsƙ˶ϿɆ¤ĘKÂ͌˘¿Ó ȑXŷƟˑçʽΊŴơɑǖ¯ϔėčǷŷM ( ) ( ) ( ) ( ) ( ) * 2 0 ( ) ( ) ( ) 4 1 cos , cos ( ) , out out o e o e R t I t I t t I t t t t t t t t t ηρ ρ ω ω τ θ τ θ ω ω τ θ τ θ ′ ′ = ⋅ + = ′ ′ ′ − ⎡Δ ⋅ − ⋅ + Δ + ⎤ ′ ′ ′ ⋅ ⎡Δ ⋅ + − ⋅ + Δ + + + ⎤ (2.6) ÂaOPͧ˪ŷ¤ĘζͣȣϭƙĻFɝŅ̀ͷXįň˂ͽKª;¤ĘʢˑϿɆ˘”ǥ éʤΚƙ˶ϿɆί˵, ÂȾ€Ļ©e0KțƎɫɴs𝜏𝜏ˑОșÔƑFțƎͧήƦŚI2.7JE

I2.8JǛ˪NÂa𝜏𝜏e¶̕ƢιȣϭK𝜏𝜏eʪ¶ˑ˘ƘȣϭK𝜏𝜏eň¶·ßĮŹГʢ

ˑįňĄȑM [ ]2 2 ( ) ( ) 2τ σ θ θ τ τ = − − = o o o c t t (2.7) [ ]2 2 ( ) ( ) 2 e e e e t t τ σ θ θ τ τ = − − = (2.8) Âa𝜏𝜏Ĩ𝜏𝜏ÔÝĔƒͧμeτc =1 (πΔvo)e =1 (πΔve)KΔv Ĩ Δo v ‚ͧʪ¶ĨŹГʢˑe ̝ŲFź»ƦI2.7JEI2.8J‚¹I2.6JaKĔƺM

(47)

(

)

(

)

(

)

(

)

2 0 2 0 2 0 2 0

2 1 cos( )exp( 2 )exp( ),

2 1 cos( )exp(2 )exp( ), 0

( )

2 1 cos( )exp( 2 )exp( ), 0

2 1 cos( )exp( 2 )exp( ),

c e c e c e c e t I t t t t I t t R t t t I t t t I t t τ ρ ρ ω τ τ τ ηρ ρ ω τ τ τ ηρ ρ ω τ τ τ τ ηρ ρ ω τ τ τ ⎧ Δ ⋅ < − ⎪ ⎪ ⎪ Δ ⋅ − < < ⎪ ⎪ = ⎨ ⎪ Δ ⋅ < < ⎪ ⎪ ⎪ Δ ⋅ > ⎪⎩ (2.9) ɝǸ̫̚-ΪϜū˂K͌˘¿Óȑˑ¯ϔėčǷýeçʽΊŴơM

{

}

, ( , ) ( , , ) I out c e S f

τ

=

F

R t

τ τ

(2.10) ˘ƘĈГʪ¶ˑǬГçʽΊŴơĔͧ˪eM ( ) ( () ) ( ) ( ) 2 2 , 0 2 2 2 0 2 2 2 cos ( ) ( )sin( ) ( , ) 2 1 exp( 2 )exp( ) 1 2 1 cos( ) sin( ) 2 1 exp( 2 )exp( ) 2 1 2 1 ( ) ( ) e e I out c e e c e c e c e c e S f I I τ ω ω τ τ ω ω ω ω τ τ τ τ ηρ ρ τ τ τ ω ω ω ω τ τ τ ω ω ω ω τ τ τ ηρ ρ τ τ ω ω ω ω τ τ τ τ ⎡ − Δ − − Δ − Δ ⎤ = − − − ⎢ ⎥ − Δ + ⎢ ⎥ ⎣ ⎦ ⎛ +− Δ ⎜ ⎟ − Δ − Δ ⎝ ⎠ − − − − − ⎛ ⎞ ⎛ ⎞ − Δ + + − Δ + + ⎝ ⎠ ⎝ ⎠ ( ) 2 0 2 2 2 2 1 2 1 2 1 ( ) c e c e I τ τ ηρ ρ ω ω τ τ ⎡ ⎤ ⎢ ⎥ + ⎢ ⎥+ ⎝ ⎠ ⎢ ⎥ ⎢ ⎥ − Δ + + ⎢ ⎥ ⎣ ⎦ (2.11) €»ƦI2.11JĔƒ˛ÒKǬГ¤ĘçʽΊŴơˊʪ¶̝ŲE¶̕Ƣιϩơƒć ň¶ŹГ̝ŲÊūFeqζRɭÔɒǬГ¤Ęˑ˘”įňKІͬʖ¹ˤ˸ǬГ¤Ęç ʽΊŴơX˘”įňjϭˑ¿̏F 2.2.2.2 ˘˘””ΊΊŴŴơơ φƖKƬơǥéĨ˘”ǥéˑŹГ¤ĘĔƒͧ˪e

( ) (

0

( ) cos(2

)

0

( ))

V t

=

V

+

ε

t

πν θ

t

+

t

(2.12) ÂaKV0ͧ˪¤ĘˑƙĻƬơKε( )t ͧ˪«˭ƙĻ©ˑƬơǥéK

ν

0 ͧ˪¤Ęˑa ƾГʽK

θ

( )t ͧ˪«˭aƾГʽˑ˘”ǥéF ƮͲơ𝜃𝜃ǽβ 0IЉƖżJȣKɫƪÓȑ𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 Ĕƒ̅ïe𝜃𝜃K̼˜ƪÓȑĔ̅ï e1FϋhK»ƦI2.12JĔƒï̅e

( ) (

)

(

)

(

)

(

)

0 0 0 0 0 0 ( ) cos(2 ( )) ( ) cos(2 )cos( ( )) ( ) sin(2 )sin( ( )) ( ) cos(2 ) sin(2 ) ( ) V t V t t t V t t t V t t t V t t V t t ε πν θ ε πν θ ε πν θ ε πν πν θ = + + = + − + ≈ + − (2.13)

(48)

ȬʲKI2.13Jˑ̂RЎ‚ͧ¤ĘˑƬơįňK̂rЎ‚ͧ˘”įňFeqÔɒ¤ ĘȢ”įňˑƲĪKǂˏÂƬơįňK»ƦĔζRɭï̅e

( )

0cos(2 0) 0sin(2 0 )

( )

V t V=

πν

t V

πν θ

t t (2.14) ŹГ¤ĘV t

( )

ˑ͌˘¿ÓȑĔͧ˪e

( )

( ) (

)

( )

0cos(2 0 ) 0cos(2 0 ) 2 2 v R t V t V t t V t R t V t θ πν πν ′ ′ = ∗ + = + (2.15) ÂaKR tθ( )ȫ˘”ǥéˑ͌˘¿ÓȑKR t ȫǬГˑ͌˘¿ÓȑFŷUƦζͣ¯ϔėv( ) čǷKĔƺM

( )

0

(

2

)

( )

0

(

2

)

4 4 v V V S ν = δ ω πν− ⊗Sθ ν + δ ω πν− (2.16) ÂaKSv

( )

ν ȫR t ˑ¯ϔėčǷKýǬГ¤ĘˑçʽΊŴơNv( ) Sθ

( )

ν ȫ

R t

θ

( )

ˑ¯ ϔėčǷKý˘”ΊŴơFφίÔɒǬГ¤ĘçʽΊŴơX˘”ΊŴơjϭˑ¿̏K ˂ͽUŭˀq˘”ΊŴơXçʽΊŴơˑΡǷF 2.2.2.3 ǬǬГГįįňňÔÔɒɒ φƖKǗ…ª;ʪ¶̝Ųηŏsň¶˴ГĮˑŹГ̝ŲIΔ𝑣𝑣 ≫ Δ𝑣𝑣ǘ̻𝜏𝜏 ≪ 𝜏𝜏JF IJɬK€÷Гʪ¶˘ƘȣϭͲơÔɒKǬГįňÔɒĔƒÔe^˯ǎËM1J¶̕Ƣ ιȣϭĔɴǯsʪ¶˘ƘȣϭI𝜏𝜏 ≈ 𝜏𝜏JN2J¶̕Ƣιȣϭηżsʪ¶˘Ƙȣϭ I𝜏𝜏 ≪ 𝜏𝜏JFVЋÔÝɝǸε^˯ǎËζͣÔɒF 1)¶̕ƢιȣϭĔɴǯsʪ¶˘ƘȣϭI𝜏𝜏 ≈ 𝜏𝜏J ɝǸ»Ʀ2.11 Ĩ 2.16Kͷ̆ǬГçʽΊŴơĨ˘”ΊŴơKŚĶ 2.2 Ǜ˪F‰˜ ĄȑŚVMň¶˴ГĮŹГГʽ∆ω = 200 MHzK̝Ų 1 HzK¶̕Ƣιϩơ 50 kmK ʪ¶̝Ų20 kHzF€‰˜̣ɓĔƒ˛ÒKƮГ«ʼns•ГɰȣI0-10 kHzK10 kHz e ÷έƕʪ¶̝ŲJKǬГįňÃȽƒVʹʮM1JįňΦŏN2Jįňŏż£Dz˘ŷ˶ ūZVϺ̮ǒFƮГ«Ηί10kHz ȣKǬГįňȬ͜VϺFIJɬKǗ…ĔƒƺỌ̀ͽM Ʈ¶̕ƢιϩơĔɴǯsʪ¶˘ƘϩơȣKǬГ̝ŲũºĥˀÒʪ¶ˑ˘”įňʹLJF εX̢ÄˑǬГ̝Ųʐϖ̣ɓ˘ĤěF

(49)

Ķ ǬГįňçʽΊX˘”ΊÔɒF‰˜Ąȑ;eŹГГʽ 6K̝Ų 6Kʪ¶̝Ų  6K¶̕Ƣιϩơ -/ Ʈ𝜏𝜏 ≈ 𝜏𝜏ȣKŷWĜϩơˑ¶̕ƢιĨʪ¶̝ŲŷǬГ˘”įňˑƲĪζͣÔɒF Ķ2.3IaJeʪ¶̝Ų 20 KHzKň¶·ßĮŹГ̝Ų 1 Hz ȣKǬГ˘”įňÔƑX ¶̕Ƣιϩơˑ¿̏KĔƒĊˀƮГ«ʼns•ГɰȣI10 Hz - 10 kHzJKʪ¶̝Ųŷ ǬГˑƲĪɐeȦȬKįňŏZVϺɐe̮ǒNƮГ«Ηί÷έƕʪ¶̝ŲȣI10 KHzJKǬГįňȬ͜VϺFĶ 2.3IbJe¶̕ϩơ 10 kmEŹГ̝Ų 1 Hz ȣˑǬГ ˘”įňÔƑKXjáˑÔɒ̣ɓ˘βKǬГ˘”įňϿ˝ʪ¶̝Ųˑņŏ̼Ȭ͜ņ ŏF Lj̣MƮ¶̕ƢιȣϭĔɴǯsʪ¶˘ƘȣϭȣKň¶·ßĮŹГįňŷǬГ¤ ĘÐlʂȽƲĪIεȫIJeŹГ̝Ųηżsʪ¶̝ŲJKɬȣǬГ¤Ęˑįňˊʪ¶ Į̝ŲIʪ¶Įˑ˘”įňJĨƢι¶̕ϩơÊūFɝǸUμÔɒĔˡKĸϩ¶̕Ƣ ιˑЛΔȹƽž¶ţ̧̏aKÎżʪ¶̝ŲĔƒȽȌϺ•ǬГ¤ĘˑįňF Ķ  WĜ¶̕ƢιϩơĨʪ¶̝ŲŷǬГ˘”įňˑƲĪ 1.999 1.9995 2 2.0005 2.001 x 108 -65 -60 -55 -50 -45 Frequency/ Hz Pow er spe ct ra l de ns ity/ db 102 104 106 -30 -20 -10 0 Offest frequency/ Hz Pha se noi se / dbc /hz 20KHz Laser Linewidth 20KHz Fiber length 50km Radio-Frequency Linewidth 1Hz 102 104 106 -60 -40 -20 0 Offest Frequency/ Hz Ph as e n oi se/ d B c/ H z Fiber Length 5km Fiber Length 10km Fiber Length 25km 102 104 106 -100 -80 -60 -40 -20 0 Offest Frequency/ Hz Ph as e n oi se/ d B c/ H z Laser Linewidth 2KHz Laser Linewidth 20KHz Laser Linewidth 0.2MHz (a) (b)

(50)

2)¶̕Ƣιȣϭηżsʪ¶˘ƘȣϭI𝜏𝜏 ≪ 𝜏𝜏J

Ʈ¶̕Ƣιȣϭηżsʪ¶˘ƘȣϭȣK˴Г¶XЉ˴Г¶£DzΦОˑ˘ƘLJK

ʪ¶˘”ǥéǛƧΖˑǬГįňźηηżs𝜏𝜏 ≈ 𝜏𝜏ˑǎËFɝǸ»Ʀ2.11 Ĩ 2.16KÔ

ÝÔɒʪ¶˘”įňEŹГįňE¶̕ϩơŷǬГ¤ĘˑƲĪFКµKeqÔɒ¶̕

ϩơŷŹГįňˑƲĪK‰˜Ąȑ;̵eʪ¶̝Ų2 kHzNŹГįň̝Ų 1 HzN¶̕

ƢιϩơÔÝe2 mE5 m Ĩ 7 mK‰˜̣ɓŚĶ 2.4 Ǜ˪KÂaIaJĨIbJÔÝŷ

ƟǬГçʽΊŴơĨ˘”ΊŴơF€ĶaĔƒ˛ÒKWĜ¶̕ƢιϩơVˑǬГįň ĸГ«Φ•ȣȟʅÔΫI€çʽΊUͯŵƀȫǬГ̝ŲXŹГ̝Ų˘ĜJKZϿ˝Г «ņŏįňτʜϺ•FƮГ«ņŏÞ 20 kHz ĞKWĜ¶̕ƢȣϩơƧΖˑǬГįň ÒˀƎƥM1J¶̕ƢȣϩơΘŏKįň˘ŷΘŏN2JϿ˝Г«ņŏK˘”įňΙs ˶ūKŚ¶̕ϩơe2m ȣŷƟ-114 dBc/HzK7m ȣŷƟ-105 dBc/HzFLj̣ŚVMƮ ¶̕Ƣȣηżsʪ¶˘ƘȣϭȣK¶̕ϩơƧΖˑ˘”įňfͬ–ˀĸОГ«ʼnZϿ ˝¶̕ƢȣˑņŏKǬГƠįτʜȂОF Ķ Ʈτ ≪ τȣKWĜ¶̕ƢιϩơŷǬГ˘”įňˑƲĪMI'JǬГçʽΊŴơNI(JǬГ ˘”ΊŴơ Ķ2.4 ͧȦ¶̕ƢιϩơŷǬГįňˑƲĪfͬͧˀĸГ«ΦОˑ”̵KĜȣǬ Гˑ̝ŲXŹГ̝ŲłɃĤěKεΆȦŹГ̝ŲɐȽĔ͆ȫƲĪŹГįňˑ¿ϣIJ̐F

IJɬ‰˜Ąȑ;̵ŚVM¶̕Ƣȣϩơe1 mKʪ¶̝Ųe 2 kHzKŹГ̝ŲÔÝe

0.1 HzE1 HzE10 HzḲɓŚĶ 2.5IaJĨIbJǛ˪KÂaĶ 2.5IaJeǬГçʽ

199 199.5 200 200.5 201 -150 -100 -50 0 Frequency/ MHz Pow er spe ct ra l de ns ity/ dB 102 104 106 -140 -100 -60 -20 Offest frequency/ Hz Ph as e n oi se/ d B c/ H z Fiber length 2m Fiber length 5m Fiber length 7m -84dBc/Hz -105dBc/Hz -114dBc/Hz -107dBc/Hz -45dBc/Hz -64dBc/Hz (a) (b)

Références

Documents relatifs

[r]

In order to provide a seamless messaging, a system must provide the capability to intercept an incoming message, process it according to user preferences and other criteria, and

The method is based on the use of an optically-carried radiofrequency (RF) signal in order to benefit from both the directivity of the optical beam (Lidar), and the accuracy of

We also confirm that FLNa is present at podosomes, which are cell structures involved in mesenchymal migration via adhesion and matrix degradation properties, and we have found

So sind die theoretischen Ausführungen des Polybios als störend für den Erzählgang erachtet worden; man hat sie als zu we- nig systematisch, als widersprüchlich und zu wenig

Sur un graphique identique, représente, à partir du premier kilomètre, le relevé d'une voiture qui roulerait constamment à 100 km·h −1 après avoir parcouru ce premier

This control technique of systematic gate bias pulses demonstrated a 10 dB improvement of amplitude P2P stabilities for this worst-case radar burst to meet the critical