• Aucun résultat trouvé

Toward a computational and experimental model of a poly-epoxy surface

N/A
N/A
Protected

Academic year: 2021

Partager "Toward a computational and experimental model of a poly-epoxy surface"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01105225

https://hal.archives-ouvertes.fr/hal-01105225

Submitted on 20 Jan 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Toward a computational and experimental model of a

poly-epoxy surface

Thomas Duguet, Camille Bessaguet, Maëlenn Aufray, Jérôme Esvan, Cédric

Charvillat, Constantin Vahlas, Corinne Lacaze-Dufaure

To cite this version:

Thomas Duguet, Camille Bessaguet, Maëlenn Aufray, Jérôme Esvan, Cédric Charvillat, et al.. Toward

a computational and experimental model of a poly-epoxy surface. Applied Surface Science, Elsevier,

2015, vol. 324, pp. 605-611. �10.1016/j.apsusc.2014.10.096�. �hal-01105225�

(2)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Identification number: DOI : 10.1016/j.apsusc.2014.10.096

Official URL:

http://dx.doi.org/10.1016/j.apsusc.2014.10.096

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 12279

To cite this version:

Duguet, Thomas and Bessaguet, Camille and Aufray, Maëlenn and Esvan,

Jérôme and Charvillat, Cédric and Vahlas, Constantin and Lacaze-Dufaure,

Corinne Toward a computational and experimental model of a poly-epoxy

surface. (2015) Applied Surface Science, vol. 324 . pp. 605-611. ISSN

01694332

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

(3)

Toward

a

computational

and

experimental

model

of

a

poly-epoxy

surface

Thomas

Duguet

,

Camille

Bessaguet,

Maëlenn

Aufray,

Jérôme

Esvan,

Cédric

Charvillat,

Constantin

Vahlas,

Corinne

Lacaze-Dufaure

CIRIMAT,CNRS–UniversitédeToulouse,4,alléeEmileMonso,BP-44362,31030ToulouseCedex4,France

Keywords: Epoxy Amine Surfacescience AFM XPS DFT

a

b

s

t

r

a

c

t

Amodelpoly-epoxysurfaceformedbythereactionofDGEBAandEDAisstudiedbythecombination ofexperimentsandDFTcalculations.Aspecialsynthesisprotocolispresentedleadingtotheformation ofasurfacethatissmooth(Sa<1nm),chemicallyhomogeneous,andthatpresentsalow-defectdensity (0.21mm−2),asshownbyAFMcharacterizations.Then,XPSisusedforthedeterminationoftheelemental andfunctionalgroups’surfacecomposition.DFTallowstheidentificationandassignmentofindividual bondscontributionstotheexperimental1score-levelpeaks.Overall,wedemonstratethatsuchamodel sampleisperfectlysuitableforauseasatemplateforthestudyofpoly-epoxysurfacefunctionalization.

1. Introduction

Poly-epoxypolymersarewidelyimplementedinthreefamilies ofapplications:adhesives,paints,andcompositematerials[1].The latters,suchasepoxy/Cfiberscompositesareincreasinglyfoundin awealthofdevicesandpartsinthefieldsofleisure(skis,rackets, boats,golfclubs,etc.),ortransports,aeronauticsandspace(cars, aircrafts,satellites,etc.),tonamebutafew.Thesecomposite mate-rialspossessstiffnessandYoung’smodulusthatcomparewellwith metallicalloysbutwithamuchlowerchemicalreactivityand den-sity.Therefore,theyallowmassreductionandalargeincreaseof partsdurability.

Replacementofmetallic or ceramicparts bypolymersoften requiressurfacefunctionalizationinordertoacquireoptical, elec-trical,magnetic,biomedical,esthetic,orchemicalproperties.The maindrawbackwhenitcomestocoatortograftthesurfaceof polymer-basedcompositescomesfromtheverylowsurfaceenergy of such materialsoncepolymerized.This leadstoa poor wett-abilityrenderingpaintingorgluingdifficult,andresultinginpoor adhesion.Thesurfaceenergy ofpoly-ether etherketone (PEEK) orpoly-epoxyisapproximately40–50mJ/m2 tobecomparedto

∗ Correspondingauthor.Tel.:+330534323439.

E-mailaddress:thomas.duguet@ensiacet.fr(T.Duguet).

approximately500mJ/m2foraluminum.Moreover,thepolar

com-ponent(duetoHbonding)isaslowas6–7mJ/m2whichinhibits

theuseofsimplefunctionalizationprotocols[2–4].Hence,alarge number ofparticularprotocolshasbeendescribed orpatented, wheretheincreaseofreactivityandroughnessissought.A selec-tion amongst the wealth of publications can be foundin Refs.

[5–16].

Such protocols or methods that have been used until now remainempiricaldespitetheresultingimprovementofthetargeted properties and/or the extension of thedurability of the mate-rial. Therefore,the needexists toaccess thebasicmechanisms whichcontrolthesurfacefunctionalizationofpolymersandto con-trolthemsoastoachieve satisfactoryfunctionalpropertiesand adhesion.Bysubscribinginthis perspective,ourapproachaims atdescribingthenucleationandgrowthofmetallicthinfilmson polymersurfaces,by usinganintegrated methodwhereallthe elementarymechanismsaretakenintoaccount.Thefirststepin this frame–objectof thepresent study–is toobtaina model ofthepolymersurface,bothexperimentalandtheoretical,atthe atomic/molecular level. Such a model will serve as a template forfurthersurfacetreatments,includingpretreatments, molecu-largrafting,orapplicationoffilmsandcoatings.Itisworthnoting that,totheauthors’knowledge,nosuchatheoreticalsurfacemodel exists,mostlikelybecauseofstructuraldisorderandalackof exper-imentalinputs.

(4)

Regardingourobjectives,specificationsofsuchanexperimental modelpolymersurfaceinclude:

•A100%polymerizationaftercuringtobecomparablewith calcu-lations,wheretotalpolymerizationisassumed.

•Alowsurfacearithmeticroughness,namelyRa<1nmtomake

surethatwecanobservenano-islandsornano-clustersofagiven thinfilm.Otherwise,theywouldbehinderedbyroughness. •Averylowdefectdensitytoavoidheterogeneousnucleationat

defects.

•Chemical homogeneityto make surethat calculationmodels wherehomogeneityisassumedarerepresentativeofthetracked chemicalreactivity.Alsotomakesurethatchemicalcomposition isindependentontheanalyzedsurfaceareacorrespondingtoa givenprobesize.

Ourexperimentalapproachisbasedonthemethoddescribed in [17,18] for forming model poly-epoxy surfaces. It consists in the polymerization of the poly-epoxy in an Ar gloves box at ambient temperature for at least 24h, followed by a post-curingatelevatedtemperature(polymer-dependent).Guetal.[17]

synthesizesamplesfromastoichiometricmixtureofDGEBA+ 1,3-di(aminomethyl)-cyclohexane,withasmallamountoftoluenefor decreasingviscosityandfavoringanhomogeneousstirring(7min). Samplesarethenstoredfor24hatambienttemperature,and post-curedfor2hat130◦Cinanairfurnace.Characterizationsofthe

freesurfacesareperformedbyatomicforcemicroscopy(AFM)in Tapping®mode.Surfaceroughnessandphasecontrastare

deter-mined.ItisshownthatsamplessynthesizedinanArgloveboxshow alowersurfaceroughnessthanthosepreparedinambient condi-tions,andthattheyarehomogeneousincomposition.Kansowet al.[18]useasimilarmethodwiththeaimofcharacterizingthe for-mationofAl,Cu,Ag,andAufilmsbyphysicalvapourdeposition. DGEBAreactswithdiethylenetriamineinlowexcessat55◦Cunder

controlledatmosphere,beforeitisleftfor48hatambient temper-ature.Atthisstep,polymerizationrateisabout75%.Completionis achievedbypostcuringfor1hat120◦C.Surfaceroughnessisabout

1nm.

Theoretically, our greatest challenge is to circumvent the descriptionof thedisordered/amorphous structure andto limit thenumberofatoms.Tothatend,westartwithasmall macro-moleculemadefromthereactionofbisphenolAdiglycidylether (DGEBA)withethylenediamine(EDA) (61atoms).Even for this moderately complex system, the analysis of the experimental core-levelXPSspectrum isnot trivialand canleadtoincorrect conclusions.Thehelpofaccuratetheoreticaltoolsisthusneeded anddensity-functionaltheory(DFT)isusuallyusedforcomputing XPScore-levelshiftsinthecaseofsmallorganicorinorganic sys-tems.Theapplicationofthistheoreticalmethodtolargesystems, e.g.polymers,isachallengebutitisestablishedthatexperimental spectraaredirectlyrelatedtotheelectronicstatesobtainedfrom calculationsonsmallermodelmolecules.Forinstance,Endoetal. presentedacomprehensiveanalysisoftheXPSC1sspectrafor poly-mersusingthenegativeoftheenergyofmolecularorbitals[19,20]. Morerecently,theyusedthe‘transitionstate’theory[21]forthe calculationofthecoreelectronbindingenergies[22,23]. Follow-ingthisworkandinafirstapproach,wecomputethemolecular orbitalsenergiesonmodelmoleculesaspreliminaryinputforthe assignmentofexperimentalXPSspectraoftheinvestigated poly-mer.

WecomplementtheseresultsinthedifferentDGEBA+EDA sys-tembyimplementingamoredetaileddescriptionofsurfacesby AFMandXPScharacterizationscomplementedbyDFTcalculations. Thepaperisorganizedasfollows.Experimentalandcomputational

detailsaregiveninSection2,followedbyresultsinSection3. Con-clusionsandperspectivesarepresentedinSection4.

2. Experimentalandcomputationaldetails

2.1. Synthesis

We use a stoichiometric mixture of DGEBA (DER 332, Dow Chemicals, n=0.03) and EDA (analytical grade, purity>99.5%, SigmaAldrich).ThemassofDGEBA(mDGEBA)isfixedto5g.The

massofEDAmEDAisthusdeterminedfollowingEq.(1).

mDAE=fDGEBA

fDAE

×MDAE×mDGEBA MDGEBA

=0.43g (1) where MDGEBA is themolar mass(348.52g/mol) ofthis DGEBA

and fDGEBA is its functionality (2), and MEDA is themolar mass

(60.10g/mol)andfDAEisthefunctionality(4)oftheEDA.Weassume

thatnoetherificationoccurs.

Themixtureisthenmechanicallystirred(inanArglovebox whenspecified)for7minbeforeitispouredintodifferentmolds ordepositedasathindropletonaluminumfoil.Polymerizationis thenallowedfor48hatambienttemperature,followedbyapost curingof2hat140◦C.Forroughnesscomparison,weconsiderthe

followingpoly-epoxysurfacesformed:

-Atfreesurfaces,surfacesref.eitherepoxyAirorepoxyArgon.

-Attheinterfacewitha1cm×1cm×0.2cmsiliconemold,itself moldedonaSiwaferfortransferringatomicflatness.Interfaces ref.SiOSi/epoxyAirorSiOSi/epoxyArgon.

-Attheinterfacewitha1cm×1cm×0.2cmsiliconemold,itself molded on polystyrene (PS). Interfaces ref. SiOPS/epoxyAir or

SiOPS/epoxyArgon.

-Bymechanicalpolishinguptoa¼mmwithdiamondpaste. Sur-facesref.polishedAir.

Interfaces formedin the same molds but in air or Ar show different roughnesses (shown hereafter). This is the reason whySiOSi/epoxyAir andSiOSi/epoxyArgon,andSiOPS/epoxyAir and

SiOPS/epoxyArgonaredifferentiated.

2.2. Bulkcharacterizations

Differentialscanningcalorimetry(DSC)isusedforthe determi-nationoftheglasstransitiontemperature(Tg)ofthepoly-epoxy

underinvestigation.WeuseaDSC204PhoenixSeries(NETZSCH) coupledwithaTASC414/4controller.Theapparatusiscalibrated againstmeltingtemperaturesofIn,Hg,Sn,Bi,andZn,applyinga +10◦/mintemperatureramp.Samplesareplacedinaluminum

cap-sules.Massismeasuredwithanaccuracyof±0.1mg.Wechooseto reporttheonsetTg-onsettemperature.

Fourier transform infrared spectroscopy, FTIR (Frontier, PerkinElmerequippedwithaNIRTGSdetector),isperformedin transmissioninthe4000–8000cm−1range.16scansarecollected

for each analysis witha resolution of 4cm−1.We monitorthe

characteristic epoxy band (combination band of the –CH2 of

theepoxy group) at 4530cm−1 withincreasing polymerization

time,andafterpostcuringtreatment.Thereferencebandisthe combinationbandofC Cwitharomatic CHat4623cm−1 [24].

Peakareasarethenusedforcalculatingtheconversionrate(XeNIR)

ofepoxygroups,followingEq.(2). XeNIR=1− Aepoxy/Areference



t=t Aepoxy/Areference



t=0 (2)

whereAepoxy andAreference arethepeak areasoftheepoxyand

(5)

Fig.1.Modeldimer(1DGEBA+1EDA).

2.3. Surfacecharacterizations

Surface roughness and viscoelastic homogeneity are deter-mined by AFM (Agilent Technologies model 5500) in ambient conditions.Theformerisperformedincontactmodewithtipsof spring constantkapprox. 0.292N/m,whereas thelatteris per-formedinTapping® modewithtipsofk=25–75N/m(AppNano).

Scanningrateis2mm/s.Imagesareprocessedwiththesoftwares Gwyddionversion2.19[25]andPicoImage(AgilentTechnologies). SurfaceroughnessparametersfollowtheGeometricProduct Spec-ificationsISO25178.Saisthearithmeticroughness,Sqistheroot

meansquareroughness,andSzisthetotalroughness(maximum

peak-to-valley),determinedbyprocessingtheAFMimages. XPSanalysisisperformedusingaThermoelectronKalpha appa-ratus.PhotoemissionspectraarerecordedusingAl-Karadiation (h=1486.6eV)fromamonochromatizedsource.TheX-rayspot diameter onthe sample surface is 400mm. The pass energy is fixedat30eVfor narrowscan and170eVforsurveyscans.The spectrometerenergycalibrationwasperformedusingtheAu4f7/2

(83.9±0.1eV)and Cu2p3/2 (932.8±0.1eV)photoelectronlines.

ThebackgroundsignalisremovedusingtheShirleymethod.Atomic concentrations are determined from photoelectron peak areas usingtheatomicsensitivityfactorsreportedbyScofield[26]and takingintoaccountthetransmissionfunctionoftheanalyzer.This functionwasdeterminedatdifferentpassenergiesfromAg3dand AgMNNpeakscollectedonasilverstandard.Finally,photoelectron peaksareanalyzedanddeconvolutedusingaLorentzian/Gaussian (L/G=30)peakfitting.

2.4. Calculations

WeusedthemodelmoleculeshowninFig.1thatresultsofthe additionofoneDGEBAandoneEDAmolecule.

The geometry of the model molecule was optimized at the B3LYP/6-31G* level of theory using the Gaussian 03 software package[27].

3. Results

Bulkcharacterizationsareperformedonsamplespolymerized underambientconditions.DSCisusedforthedeterminationof

Tg-onset.Temperaturerampsaredoubledforeachsampleinorder

toensurethatthereisnophysicalagingandtoverifythat polymer-izationiscomplete.ForallsamplesTg-onset=113±1◦C.Weassume

thatTg-onsetisnotdifferentafterpolymerizationintheArglovebox

(nobulkcharacterizationforthesesamples).

Wethenmonitorthepolymerizationratewithreactionduration byfollowingthegradualdecreaseoftheepoxypeakareabyFTIR, andcalculatingtheconversionrateusingEq.(2).Resultsareshown inFig.2.

Experimentsareperformedfrom15minto11520min(8days) aftermixingofthereactants.Theconversionrateincreasesslowly in the first hours and reaches an asymptote between 24 and 48h.Themaximumconversionatambienttemperatureis84%for

t≥48h.Theonlymeanforachievingacompletepolymerization is to set the sample at a temperature above its glass transi-tion.Thepostcuringtreatment(140◦C,2h)leadstoacomplete

Fig.2.Epoxygroupconversionrateasafunctionofpolymerizationoveran8-day periodoftime.Dashedlineindicatesthatpolymerizationiscompleteafterpost curingat140◦Cfor2h.

polymerization(>98%,takingintoaccounttheFTIRspectrometer sensitivity)illustratedbythedashedlineinFig.2.

Thedifferentsurfacesthatweconsiderarethencharacterizedby AFMover3mm×3mmsurfaceareaimagesinordertodetermine roughnessparameters.ResultsaresummarizedinFig.3.

Roughnessofthefreesurfacesisreduced bythreeordersof magnitudewhenpolymerizationisperformedintheArglovebox. Under Ar, Sa and Sq do not exceed 1.5nm, except for sample

SiOSi/epoxyArgon,forwhichthesetwovaluesare4.9nmand6.8nm,

respectively.ThelatterisnotacceptablefortheAFMobservation of metallicnanoislands or clusters that wetarget, in therange of1–20nmindiameter[18].Inordertotransferatomicflatness tothemolds,andthentotheSiOSi/epoxysurfaces,wemold

sili-conemoldsagainstSiwaferoragainstPS.Intheseconditions,the lowestroughnessisagainobtainedwhenthesurfacesareformed underAratmosphere,andissimilarbetweenSiandPSprocesses. Somehow,atmospherealsoplaysaroleregardingroughnessatthe substrate/polymerinterface.However,aroughnessaslowasatthat ofthefreeepoxyArgonsurfaceisnotachieved,indicatingthat

mold-ingintheseconditionsisnotwellsuitedforourpurpose.Finally,the roughnessparametersofthepolishedsurfacearequitelowbutAFM imagesshowmanyscratcheswherenucleationmaypreferentially occur.Sincewewanttoavoidheterogeneousnucleationinorder tocomparenucleationwithadsorptionenergiesatthemolecular level,polishingisabandoned.

Fig.3.Roughnessparametersdeterminedbyimageprocessingon3mm×3mm sur-facescharacterizedbyAFMincontactmode.Apolynomialofdegree2isusedin ordertocorrectimagecurvature.

(6)

Fig.4.AFMimagesoftheepoxyAir(aandb)andepoxyArgon(candd)surfaces.Leftcolumnshowstopographicimagesafterapolynomialofdegree2correction,andright

columnshowsdeflectionimages(orphasecontrast).

Fig.4showsaselectionofAFMimagesoftheepoxyAir(aand

b)andepoxyArgon(candd)surfaces,obtainedinTapping®mode.

Rightcolumn(Fig.4aandc)correspondstothesurfacetopography andleftcolumn(Fig.4bandd)tothedeflectionofthecantilever,i.e. tothephasecontrast.WhereasTapping®modeleadstodifferent

apparentvaluesofroughnesscomparedtocontactmode, rough-nessisagainlowerontheepoxyArgonsurface,ascanbenoticedon

thecontrastscale,ontheright-handsideoftheimages.However, bothsurfacesarequiteflatandexhibitaverylowphasecontrast. Themeasureofphasecontrastprobesthelocalviscoelastic prop-ertiesthatweassumetobeanindicationofchemicalhomogeneity inthenanometerrange.Finally,Fig.4canddischosenonpurpose inordertoillustratethepresenceofdefects,intheformofapprox. 50nm-in-diametertroughs.ThedensityshowninFig.4isnot rep-resentative(overestimated).Athoroughcountoveratotal90mm2 surfaceareagivesadefectdensityequalto0.21mm−2.

EpoxyArgonisselectedasthebestcandidateforan

experimen-talmodelsurfaceofpoly-epoxy.Thus,weinvestigateitssurface chemicalcompositionbyXPSandusetheoutputofDFT calcula-tionsforpeakidentificationsandbindingenergyassignments.A firstobservationismadeonfreesurfacesofsamplessynthesizedin siliconemolds(i.e.thatwerenotincontactwiththemold).Survey spectrashowastrongSi2pcontributionat101.8±0.1eV,whichis characteristicofsiloxanegroups[28].Itrepresentsalargeamount ofadsorbedsiliconeonthesurface(approx.8at.%).Consequently, epoxyArsamplesarenowsynthesizedonAlfoil(andsiliconeis

banishedfromtheglovebox).Thesignificantthicknessofthe poly-epoxycoupons(1mm)ensuresthatAldoesnotdiffuseuptothe freesurface,sincethemeasuredinterphasesdonotexceed300mm

[29].

TheXPSsurveyspectrumofepoxyArgon surfacespolymerized

onaluminumfoilshowneitherSinorotherelementsthantheone expectedinthepolymerorfromadsorbedmoleculesfromtheair. Atomiccompositionofthesurfaceisdeterminedby1speaksfitting, repeatedatdifferentx–ycoordinatesonthesamplesurface.We determinethefollowingsurfacecomposition:

81.5at.%C,1.8at.%N,and16.7at.%O

Theresult is slightly differentfromthebulk composition of the poly-epoxy, where the basic motif is made of 2 DGEBA (2×21C+2×4Oatoms)moleculesfor1EDA(2C+2Natoms) molecule,resultinginabulkcompositionof:81.5at.%C,3.7at.%N, and14.8at.%O.Whereasthecompositionofthesurfaceshowsa similarcarboncontent,itisricherinoxygenandpoorerin nitro-genthanthebulk.Thisisanindicationofamildsurfaceoxidation thatmayoccurinthecourseofpost-curing,whenpolymerization isnotyetcomplete(post-curingstartsat85%polymerizationrate). Itisquestioningthoughthatthecarboncontentisapparentlynot affectedaswell.

Inordertofurtherinvestigatethesurfacechemistryofthemodel poly-epoxysurface,molecularorbitalsextracteddirectlyfromDFT resultsarestudied.Table1showsthebindingenergiesof1s elec-tronsinvolvedinthedifferentbondsofthemodeldimer.Thedimer ismadeof1DGEBAand1EDAthatvirtuallybondedthrough1 epoxy/1amineprotonreaction.Therefore,thereareafew discrep-anciesbetweentheexperimentalfully-polymerizedsamplesand themodeldimer.Theyareenlightenedbythegraycoloringofthe linescorrespondingtosecondaryandprimaryamines(allshouldbe ternary)andtotheepoxygroup(nomoreepoxyringsinthe100% polymerizedsample).Thebindingenergiesshownarethe nega-tivevalueofthemolecularorbitalsenergies.Therefore,absolute valuesarenotcorrectbecause(i)XPSbindingenergiescorrespond toamulti-stepprocesswherephotoelectronsinteractwiththe cre-atedholes,withthematrixandwiththeirimagebeforeandafter extractionintovacuum,(ii)temperatureisnotconsidered,(iii)of thelimitationofKohn–Shamorbitalenergiesasreflectinginitial stateeffects[30].Nevertheless,chemicalshiftscanbeusedifone considerthelatterprocessesconstantinagivenenergydomain.

Aminimummeanchemicalshiftof0.2eVistechnically observ-ablewithourXPSapparatus.Therefore,wediscriminatephenyl groupsfrom CH3groups,andC OH&partoftheC O Cbonds

fromtheotherC O Cbonds.ThankstothesupportofDFTresults, weuse5contributionstotheC1speakdeconvolutionand2 con-tributionstotheO1speakdeconvolution.ThefinefittingoftheC 1sandO1sspectraareshowninFig.5.N1sspectrumisnotshown becauseitexhibitsonlyonecontributionforC Nbondscentered

(7)

Table1

MolecularorbitalsinvolvingO,N,andC1satomicorbitalsfromDFTcalculationsonthemodelDGEBA–EDAdimer.Correspondingelectronicbindingenergies((−1)×orbital energy),andmeanchemicalshiftsforthegivenbond.Grayedcellsdonothaveacounterpartintheexperimentalfully-reticulatedpoly-epoxy.

Molecularorbital Bindingenergy(Hartree) Bindingenergy(eV) Meanchemicalshift(±0.1eV) Bond

O1s −19.177 521.8 +0.8 C O C

−19.170 521.6 C O C

−19.165 521.5 +0.6 Epoxy

−19.145 520.9 Ref. O H

N1s −14.324 389.8 +0.3 Secondaryamine

−14.316 389.5 Ref. Primaryamine

C1s −10.249 278.9 +2.0 C O C −10.249 278.9 C O C −10.246 278.8 C O C −10.244 278.7 C O C −10.239 278.6 +1.8 C O C −10.239 278.6 C O C −10.238 278.6 C OH −10.212 277.9 +1.0 C N −10.209 277.8 C N −10.207 277.7 C N −10.205 277.7 QuaternaryC C −10.186 277.2 +0.2 Phenyl −10.185 277.1 Phenyl −10.185 277.1 Phenyl −10.183 277.1 Phenyl −10.182 277.1 Phenyl −10.181 277.0 Phenyl −10.181 277.0 Phenyl −10.181 277.0 Phenyl −10.180 277.0 Phenyl −10.176 276.9 Phenyl −10.173 276.8 0.0 CH3 −10.173 276.8 Ref. CH3

Fig.5.XPSfinespectraofC1sandO1s.Spectraarefittedwithcontributionsderived fromDFTcalculationsonthemodeldimer.

at399.2eV.BindingenergyscaleoftheC1sspectrumstartswith the–CH3contributionfixedat284.4eV.Then,meanchemicalshifts

extractedfromtheenergydifferencebetweenmolecularorbitalsof DFT(seeTable1)areusedforhigher-binding–energycontributions (284.4+0.2,+1.0,+1.8,+2.0eV).

Thefilledareashowstheenvelopeofthefittingcurve.Thereis anexcellentmatchingwithbothOandC1sexperimental spec-tra. Again,calculationsensurethat contributions arereal; even C N,forinstance,whichisburiedinthetailsofneighboring con-tributions.Inordertoconsolidatetheseresults,wenowdiscuss fittingwithregardstothefunctionalgroupcompositionshownin

Table2.

Experimentalatomiccompositionsinfunctionalgroupsare con-sistent.Forinstance,whereoneO1sorbitaloftheC O Cbonds showsacompositionof15.5at.%,twoC1sorbitalsoftheC O C bondsshowanapproximatelydoubledcomposition of30.5at.% (28.0 plus the contribution of C O C at 286.2eV of about 3.7 (C 1sC O C, C OH)– 1.2 (O1sC OH)=2.5at.%). Similarly, N 1sand C 1scompare wellin termsof composition inthe C N bonds(1.8vs.1.3at.%).Finally,thelastcolumnofTable2shows theexpected compositionin functional groups ina poly-epoxy wheretheDGEBA:EDAratioequals2:1.Forinstancethenumber of C 1sin phenylgroups is calculated as follows:2 DGEBA×2 phenyls/DGEBA×6Catoms=24C1s.Overall,onecanfind4C1s in–CH3,24C1sinphenyls,2C1sinC N,4C1sinC OH,4C

1sinC O C286.2eV,4C1sinC O C286.4eV,2N1sinC N,4O

1sinC OH,and4O1sinC O C.Thereforethetotalnumberof considered1sorbitalsis52.Weobservelargediscrepancies con-cerningthephenylbondsconcentrationandtheoxygenatedbonds C OHandC O Cconcentrations,a differencethatwasalready mentionedwhenconsideringtheelementalatomiccomposition. Therearetwopossibilitiesforexplainingthesedifferences:either thesurfaceisoxidizedandoxygenatedbondscontributetotheC 1sandO1ssignalsatneighboringbindingenergies,orthepolymer isorientedinsuchawaythatC O Cbondsemergeatthesurface.

(8)

Table2

ResultsoftheC,O,andN1sdeconvolutions;peakbindingenergy:BE,chemicalshiftimposedafterDFTresults;heightincountspersecond:CPS;fullwidthathalf-maximum: FWHM;peakarea;scofieldrelativesensitivityfactor:RSF;atomicfraction:at.%;andthecompositionexpectedfromthemodelpolymerwithaDGEBA:EDAratioof2:1.

Name PeakBE(eV) Chemicalshift(eV) Height(CPS) FWHM(eV) Area(CPSeV) ScofieldRSF At.% 2DGEBA:EDAmotif(at.%)

C1s CH3 284.4 0.0 2249.74 1.06 2578.62 1 6.5 7.7

C1sphenyl 284.6 0.2 11580.87 1.3 16279.01 1 40.8 46.2

C1sC N 285.4 1.0 328.14 1.41 500.77 1 1.3 3.8

C1sC O C,C OH 286.2 1.8 1009.93 1.36 1488.52 1 3.7 C OH:7.7+C O C:7.7 C1sC O C 286.4 2.0 7147.92 1.44 11172.06 1 28.0 7.7

C1sshakeup 291.2 n/a 349.91 1.32 501.28 1 1.3 n/a

N1sC N 399.2 n/a 808.92 1.28 1195.36 1.8 1.8 3.8

O1sC OH 532.0 0.0 669.53 1.73 1255.76 2.93 1.2 7.7 O1sC O C 532.9 0.9 9494.3 1.53 15728.75 2.93 15.5 7.7

Ifweassumethatamildoxidationoccurredinthecourseof sam-plepreparation,itmaybeassignedtosub-stoichiometricgroups, suchasamines(1.3–1.8vs.3.8at.%expected)andphenyls(40.8vs. 46.2at.%expected).Inthatcasedeconvolutionmaybeimproved bysubstitutingorimplementingadditionalcontributionsthatwe arenotabletoidentifynow.

4. Conclusions

Weselectedanepoxy-aminesystemwhichpermitsitsuseas bothanexperimentalandacomputationaltemplateforfurther sur-facetreatments.DGEBAandEDAmixedinstoichiometricratioand slowlypolymerized(48h)inanArgloveboxleadtotheformation ofapoly-epoxypolymerizedata rateof85%.Total polymeriza-tionisachievedbypost-curingat120◦Cfor2h.Suchapoly-epoxy

exhibitsa glass transitiontemperature onset of 113±1◦C.

Dif-ferent substrates and atmospheres were tested and compared intermsofsurfaceroughness.Thelowestroughness(arithmetic roughness=0.2nm,peak-to-valley=1.5nm)isobtainedatthefree surfacethatpolymerizedunderAratmosphere.AFMobservations revealthat,inadditiontothehighsmoothness,thedefectdensityof thesurfaceislowenoughtoavoiddefectdrivenundesirable nuclea-tion.Additionally,phasecontrastisalmostnullwhichindicatesthat thesurfaceischemicallyhomogeneous.Atomiccompositionsfrom XPSsurveyspectraatdifferentpositionsconfirmthisresult.Fine XPSspectraoverC,O,andN1scorelevelsareanalyzedinview oftheDFTcalculationsresults.Theoreticalbindingenergy chemi-calshiftsallowanexcellentfittingoftheexperimental1sspectra. Alimitationhasbeenemphasizedconcerningthecompositionsin chemicalgroups:themaindiscrepancyconcerningamuchlarger compositioninC O Cthantheonetheoreticallyexpectedfrom theperfectpolymermodel.Inanearfuture,wewilldedicateour effortstotheimprovementof(i)thepoly-epoxynetworkmodelby allowingalargernumberofatomsandbyusingmolecular dynam-icscomputationstofreezethestructureatgiventemperatures,and (ii)ofthecore-levelbindingenergiescalculationsusingthe gener-alizedtransitionstatemethod[21]thatallowsabettertreatmentof theXPSphotoemissionprocess.Finally,theperspectivesfor exper-imentalworkwillbetheformationofthinmetallicfilmsandthe mechanisticdescriptionofnucleationandgrowth.

References

[1]J.-P.Pascault,H.Sautereau,J.Verdu,R.J.J.Williams,ThermosettingPolymers, CRCPress,NewYork,2002.

[2]J.W.Gooch,EncyclopedicDictionaryofPolymers,Springer,NewYork,2010. [3]E.M.Petrie,EpoxyAdhesivesFormulation,McGraw-Hill,NewYork,2006. [4]E.M.Petrie,HandbookofAdhesivesandSealants,McGraw-Hill,NewYork,2007. [5]M.Charbonnier,M.Romand,Polymerpretreatmentsforenhancedadhesion ofmetalsdepositedbytheelectrolessprocess,Int.J.Adhes.Adhes.23(2003) 277–285.

[6]T.H.Baum,D.C.Miller,T.R.O’Toole,Photoselectivecatalysisofelectroless cop-persolutionsfortheformationofadherentcopperfilmsontopolyimide,Chem. Mater.3(1991)714–720.

[7]S.Yoon,H.-J.Choi,J.-K.Yang,H.-H.Park,Comparativestudybetween poly(p-phenylenevinylene)(PPV)andPPV/SiO2nano-compositeforinterfacewith aluminumelectrode,Appl.Surf.Sci.237(2004)451–456.

[8]T.-G.Woo,I.-S.Park,K.-W.Seol,Effectsofvariousmetalseedlayersonthe surfacemorphologyandstructuralcompositionoftheelectroplatedcopper layer,Met.Mater.Int.15(2009)293–297.

[9]T.Duguet,F.Senocq,L.Laffont,C.Vahlas,Metallizationofpolymercomposites bymetalorganicchemicalvapordepositionofCu:surfacefunctionalization drivenfilmscharacteristics,Surf.Coat.Technol.230(2013)254–259. [10]J.Ge,M.P.K.Turunen,J.K.Kivilahti,Surfacemodificationandcharacterization

ofphotodefinableepoxy/coppersystems,ThinSolidFilms440(2003)198–207. [11]C.Weiss,H.Muenstedt,Surfacemodificationofpolyetheretherketone(peek)

filmsforflexibleprintedcircuitboards,J.Adhes.78(2002)507–519. [12]L.Di,B.Liu,J.Song,D.Shan,D.-A.Yang,EffectofchemicaletchingontheCu/Ni

metallizationofpoly(etheretherketone)/carbonfibercomposites,Appl.Surf. Sci.257(2011)4272–4277.

[13]S.Siau,A.Vervaet,E.Schacht,A.VanCalster,Influence ofchemical pre-treatmentofepoxypolymersontheadhesionstrengthofelectrochemically depositedcuforuseinelectronicinterconnections,J.Electrochem.Soc.151 (2004)C133–C141.

[14]P.B.Messersmith,J.Dalsin,L.Lin,B.P.Lee,H.K.,Polymericcompositionsand relatedmethodofuse,WO2005/118831A2,NorthwesternUniversity(USA), 2005.

[15]M.Kemell,E.Färm,M.Ritala,M.Leskelä,Surfacemodificationofthermoplastics byatomiclayerdepositionofAl2O3andTiO2thinfilms,Eur.Polym.J.44(2008) 3564–3570.

[16]G.Cui,D.Wu,Y.Zhao,W.Liu,Z.Wu,Formationofconductiveandreflective silvernanolayersonplasticfilmsviaiondopingandsolid–liquidinterfacial reductionatambienttemperature,ActaMater.61(2013)4080–4090. [17]X.Gu,T.Nguyen,M.Oudina,D.Martin,B.Kidah,J.Jasmin,A.Rezig,L.Sung,

E.Byrd,J.Martin,D.Ho,Y.C.Jean,Microstructureandmorphologyof amine-curedepoxycoatingsbeforeandafteroutdoorexposures—anAFMstudy,J. Coat.Technol.Res.2(2005)547–556.

[18]J.Kanzow,P.S.Horn,M.Kirschmann,V.Zaporojtchenko,K.Dolgner,F.Faupel, C.Wehlack,W.Possart,Formationofametal/epoxyresininterface,Appl.Surf. Sci.239(2005)227–236.

[19]K.Endo,S.Maeda,M.Aida,SimulationofC1sspectraofC-andO-containing polymersinXPSbyabinitioMOcalculationsusingmodeloligomers,Polym.J. 29(1997)171–181.

[20]K.Endo,S.Maeda,Y.Kaneda,AnalysisofC1sspectraofN-,O-,andX-containing polymersinX-rayphotoelectronspectroscopybyabinitiomolecularorbital calculationsusingmodelmolecules,Polym.J.29(1997)255–260.

[21]J.C.Slater,K.H.Johnson,Self-consistent-fieldclustermethodforpolyatomic moleculesandsolids,Phys.Rev.B5(1972)844–853.

[22]K.Takaoka,T.Otsuka,K.Naka,A.Niwa,T.Suzuki,C.Bureau,S.Maeda,K.Hyodo, K.Endo,D.P.Chong,AnalysisofX-rayphotoelectronspectraof electrochemi-callypreparedpolyanilinebyDFTcalculationsusingmodelmolecules,J.Mol. Struct.608(2002)175–182.

[23]T.Otsuka,K.Endo,M.Suhara,D.P.Chong,TheoreticalX-rayphotoelectron spec-traofpolymersbydeMonDFTcalculationsusingthemodeldimers,J.Mol. Struct.522(2000)47–60.

[24]C.E.Miller,Near-infraredspectroscopyofsyntheticpolymers,Appl.Spectrosc. Rev.26(1991)277–339.

[25]D.Neˇcas,P.Klapetek,Gwyddion:anopen-sourcesoftwareforSPMdata anal-ysis,Centr.Eur.J.Phys.10(2012)181–188.

[26]J.H.Scofield,Hartree-Slatersubshellphotoionizationcross-sectionsat1254 and1487eV,J.ElectronSpectrosc.Relat.Phenom.8(1976)129–137. [27]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,

J.A.Montgomery,J.T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J. Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson, H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T. Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian, J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,J. Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A. Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels, M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman, J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A. Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham, C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,

(9)

M.W.Wong,C.Gonzalez,J.A.Pople,Gaussian03,RevisionB05,Gaussian,Inc., Pittsburg,PA,2003.

[28]L.-A.O’Hare,B.Parbhoo,S.R.Leadley,DevelopmentofamethodologyforXPS curve-fittingoftheSi2pcorelevelofsiloxanematerials,Surf.InterfaceAnal. 36(2004)1427–1434.

[29]M. Aufray, A. André Roche, Epoxy–amine/metal interphases: influences fromsharpneedle-like crystalformation,Int. J.Adhes. Adhes. 27(2007) 387–393.

[30]P.S.Bagus,E.S.Ilton,C.J.Nelin,TheinterpretationofXPSspectra:insightsinto materialsproperties,Surf.Sci.Rep.68(2013)273–304.

Figure

Fig. 3. Roughness parameters determined by image processing on 3 mm × 3 mm sur- sur-faces characterized by AFM in contact mode
Fig. 4. AFM images of the epoxy Air (a and b) and epoxy Argon (c and d) surfaces. Left column shows topographic images after a polynomial of degree 2 correction, and right column shows deflection images (or phase contrast).
Fig. 5. XPS fine spectra of C 1s and O 1s. Spectra are fitted with contributions derived from DFT calculations on the model dimer.

Références

Documents relatifs

Following a brief review of standard software engineering processes and examples of software developments in the games industry, a user experience (UX)

iii- The magnesium silicates, that convert MBOH following both the basic and the acidic routes show moderate activity in gas phase transesterification, around

apparaît donc necessaire de pousser plus loin dans cette direction et d’essayer df estimer si dans certains cas l’effet de la déformation interne sur l’orientation de

Thus, to be able to build a complete model of the respiratory system and to include a second parameter to the monitoring process of the lungs, we introduce in this paper

Most previous logit assignment models have used Dial's second definition of efficient paths, according to which &#34;a path is efficient (reasonable) if every link in it

Complex human disease; Rheumatoid arthritis; Computational systems biology; Interactive molecular map; Signaling network; Dynamical modelling.. Protein-protein interactions are a

When the temperature is further decreased into the nematic domain, small birefringent droplets are expelled from the fluid flocs. These nematic droplets can coalesce amongst

In such a random context, we have to construct a stochastic computational model (SCM) for which two sources of uncertainties have to be taken into account (see for instance [11]):