• Aucun résultat trouvé

Numerical approximation of two-scale SDEs

N/A
N/A
Protected

Academic year: 2022

Partager "Numerical approximation of two-scale SDEs"

Copied!
25
0
0

Texte intégral

(1)

Numerical approximation of two-scale SDEs

Camilo Andr´ es Garc´ıa Trillos

Camilo-Andres.GARCIA@unice.fr

Colloque de Jeunes Probabilistes et Statisticiens

CIRM Marseille - Avril 18 2012

(2)

Stochastic Volatility

Stochastic volatility

dS t = b(S t )dt + σ(S t , v t )dW t where v t is also given as the solution of an SDE.

Empirical studies on high frequency data (Ex: S&P [Fouqu´ e et al. (98)] ; IBOVESPA [Souza et al. (06)] ) support financial asset modeling using Stochastic Volatility with

• Mean reverting volatility

• Fast reverting process: mean reverting time in the order of

days ( maturity of instruments/derivatives).

(3)

Stochastic Volatility

Stochastic volatility

dS t = b(S t )dt + σ(S t , v t )dW t where v t is also given as the solution of an SDE.

Empirical studies on high frequency data (Ex: S&P [Fouqu´ e et al.

(98)] ; IBOVESPA [Souza et al. (06)] ) support financial asset modeling using Stochastic Volatility with

• Mean reverting volatility

• Fast reverting process: mean reverting time in the order of days ( maturity of instruments/derivatives).

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 2 / 16

(4)

A general two-scale SDE

We consider the following two-scale SDE X t

= x 0 +

Z t 0

f (X s

, Y s

) ds + Z t

0

g (X s

, Y s

) dW s Y t

= y 0 +

−1

Z t 0

b(X s

, Y s

)ds +

−1/2

Z t

0

σ(X s

, Y s

)d W ˜ s ,

We will assume

• 1

• W and ˜ W are independent

• f (x, y) and g (x, y) C 1 with linear growth in x, C b

in y

• b(x, y), C b

in both x, y

• Non-degenerate: λ M > σσ

(x, y) > λ m > 0. And mean reverting

|y|→∞

lim b(x, y)y = −∞

(5)

A general two-scale SDE

We consider the following two-scale SDE X t

= x 0 +

Z t 0

f (X s

, Y s

) ds + Z t

0

g (X s

, Y s

) dW s Y t

= y 0 +

−1

Z t 0

b(X s

, Y s

)ds +

−1/2

Z t

0

σ(X s

, Y s

)d W ˜ s , We will assume

• 1

• W and ˜ W are independent

• f (x, y ) and g (x, y ) C 1 with linear growth in x, C b

in y

• b(x, y), C b

in both x, y

• Non-degenerate: λ M > σσ

(x, y) > λ m > 0. And mean reverting

|y|→∞

lim b(x, y)y = −∞

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 3 / 16

(6)

Homogenization result

Theorem [Pardoux & Veretennikov (01, 03)]

Under the hypothesis the rescaled, frozen parameter diffusion Y t x = y 0 +

Z t 0

b(x, Y s x )ds + Z t

0

σ(x, Y s x )d W ˜ s ,

is ergodic with invariant measure µ x . X

−→

L

X where X solves X t = x 0 +

Z t 0

F (X s )ds + Z t

0

G (X s )dW s (Effective equation), with G = √

A, and F and A are averages of f and a = gg

with respect to µ x .

F (x) = Z

f (x, y )µ x (dy ) A(x) = Z

g · g

(x, y)µ x (dy )

(7)

Homogenization result

Theorem [Pardoux & Veretennikov (01, 03)]

Under the hypothesis the rescaled, frozen parameter diffusion Y t x = y 0 +

Z t 0

b(x, Y s x )ds + Z t

0

σ(x, Y s x )d W ˜ s ,

is ergodic with invariant measure µ x . X

−→

L

X where X solves X t = x 0 +

Z t 0

F (X s )ds + Z t

0

G (X s )dW s (Effective equation), with G = √

A, and F and A are averages of f and a = gg

with respect to µ x .

• Problem: In general we do not know µ x explicitly

• Our goal: Propose a numerical method to approximate the Effective equation

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 4 / 16

(8)

Effective equation approximation algorithm

• Suppose we have good (possibly random) estimates ˜ F (n) ≈ F , G ˜ (n) ≈ G

• Discretize the approximated equation. Euler scheme: For t k = k/n

X ˜ t n

k+1

= 1 n F ˜ (n)

X ˜ t n

k

+ 1

√ n G ˜ (n)

X ˜ t n

k

U k+1 where U k ∼ N (0, 1)

• Similar approach used for deterministic [Fatkullin,

Vanden-Eijnden (04)] and stochastic setup [E et al. (04)] .

• Our approach: Choose estimators for the averages ˜ F (n) , G ˜ (n)

allowing us to develop a C.L.T like result for the strong error.

(9)

Effective equation approximation algorithm

• Suppose we have good (possibly random) estimates ˜ F (n) ≈ F , G ˜ (n) ≈ G

• Discretize the approximated equation. Euler scheme: For t k = k/n

X ˜ t n

k+1

= 1

n F ˜ (n) X ˜ t n

k

+ 1

√ n G ˜ (n)

X ˜ t n

k

U k+1 where U k ∼ N (0, 1)

• Similar approach used for deterministic [Fatkullin,

Vanden-Eijnden (04)] and stochastic setup [E et al. (04)] .

• Our approach: Choose estimators for the averages ˜ F (n) , G ˜ (n) allowing us to develop a C.L.T like result for the strong error.

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 5 / 16

(10)

Effective equation approximation algorithm

• Suppose we have good (possibly random) estimates ˜ F (n) ≈ F , G ˜ (n) ≈ G

• Discretize the approximated equation. Euler scheme: For t k = k/n

X ˜ t n

k+1

= 1

n F ˜ (n) X ˜ t n

k

+ 1

√ n G ˜ (n)

X ˜ t n

k

U k+1 where U k ∼ N (0, 1)

• Similar approach used for deterministic [Fatkullin,

Vanden-Eijnden (04)] and stochastic setup [E et al. (04)] .

• Our approach: Choose estimators for the averages ˜ F (n) , G ˜ (n)

allowing us to develop a C.L.T like result for the strong error.

(11)

Invariant approximation algorithm: Decreasing Euler step

Decreasing Euler step

Let {γ k } be a sequence of decreasing positive reals tending to zero, and Γ M := P M

k=0 γ k , and ¯ U k ∼ N (0, 1)

• Decreasing step Euler scheme:

Y ¯ k+1 x = ¯ Y k x + γ k +1 b x, Y ¯ k x + √

γ k+1 σ x, Y ¯ k x U ¯ k+1 ,

• Average estimator:

ν(f , x; M ) := 1 Γ M

M

X

k=1

γ k f x , Y ¯ k−1 x

≈ 1 Γ

M

Z

ΓM

0

f (x, Y

sx

) ds

≈ lim

M→∞

1 Γ

M

Z

ΓM

0

f (x, Y

sx

) ds = Z

f (x , y)µ

x

(dy ) = F (x)

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 6 / 16

(12)

Invariant approximation algorithm: Decreasing Euler step

Decreasing Euler step

Let {γ k } be a sequence of decreasing positive reals tending to zero, and Γ M := P M

k=0 γ k , and ¯ U k ∼ N (0, 1)

• Decreasing step Euler scheme:

Y ¯ k+1 x = ¯ Y k x + γ k +1 b x, Y ¯ k x + √

γ k+1 σ x, Y ¯ k x U ¯ k+1 ,

• Average estimator:

ν(f , x; M ) := 1 Γ M

M

X

k=1

γ k f x , Y ¯ k−1 x

≈ 1 Γ

M

Z

ΓM

0

f (x, Y

sx

) ds

≈ lim

M→∞

1 Γ

M

Z

ΓM

0

f (x, Y

sx

) ds = Z

f (x, y)µ

x

(dy ) = F (x)

(13)

Invariant approximation algorithm

Properties [Lamberton, Pag` es (02)]

Under some hypothesis on the step sizes γ k ,

1

Almost sure convergence: For x fixed, ν(f , x; M ) −→ a.s. F (x)

2

C.L.T.: For x fixed,

p Γ M (ν(f , x ; M) − F (x)) −→ N

L

(0, Ξ(x))

Ξ depends on µ x and the coefficients of the ergodic diffusion, but not on the choice of γ k .

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 7 / 16

(14)

Effective equation approximation

X ¯ t (n)

k+1

= 1

n ν f , X ¯ t

k

; M(n) + 1

√ n q

ν gg

, X ¯ t

k

; M (n) U k+1

i.e. it is an Euler scheme for which we use independent realizations of the decreasing Euler estimator at each discretization step.

1

We fix γ k = k

−θ

for 1/3 < θ < 1.

2

We relate the two parameters M and n. The most efficient way to do so is by fixing M (n) such that

Γ M ∝ n

(15)

Result 1 : Strong convergence

n→∞ lim E sup

0≤t≤T

X t − X ¯ t (n)

2 !

→ 0

Sketch of the proof Stability technique

• A priori bounds

• Obtain a global L 2 error control from step-wise L 2 error control (Burkholder maximal inequality + Gronwall lemma)

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 9 / 16

(16)

Result 2 : Limit error distribution

Limit distribution

If the effective diffusion is non-degenarte, fixing Γ M = n n 1/2

X t − X ¯ (n)

⇒ ζ with ζ defined as the solution of

ζ t = Z t

0

∂ x F (X s )ζ(s)ds + Z t

0

∂ x G (X s )ζ (s )dW s

+ 1

√ 2

Z t 0

∂ x G (X s )G(X s )dB s 1 + Z t

0

p Ξ(X s )dB s 2

with B 1 and B 2 are two independent standard Brownian motions.

(17)

Result 2 : Limit error distribution

Limit distribution

If the effective diffusion is non-degenarte, fixing Γ M = n n 1/2

X t − X ¯ (n)

⇒ ζ with ζ defined as the solution of

ζ t = Z

t

0

x

F (X

s

)ζ(s )ds + Z

t

0

x

G (X

s

)ζ(s)dW

s

+ 1

√ 2

Z

t

0

x

G (X

s

)G(X

s

)dB

s1

| {z }

Euler discretization

+ Z

t

0

p Ξ(X

s

)dB

s2

| {z }

average approx.

with B 1 and B 2 are two independent standard Brownian motions.

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 10 / 16

(18)

Result 2 : Limit error distribution - outline of the proof

n 1/2

X t − X ¯ (n)

=: ζ n ⇒ ζ

Sketch of the proof

• Tightness

• Obtain an SDE for the error ζ

n

= ˜ ζ

n

+ R

n

• Prove R

n

−→

L2

0

• Classical results (Kurtz and Protter) to deduce tightness of ˜ ζ

n

from convergence in law of the tuple of coefficients of related SDE.

• Convergence of the tuple: Use C.L.T of decreasing Euler, independence and convergence of the quadratic variations.

• Identification is straightforward thanks to strong convergence.

(19)

Result 3 : Romberg extrapolation

Let l ∈ N , l ≥ 2. Let c 1 , . . . , c l ∈ R satisfy the linear system

l

X

i=1

c i = 1

l

X

i =1

 c i

Γ iM

iM

X

j=1

γ j r

 = 0 for r = 2, . . . , l.

Define the approximation function

ˆ

ν(x , F ; M, l) =

l

X

i=1

c i ν(x, F ; iM )

Convergence and limit error results using this approximation are unchanged (up to a constant), but in this case we may take

1

2l + 1 < θ < 1

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 12 / 16

(20)

Result 3 : Romberg extrapolation

Let l ∈ N , l ≥ 2. Let c 1 , . . . , c l ∈ R satisfy the linear system

l

X

i=1

c i = 1

l

X

i =1

 c i

Γ iM

iM

X

j=1

γ j r

 = 0 for r = 2, . . . , l.

Define the approximation function

ˆ

ν(x , F ; M, l) =

l

X

i=1

c i ν(x, F ; iM )

Convergence and limit error results using this approximation are unchanged (up to a constant), but in this case we may take

1

2l + 1 < θ < 1

(21)

Efficiency analysis

Define

τ := # of operations Our algorithm with n steps requires

τ (n) = Kn

2−θ1−θ

For a fixed strong error tolerance ∆ ( recall ∆(n) := Kn

−1/2

) :

• Simple SDE (θ > 1/3) :

τ (∆) = K ∆

−2−1−θ2

≥ K ∆

−5

• Interpolated SDE (θ > 2l+1 1 ):

τ (∆) = K l

−2−1−θ2

≥ K l

−4−1l

.

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 13 / 16

(22)

Efficiency analysis

Define

τ := # of operations Our algorithm with n steps requires

τ (n) = Kn

2−θ1−θ

For a fixed strong error tolerance ∆ ( recall ∆(n) := Kn

−1/2

) :

• Simple SDE (θ > 1/3) :

τ (∆) = K ∆

−2−1−θ2

≥ K ∆

−5

• Interpolated SDE (θ > 2l+1 1 ):

τ (∆) = K l

−2−1−θ2

≥ K l

−4−1l

.

(23)

Numerical test

Test problem:

dX t

= X t

dt + X t

Y t

dW t

dY t

=

−1

s

1

2(1 + (X t

) 2 ) − Y t

!

dt +

−1/2

s

2(X t

) 2 + 1 (X t

) 2 + 1 dW t

We test the algorithm with

• γ k = k

−0.35

for the simple version (θ ≈ 1/3)

• γ k = k

−0.225

for the extrapolated version (θ ≈ 1/5)

Numerical approximation of two-scale SDEs CJPS - Avril 18 2012 14 / 16

(24)

*

****

*****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************

********* **

***

−10 −5 0 5 10

−10−50510

QQplot − SDE − Decreasing step

Normalized observed error (n1 2⋅(X−X~))

Limit error (ζ)

**

****

***

* *

******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************

***************************************

*

*

−10 −5 0 5 10

−10−50510

QQplot − SDE − Extrapolated

Normalized observed error (n1 2⋅(X−X~))

Limit error (ζ)

(25)

5e−02 5e−01 5e+00 5e+01

0.10.20.51.02.0

SDE − L

2

error vs. Time

Time (s) Error

|

X−X~n

|

2

Simple (r=−0.18) Extrap. (r=−0.22)

Références

Documents relatifs

Mean-field approximation of stochastic population processes in games 4 time intervals, gives the expected net increase in each population share during the time interval, per time

One can see that in contrast to what is known for time discretization schemes, for random walk schemes the Lipschitz generator seems to cause more difficulties than the

We then present a systematic procedure based on the framework of modified differential equations for the construction of stochastic integrators that capture the invariant measure of

works of Seleznjev (1996) (linear interpolation) , Seleznjev (2000) (Hermite interpolation splines, optimal designs), Seleznjev and Buslaev (1998) (best approximation order).. For

Section 4 is devoted to study probabilistic properties of (1) ; properties of the solution’s distribution, var- ious integrability results, a large deviation principle and the

Since the late nineties, both theoretical and empirical analysis devoted to the real exchange rate suggest that their dynamics might be well ap- proximated by nonlinear models.

The present paper is devoted to the computation of two-phase flows using the two-fluid approach. The overall model is hyperbolic and has no conservative form. No instanta- neous

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des