• Aucun résultat trouvé

LATTICE DYNAMICS OF THE CUBIC-TETRAGONAL PHASE TRANSITION IN KNb03

N/A
N/A
Protected

Academic year: 2021

Partager "LATTICE DYNAMICS OF THE CUBIC-TETRAGONAL PHASE TRANSITION IN KNb03"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221304

https://hal.archives-ouvertes.fr/jpa-00221304

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

LATTICE DYNAMICS OF THE

CUBIC-TETRAGONAL PHASE TRANSITION IN

KNb03

M. Fontana, G. Kugel, C. Carabatos

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZloque

C 6 ,

supple'ment au n o

12,

Tome

42,

de'cembre

1981

page

c6-749

LATTICE

DYNAMICS

OF

THE

CUBIC-TETRAGONAL

PHASE TRANSITION

IN

KNb03

M.D. Fontana, G.E. Kugel and C. Carabatos

University of

Metz,

IZe du SauZcy,

57045

Metz,

France

A b s t r a c t .

-

The dynamical p r o p e r t i e s i n t h e c u b i c and t h e t e t r a g o n a l phases o f KNb03 a r e d e s c r i b e d on t h e b a s i s of t h e same s h e l l model. C a l c u l a t i o n s c l e a r l y show t h e s t r o n g i n f l u e n c e of t h e i n t r a i o n i c oxygen p o l a r i z a b i l i t y on t h e f e r r o e l e c t r i c mode behaviour i n both p h a s e s .

1 . I n t r o d u c t i o n .

-

KNb03 c o n t i n u e s t o be o f a p a r t i c u l a r i n t e r e s t among f e r r o e l e c t r i c (FE) m a t e r i a l s because it undergoes t h r e e successive phase t r a n s ~ t i o n s , whose mecha- nism i s t h e o b j e c t of many c o n t r o v e r s i e s . I n e l a s t i c neutron s c a t t e r i n g measurements1 performed i n t h e t e t r a g o n a l phase (T = 245OC) r e v e a l t h e p r e s e n c e o f

a

low-frequency E(T0) zone c e n t e r mode t o g e t h e r w i t h an h i g h a n i s o t r o p y i n t h e lowest phonon branches which can be r e l a t e d t o t h e e x i s t e n c e o f s t r o n g c o r r e l a t i o n s a l o n g t h e <100> a x e s between t h e l a r g e motions a s s o c i a t e d t o t h e s o f t modes. Recent i n f r a r e d r e f l e c t i v i t y measurements c l e a r l y show t h e s o f t e n i n g of t h e lowest-frequency F l u phonon w i t h d e c r e a s i n g temperature i n t h e e n t i r e range of t h e c u b i c phase (425"C<T<910°C).

Lattice-dynamical c a l c u l a t i o n s a r e c a r r i e d o u t f o r t h e c u b i c (0; space group) and t h e t e t r a g o n a l

( c : ~

space group) phases i n o r d e r t o e x p l a i n t h e main experimental f e a t u r e s . The aim of t h i s paper

i s

t o show, f o r t h e f i r s t time, t h a t t h e d i s p e r s i o n c u r v e s f o r b o t h phases can be d e s c r i b e d s a t i s f a c t o r i l y by t h e same harmonic model. 2 . D e s c r i p t i o n of t h e model.

-

I n t h i s work f o r t h e c u b i c phase we use t h e model developped by cowley3 f o r SrTi03 w i t h a x i a l l y symmetric s h o r t - r a n g e f o r c e c o n s t a n t s

A and B between n e a r e s t neighbours (K-0, Nb-0, 0-0). I n a d d i t i o n we allow an a n i s o - t r o p y i n t h e oxygen c o r e - s h e l l coupling c o n s t a n t k(O)

as

p r e v i o u s l y suggested by Migoni e t a l . f o r b o t h SrTi03 and KTa03. Therefore t h e components of t h e t e n s o r

5

(0) i n t h e d i r e c t i o n s of neighbouring

K and Nb i o n s a r e denoted k(0-K) and k(0-Nb) respec-

t i v e l y . T h i s l e a d s t o a 15 parameters model f o r t h e c u b i c

phase (Table 1)

.

S i n c e t h e symmetry i s lower i n t h e t e t r a g o n a l phase ( F i g u r e I ) , t h e number o f parameters i s , i n p r i n c i p l e , l a r g e r t h a n i n t h e c u b i c phase. Using simple geometry argu- ments we a r e a b l e t o d e r i v e t h e parameters of t h e t e t r a g o n a l phase from t h o s e o f t h e c u b i c s t r u c t u r e . Consequently, t h e short-range c o n s t a n t s o f t h e t e t r a g o n a l phase a r e expressed

a s f u n c t i o n s of t h e l a t t i c e parameters c and a , of t h e F i g . 1 : T e t r a g o n a l u n i t c e l l

(3)

C6-750 JOURNAL DE PHYSIQUE

spontaneous i o n i c displacements 6 , measured by ~ e w a t ~ , and o f t h e s e t o f parameters A and B, a l r e a d y d e f i n e d i n t h e c u b i c phase. Furthermore, i n t h e t e t r a g o n a l phase, we d i s t i n g u i s h two k i n d s of oxygen i o n s , 0 ( 1 ) ( l o c a t e d on t h e p o l a r a x i s p a s s i n g through t h e Nb i o n ) and 0 ( 2 ) o r 0 ( 3 ) ( i n t h e p l a n e p e r p e n d i c u l a r )

.

Consequently we allow t h e parameter k ( 0 ( 1 ) -Nb) t o be d i f f e r e n t from t h e parameters k ( 0 -Nb) and k(0(3)-Nb)

.

( 2 )

3. R e s u l t s and d i s c u s s i o n .

-

For t h e t e t r a g o n a l phase, t h e d i s p e r s i o n c u r v e s a r e c a l - c u l a t e d w i t h parameters a d j u s t e d t o t h e r e s u l t s o f i n e l a s t i c neutron1 and

ama an^

s c a t t e r i n g measurements. The experimental d a t a a r e q u i t e s a t i s f a c t o r i l y reproduced by t h e model c a l c u l a t i o n s (Fig.2) e x c e p t f o r t h e A 2 (TOhpranchnearthe zoneboundary This f a i l u r e may b e due t o t h e l a r g e anharmonic coupling between a c o u s t i c and s o f t o p t i c phonons i n t h i s d i r e c t i o n . The s t r o n g a n i s o t r o p y i n t h e lowest d i s p e r s i o n branches

i s

i n t e r e s t i n g t o n o t i c e t o g e t h e r w i t h an a n t i c r o s s i n g and e i g e n v e c t o r ex- change between o p t i c and a c o u s t i c

A 2 branches, which t a k e p l a c e approximately a t 1/3

of t h e B r i l l o u i n zone edge. The s o f t E(T0) phonon a t qZO i s essentiallyckiaracterized by a l a r g e v i b r a t i o n n a l amplitude o f t h e niobium i o n r e l a t i v e t o t h e oxygen i o n loca- t e d a l o n g t h e mode p o l a r i z a t i o n d i r e c t i o n . Moreover t h e E i n s t e i n o s c i l l a t o r response o f t h i s mode i n t h e whole B r i l l o u i n zone confirms t h e presence of dynamical c o r r e l a - t i o n c h a i n s Nb-0-Nb d i r e c t e d a l o n g t h e

[loo]

and [010] axes1. This shows t h e v a l i d i - t y o f t h e l i n e a r c h a i n model f o r d e s c r i b i n g t h e s o f t mode behaviour i n p e r o v s k i t e s , a s emphasized by B i l z e t a1.7 f o r KTa03.

For t h e c u b i c phase, t h e phonon branches a r e o b t a i n e d with t h e parameter va- l u e s p r e v i o u s l y used i n t h e t e t r a g o n a l phase, e x c e p t f o r t h e coupling k(0-Nb)

(Table 1 ) . I n f i g u r e 2 t h e c a l c u l a t i o n s a r e compared w i t h t h e experimental d a t a of Nunes e t a1.8 I n a d d i t i o n t o t h e l a r g e a n i s o t r o p y i n t h e phonon d i s p e r s i o n s u r f a c e , we can a l s o n o t e t h e s o f t e n i n g of t h e lowest F l u phonon w i t h a r e l a t i v e l y s l i g h t

Figure 2 : C a l c u l a t e d d i s p e r s i o n c u r v e s o f KNb03 i n t h e t e t r a g o n a l and c u b i c phases compared w i t h experimental d a t a of Refs 1,6 and Ref. 8 r e s p e c t i v e l y . The d o t t e d c u r v e s correspond t o k(0-Nb) = 131

e2/2v

I

e

I

e 2 / v

.

.

.

.

(4)

change in the value of k(0-Nb). The other zone-centre modes are nearly insensitive

to

this variation.

At the cubic-tetragonal phase transition, therefore, the splitting and the

frequency shift6 of these phonons depend only on the geometrical effect in the force

constants. On the contrary, the large separation of the

FE

soft Flu phonon into a

soft E component (1.55 THz) and a hardened A1 (8.35 M z ) essentially originates from

a k (0 -Nb) value larger than

k

(0

-Nb)

(Table

1)

.

(1)

(2)

All these results emphasize the role of the intraionic oxygen polarizability

in the phase transition mechanism of KNb03. This polarizability is dynamically enhan-

ced by the hybridization of oxygen 2p states with niobium 4d states9 in the directdn

of the chain like coupling Nb-0-Nb. This leads to a softening of the lowest cubic

Flu(TO) and tetragonal E(TO1 modes. At the phase transition, the disappearance of

the [001] correlation due to the asymmetry of the Nb-0-Nb bound is related to the

abrupt change in the value of k(0-Nb) along the polar direction, and therefore to

the stabilization of the ferroelectric Al(T0) component.

In order to specify the behaviour of the oxygen polarizability, calculations

with a model including the temperature dependence of the soft mode are actually in

progress.

Acknowledgments

The authors are qrateful to Prof. M. Bilz and Drs W. Kress and

R.

Migoni for many

fruitful discussions, and also to Dr G. Metrat for providing the excellent samples

used in the experiments.

References

:

1. M.D. Fontana, G Dolling, G.E. Kugel and C. Carabatos, Phys. Rev.

*,

3850

(1979)

M.D. Fontana, G. Metrat, J.L. Servoin and F. Gervais, Fifth International

Meeting on Ferroelectricity,

submitted to Ferroelectrics (1981)

R.A. Cowley, Phys. Rev.

E,

981 (1964)

R.

Migoni, H. Bilz and D. BHuerle, Phys. Rev. Lett.

37,

1155 (1976)

A.W. Hewat, J. Phys. C

6,

2559 (1973)

M.D. Fontana, G.E. Kugel, G. Metrat and C. Carabatos, Phys. Stat. Sol. (b)

103, 211 (1981)

-

H. Bilz, A. Bussmann, G. Benedek, H. Biittner and D. Strauch, Ferroelectrics

25

,

339 (1980)

Références

Documents relatifs

XRD patterns of the Fe-8Nb-30B powders mixtures as a function of milling time show a progressive broadening of the as-received powders diffraction peaks due to the refinement of

As the milling time increases, the intensity of the Bragg peaks for the obtained solid solution decreases and the diffracted peaks show considerable broadening within

amplitude modes in the biaxial phase mix the components of biaxiality and birefringence of the order parameter, the critical (quasi-biaxial) mode presenting

We analyse in detail the phase transforma- tion for two 512 molecule clusters by following the change of molecular orientations as a function of time of the one-third

Aerogels have been obtained ranging from 1 to 50% for the molar ratio Nb/Si: The synthesis is realized from NbC15 in CH30H and prehydrolysed TMOS solution, followed

the cubic to tetragonal phase transitions associated with octahedron rotations must be due to soft modes at the R point of the cubic Brillouin

Investigation of the mosaic structure of RbI-single crystals in the NaCl-phase near the transition point to the high pressure CsCl-phase.G. INVESTIGATION OF THE MOSAIC STRUCTURE OF

Equation (12) has all the features required to describe a second-order lamellar-to-cubic phase transition. the average principal curvatures of the bilayer. However,