• Aucun résultat trouvé

TEXTURES IN SLOWLY ROTATING 3He-A

N/A
N/A
Protected

Academic year: 2021

Partager "TEXTURES IN SLOWLY ROTATING 3He-A"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217731

https://hal.archives-ouvertes.fr/jpa-00217731

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

TEXTURES IN SLOWLY ROTATING 3He-A

H. Vidberg

To cite this version:

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n" 8, Tome 39, août 1978, page C6-61

TEXTURES IN SLOWLY ROTATING

3

He~A

H.J. Vidberg

Research Institute for Theoretical Phyeics University of Helsinki

Siltavuorenpenger 20 B - SF-00170 Helsinki 17, Finland

Résumé.- Nous étudions les textures de 3He-A dans un cylindre infiniment long en rotation lente et nous comparons les énergies libres de trois configurations différentes.

Abstract.- I study textures of 3He-A in a slowly rotating infinitely long cylinder and compare

the free energies of three possible configurations.

The line integral of the superfluid

veloci-ty v around a cylinder filled with He-A is

quanti-zed /l/. This can be used to classify X-textures in

a slowly rotating cylinder. The Mermin-Ho texture

111

has the circulation 2ir in units of •=—, I

consi-zm

der also the next simplest non-singular texture

which has the superfluid circulation 67? and a

sin-gular vortex superimposed on the M-H structure of 4ir.

The critical angular velocity for the 6ir-texture to

become more advantageous than the M-H texture is

approximately 7 — r - , where R is the radius of the

mR/

cylinder. For small R, the singular vortex structure

may be more advantageous in temperatures close to T.

One has to minimize the free energy

func-- > -*•

tional F - w.L, where F is the free energy of the

-*• . •*•

fluid at rest, (0 is the angular velocity, and L the

angular momentum. In the London limit

HI.

F = KA

2

fd

3

r|4v

2

- 2(X.v )

2

+ 2v .&cX

-

4(X.v ) (X.^xX)

J [ s s s s

+ 5 {|^xX|

2

+ (v".X)

2

+ v.{(

l.fyt-t & -t

}}]

t

= « £ j

d

3

r m

?

x

[4^ - 2t(t.v

s

) +

%t

-

2

X(X. vxt)]

(1)

Weak coupling coefficients (near T ) have been

assu--a c

med and v is in units of -=— . The magnetic field is

zero and the dimensions of the container have been

taken to be large on the scale of the dipolar length

allowing the 3-vector to be parallel to X almost

eve-rywhere.

I first consider extremely slow rotation

when a modified M-H texture is stable. I neglect any

dependence on z, the direction of the cylinder axis.

Then X = sin 9(r) r+ cos 6(r) z

•*

1 - cos 6 (r) ~ (2)

V = *—'— A

s r *

and I take X (0) to be parallel with the direction

of rotation. The free energy functional is

numeri-cally minimized with respect to the function 9(r)

with the usual boundary condition of

1

perpendi-cular to the cylinder wall /3/. As compared with

the Mermin-Ho «=0 solution 6(r)

- j T[ I

1

*!,

the

^-vec-tor here tends to turn away from the direction of

ro-tation by small angles such as TT/8 at the last

an-gular velocity where the state is stable. If the

direction of rotation.is opposite to 1(0) the M-H

type structure is always unstable against the

flip-ping of

1(0)

to the parallel position. The free

energy as a function of R=mR

2

(o/H is plotted in the

figure.

F - S T

\

\ \

, \

\

50- -\ \ \

\ W

\ ' \ ^

— . N , . \ 'i\. ,—.—,—,—_. m ^ L .

^

> \

^ \

-50- \ ^ \

Fig. : The free energy in u n i t s of 2TTKA

2

as a

func-t i o n of func-the dimensionless angular v e l o c i func-t y mu)R

2

/)i

for the Mermin-Ho t e x t u r e ( ) , . the 6ir-texture

(—) , and the singular vortex t e x t u r e with R/£ = 10

s

( — ) and.R/£= 10H ( ) .

When to grows the frir-texture w i l l eventually

become advantageous. I choose the simple v a r i a t i o

-nal form

(3)

%

= s i n x ( r ) I c o s @

;+

s i n $

@I+

cos

x

( r )

-+

v = 2(1

-

c o s x ( r ) ) $ / r

,

O Z R ' and

'jZ

= s i n ~ ( r )

;

+

cos ~ ( r )

-+

v = (3

-

c o s ~ ( r ) ) $/r

,

R'IrzR

where c o n t i n u i t y r e q u i r e s x(R') =

n

,

and t h e boun d a r y c o n d i t i o n x ( R T ) = 37~ 12. The f r e e energy i s

p l o t t e d i n t h e f i g u r e , and i t i s seen to go below t h a t o f t h e M-H t y p e t e x t u r e a t R

-

7.

The f i n a l t e x t u r e I c o n s i d e r i s a s i n g u l a r v o r t e x l i n e superimposed on t h e M-H s t r u c t u r e . I n t h e v a r i a t i o n a l c a l c u l a t i o n t h e gap i s taken t o r e - cover from t h e v o r t e x w i t h t h e coherence l e n g t h 5(T). The f r e e energy a s a f u n c t i o n o f

R

i s a g a i n p l o t t e d i n t h e f i g u r e w i t h two v a l u e s of t h e parameter R/c(T). I t i s lower t h a n those of both t h e M-H and t h e 6 ~ - t e x t u r e f o r s u f f i c i e n t l y small R o r T c l o s e t o Tc. For R=l mm t h e temperature c r i t e r i o n i s T

2

.98 Tc.

B e t t e r t r i a l f u n c t i o n f o r t h e r e l a t i v e l y complicated 6 ~ - t e x t u r e , however, may lower i t s ener- gy c o n s i d e r a b l y . N e v e r t h e l e s s , t h e energy of t h e s i n g u l a r v o r t e x s t r u c t u r e would s t i l l be of t h e s a m o r d e r of magnitude d e s p i t e t h e l o g a r i t h m i c term l o g (R/<(T)). T h i s i s c o n t r a r y t o t h e h i g h v e l o c i t y r e - s u l t of Volovik and Kopnin 151. One should t h e r e - f o r e b e c a r e f u l a b o u t any statement about t h e r e l a - t i v e energy of t h e s i n g u l a r v o r t e x s t a t e w i t h o u t de- t a i l e d c a l c u l a t i o n s .

References

/ I / T . L . , Ho, PH.D., t h e s i s 1978, C o r n e l l U n i v e r s i t y (unpublished).

/2/ N.D., Mermin and T.L., Ho; Phys., Rev., L e t t . , 36 (1976) 594.

-

/ 3 /

.V.,

Ambegaokar; P. G.

,

de Gennes and D. , R a k e r ; Phys.,Rev.,

A9

(1974) 2676.

/ 4 / L . J . , Buchholtz and A.L., F e t t e r ; Phys.,Rev.,

-

B s (1977) 5225.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this introduction we briefly highlight the central feature of our version of the polymer replica method – the use of nested contour integrals and their residue expansions

In the limit R » g , where R is the radius of the cylinder and E, is the dipolar coherence length, the longitudinal resonance frequencies in an axial magnetic field are shown to

Since the uniform texture below threshold (Po 2 pot) is definitely stable for perturbations with _q + 0, we anticipate that small q2 will remain the most im- portant

SADDLE POINTS AND FREE ENERGY BARRIERS.- To pass between various stable and metastable patterns of either the same or different N, a free energy barrier must be surmounted at

We define a new approach to discovering important work- flows from event logs, referred to as abductive workflow mining, as the process of determining activity that would

Here we use similar individual-subject–based analyses of fMRI data to provide strong evidence for the func- tional generality of a set of regions in the frontal and parietal lobes