• Aucun résultat trouvé

Determination of iron redox

N/A
N/A
Protected

Academic year: 2022

Partager "Determination of iron redox"

Copied!
20
0
0

Texte intégral

(1)

Quantification of iron redox ratios in silicate glasses and melts by

Raman spectroscopy

B. Cochain1,2, D. R. Neuville1, V. Magnien1,2, G. S. Henderson4, and P. Richet1

1Physique des Minéraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex 05, France E-mail : cochain@ipgp.jussieu.fr

2SCDV-LEBV, CEA Valrhô, Centre de Marcoule, 30207 Bagnols-sur-cèze, France

3Laboratoire Structure et Propriété de l’Etat Solide, Université de Lille 1, 59655 Villeneuve d’Ascq, France

4 Dept of Geology, University of Toronto, Toronto, Canada

(2)

Corning, Inc.

Determination of iron redox equilibrium

Geological interest

Iron, most abundant transition element

Th Staudacher IPGP

(3)

Determination of iron redox equilibrium

Industrial interest : - glass production

- nuclear waste storage glass

(4)

Determination of iron redox

Lack of in situ data

– Knowledge on iron redox kinetics

=>XANES spectroscopy (limited access)

• Raman spectroscopy

– Calibration to quantify iron redox ratios – In situ experiments possible

– Ready access

(5)

Compositions investigated

SiO2 Al2O3 B2O3 Fe2O3 FeO CaO MgO Na2O Li2O

Pyroxenes based

Pyrox 53.17 12.71 19.85 14.27

PyrNa 52.53 12.56 17.16 12.33 5.42

PyrLi 54.04 12.92 17.65 12.69 2.69

Borosilicates

NB67.18Fe1 64.78 20.44 1.16 13.63

NB67.18Fe5 61.78 19.49 5.74 12.99

NB67.18Fe10 58.07 18.32 11.39 12.22

Alumino-borosilicate

FAMA 46.5 10,00 18.5 5,00 20,00

• Synthesis under different oxygen fugacities

≠ redox ratios

• Iron redox ratios :

• Wet chemical analysis

• Mössbauer spectroscopy

• Electron Microprobe analysis

(6)

Experimental conditions

Need to focus on the surface of the glass

Effect of focus on Raman spectra

With iron-bearing glasses : Strong decrease in intensity

with the focus depth due to absorption

0 2000 4000 6000 8000 10000

200 400 600 800 1000 1200

Bas-O Bas-30 Bas-60

Intensity, a.u.

Wavenumber, cm-1

(7)

0 1 104 2 104 3 104 4 104 5 104

0 200 400 600 800 1000 1200 1400 1600

NB67.18

Intensity

Wavenumber cm-1

0 2 104 4 104 6 104 8 104 1 105 1.2 105 1.4 105

0 200 400 600 800 1000 1200 1400 1600

'NB67.18'

Intensity

Wavenumber cm-1

Raman spectra analysis

Raman spectra correction and

normalization

Raman spectra

Baseline subtraction

Normalization

Long correction (1977) Avec R = f(ν0, et T)

!

I = Iobs " R 0

2 104 4 104 6 104 8 104 1 105 1.2 105 1.4 105

500 1000 1500

'NB67.18' baseline

Intensity

Wavenumber cm-1

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

500 1000 1500

'NB67.18'

Normalized Intensity

Wavenumber cm-1

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

500 1000 1500

'NB67.18'

Normalized Intensity

Wavenumber cm-1

0 1 104 2 104 3 104 4 104 5 104

0 200 400 600 800 1000 1200 1400 1600

NB67.18

Intensity

Wavenumber cm-1

(8)

Evolution of Raman spectra with mol% Feo

• Shift to lower frequency of the 980 cm -1 band => [4]Fe3+-O bonds shared with Si

mol% FeO

With increasing FeO content :

• Apparition and increase of a band at 980cm-1 in borosilicates

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

500 1000 1500

Normalized Intensity

Wavenumber cm-1

Case of borosilicates

Fe2O3/Fetot = 0,85

0 1 5 10

FeO content

(9)

0 0.0004 0.0008 0.0012 0.0016

850 900 950 1000 1050 1100 1150 1200 1250

Normalized Intensity

Wavenumber cm-1

Fe2O3/Fetot 0.85 0.78 0.57

Evolution of Raman spectra with iron redox ratio

With increasing Fe3+content:

• Evolution of the 980 cm-1 band

• Clear changes in Raman spectra for a given composition

0 0.0004 0.0008 0.0012 0.0016

500 1000 1500

NB67.18Fe5 NB67.18Fe5R17 NB67.18Fe5R5

Normalized Intensity

Wavenumber cm-1

Fe2O3/Fetot 0,85 0,78 0,57

borosilicates : NB67.18Fe5

(10)

0 0.001 0.002 0.003 0.004

200 400 600 800 1000 1200 1400

Normalized intensity

Wavenumber cm-1

Evolution of Raman spectra with iron redox ratio

Fe2O3/Fetot 0.99

0.83 0.82 0.56 0.27 0.17 [4]Fe3+

PyrNa

With increasing Fe3+ content:

• Evolution of the 915 cm-1 band in based pyroxenes

• Clear changes in Raman spectra for a given composition

(11)

0 0.001 0.002 0.003 0.004 0.005

200 400 600 800 1000 1200

NS2NS2Fe10 NS2Ti10

Normalized intensity

Wavenumber cm-1

Validity of the method : band assignement

Distinct bands appear for Ti and Fe :

- around 885 cm-1 for NS2Ti10 => attributed to Ti (Mysen & Neuville,1995, Reynard & Webb, 1998)

=> Ti in five fold coordination according with XANES and Raman (Henderson & Fleet, 1995, Farges et al 1996, Reynard & Webb, 1998)

NS2, NS2Ti10 , NS2Fe10

- around 920 cm-1 for NS2 [4]Fe3+10 (Mysen et al.,1985; Magnien et al., 2006)

[5]Ti

[4]Fe3+

(12)

1.5

1.0

0.5

0.0

x10-3

1200 1100

1000 900

Evolution of Raman spectra with iron redox ratio

Deconvolution of Raman spectra Mysen et al. (1982) :

Intensity, position, width : unconstrainded and independent parameters

Bands of

Bands of QQn n species species (T(T = Si= Si, Al), Al)

BO

BO BO BO

T

QQ44

NBO

BO BO BO

T

QQ33

NBO

NBO BO TBO

QQ22

NBO

NBO BO TNBO

QQ11

NBO

NBO NBO TNBO

QQ00

NB67.18Fe5 Increasing [4]Fe3+

[4]Fe3+

(13)

1.5

1.0

0.5

0.0

x10-3

1600 1400

1200 1000

800 600

400 200

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

x10-3

1600 1400

1200 1000

800 600

400 200

Evolution of Raman spectra with iron redox ratio

Proportions of diverse structural entities:

Area ratio of individuel bands (Mysen et al.,1892; Mysen et al.,1984)

Fe2O3/Fetot= A([4]Fe3+)/Atot

Calibration equation Fe2O3/Fetot= 6 *A([4]Fe3+)/Atot - 0,34

Alumino-boro-silicate : FAMA

Fe2O3/Fetot = 0,83 Fe2O3/Fetot = 0,27

Fe3+ Fe3+

(14)

1.5

1.0

0.5

0.0

x10-3

1200 1100

1000 900

Evolution of Raman spectra with iron redox ratio

borosilicates : NB67.18Fe5

Proportions of diverse structural entities :

Area ratio of individual bands (Mysen et al.,1892; Mysen et al.,1984)

[4]Fe3+

Fe2O3/Fetot= A([4]Fe3+)/Atot 0.55

0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

NB67.18Fe5

y = -0.78775 + 2.3539x R= 0.99523

Fe 2O 3/Fe tot

Area970/ Areatot

(15)

0 0.2 0.4 0.6 0.8 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

NB67.18Fe10 NB67.18Fe5

FAMA PyrNa Pyrox

Fe 2O 3/Fe tot

Area (Fe3+)/ Areatot

Calibration :

for each composition => need to know two redox ratios

(ideally the most reduced and most oxidized) and after we can determine intermediate redox states

Evolution of Raman spectra with iron redox ratio

(16)

Magnien

Magnien et al. (2004) et al. (2004) Chem Geol Chem Geol et et Magnien Magnien et al. (2006) J et al. (2006) J Nucl Nucl Mat; Mat; Cochain Cochain et al., (2008)et al., (2008)

0 0.2 0.4 0.6 0.8 1

Kress and Carmichael Wet Chemical

Microsonde XANES Raman

0 0.2 0.4 0.6 0.8 1

Fe3+ / Fe tot (autres techniques)

Fe3+/ Fe

tot (Spectroscopie Mössbauer)Mössbauer spectroscopy

F e

3+

/F e

tot

(17)

Evolution of Raman spectra with iron redox ratio

=> follow all other redox, and especially redox variation in T

0 0.2 0.4 0.6 0.8 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

NB67.18Fe10 NB67.18Fe5

FAMA PyrNa Pyrox

Fe 2O 3/Fe tot

Area (Fe3+)/ Areatot

(18)

Application : In situ determination of Iron redox ratio

-20 0 20 40 60 80 100

700 800 900 1000 1100 1200 1300

RT30s 60s 90s120s 150s180s 240s300s 600s900s 1200s 1800s 3720s

PyroxNa750

Normalized Intensity (a.u.)

Wavenumber (cm-1)

PyrNa

At 750°C => evolution of the 915 cm-1 band => progressive oxydation

(19)

Conclusion

• Clear changes in Raman spectra visible with the

evolution of iron redox ratio for a given composition

• Gaussian band around 950 cm-1 assigned to the

vibration of [4]Fe3+-O bonds, and not to T-O bonds (T= [4]Ti,

[5]Ti or all other network formers)

• Empirical calibration between the area ratio of the bands in the Raman spectra and wet chemical analysis

• In situ determination of iron redox ratio

(20)

Thank you for your attention

Références

Documents relatifs

Sont résumées ici les actions entreprises ou auxquelles participent avec ses partenaires les observatoires volcanologiques et sismologiques des Antilles de l’IPGP,

Laboratoire des Instruments et Systèmes d’Ile-de-France (LISIF – EA 2385) UPMC / LISIF, Case courrier 252, 4 Place Jussieu, 75252 Paris CEDEX 05 Tél. Nombre de crédits :

Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Boîte 121 4, Place Jussieu, 75252 – Paris Cedex 05. Intégration d'une

Université Pierre et Marie Curie (Paris 6) Place Jussieu 75252 Paris Cedex 05 FRANCE Mise en place d'une expérience de fentes d'Young utilisant des paires. de nanofentes

Laboratoire PECSA – Equipe colloïdes inorganiques -UMR 7195 4 place Jussieu 75252 PARIS Cedex 5. Développement d'un dispositif de mesure de susceptibilité magnétique alternative

"Modélisation de l’écoulement de deux fluides non miscibless dans les milieux fracturés : application à l’injection d’eau à grande profondeur et à la recherche d’eau

Since rational languages are closed under reversal, the rational languages are also exactly the languages accepted by finite codet, ermin~stic automcc~a (an automaton

Two apparently disconnected applications of the tropical semirings are presented: the Burnside type problems in group and semigroup theory, in Section 3 and decidability problems