• Aucun résultat trouvé

: ll*llll"ll 1 : fl

N/A
N/A
Protected

Academic year: 2022

Partager ": ll*llll"ll 1 : fl"

Copied!
16
0
0

Texte intégral

(1)

Annales Academia Scientiarum Fennicre Series A. I. Mathematica

Volumen 15, 1990 , 37-52

SOME FUFUIHER ARITHMETICAL IDENTITIES

INVOLVING A GENERALIZATION

OF RAMANUJAN'S SUM

Pentti

Haukkanen

1. Introduction

Let G

be a commutative semigroup

with identity 1, with

respect

to

a mul- tiplication denoted by

juxtaposition.

Suppose there exists a

finite or

countable infinite set

P(e G)

of primes such that each

n € G

can be represented uniquely

in

the form

,r:

p€P

fl

o,,(n),

where the exponents

n(p)

are non-negative integers of which all but a finite num- ber are zero. (Define

1(p):0 for all p € P.)

F\rrther, suppose there exists a real-valued

norm

ll .

ll

defined on G such that

(i) lllll : 1,

llpll

> 1 (p

e

P),

(ii)

llmnll

: ll*llll"ll (m, n

e G),

(iii)

the set

{n

e

G:

llnll

< r}

is finite for all real numbers

s.

Then

G

is called [18,

p.

L1] an arithmetical semigroup. Throughout this paper elements

in

an arbitrary arithmetical semigroup a.re typed in boldface.

Let

G be an arbitrary but fixed arithmetical semigroup. By an arithmetical function we mean a complex-valued function defined on the arithmetical semigroup

G. Let L

be a mapping from the set G into the set of subsets of G such that for each

n

G,

.4(n) is a subset of the set of divisors

of n.

Then the A-convolution of two arithmetical functions

/

and

g

is defined by

(f eil: » /(d)e(n/a).

d€,{(n)

In this paper we confine ourselves to regular convolutions and we shall assume the reader to be familiar with this notion (see e.g. [13, Section 7.31,122, Chapter 4],

[27]).

For example,

the

Dirichlet convolution

D,

where

D(n) is the

set

of

all divisors

of n,

and the unitary convolutiou

[/,

where

U(n): {a: aln,(d,n/d)

: 1),

are regular.

doi:10.5186/aasfm.1990.1513

(2)

38 Pentti Haukl<anen For a positive integer k , we define

Ax(n): {d

e

G:

d& e

.A(n};}.

It

has been shown (see [13,

p.

10], [32,

p.

267]) that the:4,7,-convolution is regular whenever the l.-convolution is regular. The symbol

(., b)a,r

denotes the greatest

kth

power divisor

of a

which belongs

to

.a(b).

The classical Ramanujan's sum

C(n;r)

is defined by

C(n;r): »

exp(2rimnf r),

?,*-1'=?

where

n is a

non-negative integer and

r is a

positive

integer. Its

well-known arithmetical representation is given by

C(n;r): \

apg1a1.

dl(n,r)

In

[14] the author together with P.J. McCarthy defined a generalized Ramanujan's sum by

C.e,,*(nr,...,n6r) - »

exp(zri(m1nt

*...lmunu)f

rk),

ii;,;;!ll.Yi)

where r7Ls...,nu a,re non-negative integers,

r is

a positive integer and

(m;) : (*rr.

. .

,mr),

the greatest common divisor of m1r. .

.tffiu.

We noted [14] that

Ce,x(ur...,tflr) r)- »

dkeÄ(((ni),r&)a,r)

where

lter is the

inverse of.

E, the function = L, with

respect

to the

ä7.-

convolution. For an arithmetical semigroup this suggests we define

dk" FA.Q ld)

- »

d,k"

ttArU

ld),

de Ar(r)

d* l(";)

ca,r(nr,...,Dr;r)- » lldllr"tro*(r/d).

de €A(((ni),re)a,r)

In

[13] we defined a generalized Ramanujan's sum by

» f@)g("/d).

sfÅ:r('r,"',ru;r) -

dk €A(((";),r&)a,*)

(3)

Arithmetical identities involving a generalization

of

Ramarrujan's sum 39

In

other words,

SfÅi(t, ).

.., rr;r) -

(1) /(t,,frz,...,tr)A(

/(d)g(, ld) - (x((r,);

(.)n)

f

oks)

(r), i'-tl:;'

where

X(t;d) :

1

if dln,

and

:0

otherwise.

The purpose

of

[13] was

to

derive arithmetical identities

of

classical type involving that sum. The purpose of the present paper is to give more arithmetical identities for

that

sum. We shall also

list

a large number of known special cases of the given identities.

At

the end of this paper we shall note

that

two identities here can be extended to

totally

A-b-even functions

(modr).

2. Preliminaries

We define an arithmetical function

/

to be quasi-A-multiplicative [13,

p.

1a]

if /(1) l0

and

/(r)/(mn): /(m)/(n)

whenever

m,n € A(mn).

Quasi-.A-

multiplicative functions

/ with /(1) : L

are called A-muliiplicative [45].

It

is

easy to see that an arithmetical function

/ with

f (L)

*

0 is quasi-,4,-multiplicative

if,

and only

if, f lfO) is

A-multiplicative. Quasi-[/-multiplicative functions are called quasi-multiplicative [19]. For those functions

/(L) I 0

and

/(l)/(mn):

/(*)/(r)

whenever

(*,r): 1. All

quasi-,A-multiplicative functions are quasi- multiplicative.

Let

A(1)

,

A@),

...,

A@) be regular convolutions. Then we define 65u

a(t) aQ)

....4(')-convolution of arithmetical functions.f(nr,

rl2r...,

nr,) and g(nr, nz, .. .,

nr)

bY

1) eQ) . ., 6(") g(r11 r flz t. . ., nrr)

» »

/(.1, ,dz). . .,

dr).

drۀ(1)(nr) d2eAQ)(n) d,6A(")1n.;

'

g(\

I d1, nz I d2, . . ., nu I du).

It

is easy to see

that an

a(1) aQ) . . . a@) -convolution of arithmetical functions is associative. Also,

if ä

is an ,4(i)-multiplicative function, then

(2) (/("r, rt2t...,nu)eo) aQ)'''

r(")91nr,

rr2;...,n,))å(n1)

: /(nr,

rt2t . . ., n,)ä(n6),a(r) AQ) .. .

,(")g(*r,

tt2t . . .,

nr)h(n;).

Let /

be an arithmetical function of one rariable and

e, ffi,

u

e N,

u

)

2,

0(-m < u.

Then we define

P"(/Xnr,...,r-irlrn*tr...,nr)

to be the arithmeti- cal function

of u

variables such that

(

f(n"), if

n1

: "' ;

Irrn

: (n-+r)"

(3) P"("fXnr,...r rmirm*rr...,nu): { :

' ' '

: (tr)",

(

o

otherwise.

(4)

40 Pentti Hauk]ranen

Iu particular, we denote

Pr(/Xnr,...,

rrni

tlrn*1r..., nr) : P("fXnr,...,nr).

If m:0,

then we have

(4) P"(/Xnr,...,rrninrn*r:...,u,) : P("f)(nr,...,n,).

We note that some special cases of the function .P"(/)

"*

be found

in

[39, p. 627!

and [42, p. 86].

It

is easy

to

see

that if f , g

are arithmetical functions of one variable and

u)2,1<i<u,then

(5) 9(q)P(/)(nLswzs..

. ,

n*) :

P(/s)(n1 ,n2,. .. , n,,).

Also,if f ,g

arc arithmeticalfunctionsof onevariable,

T< j< u

and

Au)(n) 9,4(,)(n)

whenever

n

G,

L

<

s

< u, i+j,then

(6) P(.fXrr, rt2t...,

n*)a(l)a(z)

-..

a@)p1nXrr,

rr,...,n,) : P(f ,(i)

gXor, ns, . . . ,

tr,).

3. Ideutities

Theorem L.

Suppose

I

eurd

g

are a.rithmetical functions and 0

I m I

u.

Thenfar nlr...,[*, r€G

S{,1(rrr,

...

)ttn)

(r*+r)0,. .., (nu)e;r)

: E(nr)...E(n")g(r)o.

-.

».tpPp(/Xrr,. ..,

D"ni

rrn*r,. .., ru,r),

where.E(n)

: 1

for aJl

n €

G.

Proof. Bv (1) and (3),

t(*r)...

E(n")g(") D -.

.DAxPx(f)(*,

).

..

tfrmifrrn*17.. .,

rr, r)

_ »... » » E(*, ldr).."8(nuld*)geld)

dr Jrr d,. Iro d €.4r (r)

'

Pp(/)(dr, . . .,

d*i

d*+1, . . -,

d*,d)

- f

L

geld)Px(/)(d0,...,d*id,...d,d)

d€-4n ("),d It r,+1,...,nu a* [r,t r...rDnz

: o"*;Li'::ljj »

'*"

g$ld)/(d)

- S*!*(rrr?,..rn*,

(Drr+r)k,

...) (ro)u;")

, which was to be proved.

(5)

Arithmetical identities involving

a

generalization of Ramanuja.n's

sum

41

Theorem 2.

suppose ht, . . . ,

hu

are quasi- D -multiplicative functions, h is a quasi- A1, -multiplicative function

ffid f

, g ,

H

are arbitrary arithmetical functions.

Then for rltr

tl2r...,

nu,

r

G

(t , . .

.ä,hX1)

oä", s*'gk(O\ld)0,.

. . ,

(n"/d)e;r/d)

dl('r)

.

ä1(n1ld)'''

h*(n* I

d)ä(r/d)Ir(d)

: »

h1(n1ld)

... h,(n*ld)(lzs)(r/a)($n' "'

ä"1?).4åIr)(d).

d€-4*(r)

dl('r)

Proof.

It

sufrces

to

consider the case

är(1): "': I,"(1): h(1):1'

Let

.L denote the left-hand side of the identity

in

Theorem

2.

Then,

by

(1)-(6) and Theorem 1,

We thus arrive at our result.

Theorem 3.

Suppose

H is a

quasi-Ap-multiplicative function,

Ht,

Hz,

..., Eo

a,re quasi-D-multiplicative functions and

f , 9, h, hr, h2, ..., hu

are arbiftary arithmetical functions. Then for 111 , r12, . . .,

[r, t e G, att.

.. ,au

: 0rl

z,

: (a(nr

) . . .

E(n*)s(r)

o . .

. oepP(/Xrr,

r12 : . . ., rr,,

"))

.

är(nr)

. -.

h*(n,)h(")r. "

oepP(H)(rrrr n2,..

.,n*,r)

: (nrlrrr) ...h*(n*)(h.qxr)p

.

''

oe1,h1(n1)'

''h,(n,)h(r)

.

P(.fXrr, D2s...,r,,r))

D

"' DAlP(EXrr,rtz,..., tr,,r)

: (nrlrrr;

. ..

h,(n,)(h.cxr)D "'

oe1,P(f

h1'''

h,å,)(n 1sn2s.. ., rr,,

*))

' D

"'DApP(äXnr, rl2:..., n,, r)

: är(nr)''' h"(n")(hsx")P "'

DA*

.

(r$U,.

..

h*h)(n1,r^zt..., n,,r)D'''

o,+1,P(HXrr,

rr,. .', t,,

"))

: är(nr) "'h*(n,)(h.gxr)a "'oe*P((f

fu

"'huh)e*Il)(n1, rt2t...,

tr,,

r)'

(6)

42 Pentti Haukl<anen

(Hr' " Huäx1) » "' » » s*':r(af"',...,d1,""

;6)

ar

lnr

d., ln" 6gar (")

är(dr)..

.

Hu(d")ä(6)hr(n1/d, )..

.hu(*,,

Id,)n$I6)

(f

H)(d)ä,

(a*'-41 ) . . . Hu(a*L-au ) @or(g

u)) (*/d)

dۀr (r) a* l(nf "')

.

(HrDht)(*,

ldrl-ot ) . .

.(HuDhu)(rr,

ldn'-"" ).

Proof. It

suffi.ces

to

consider the case

I/r(1) _ ... _ H"(L)

Further,without1ossofgenera1itywemayaSSumea1

Theorem 3 can be written as

1.

in the

ä(1) -

0,

am*l

identity

h(rr)

. . .

hr(*r)ä(")

D . . .

DAkS*!r(rr,

. H1

(rr).

. .

H"(n")ff(r).

,,frm,

(t*+r)k,

.. . ,

(rr)*;")

Thus, applying Theorem 1 and formulas (2), (B), we have the theorem.

Remark.

The functions ä1 , . .

.,

hu,

h

axe of great importance in Theorem B.

In

fact,

if h : Es,

defined bV

Eo(f) : 1

and Eo(n)

: 0 for n * L,

then the

summation over d1

,

, .

., dr,

6reduces

to

the summation over d1

,

, .

., dr.

A similar reduction is valid with respect to any subset of the set of functions ä1

,

. . . ,

hu,

h.

Notation.

For an arithmetical function

/,

denote

f n (A,,e; n)

- /(")

@ € R),

ll'r ll <,

n €A(ne)

f"(*) - f"(D,€in) - (,

e R).

1m u)

are arithmetical ,U €R), llrn*l r,..)frut

Theorem 4.

Suppose

f

,

g, h, ht,

r€ G, &!t..., a,m:0,

1

» /(,,)

ll'll <,

hz, ..

., h*

(0

0 (*t) ...,

rrn

(7)

s*io(rf"'

,

lli, ll

1tr

lli* ll 1r,n lUllSy

,iX* rfl**lr...rr.r;j)

(7)

(B)

Arithmetical identities involving a generaJization of Ramanuja,n's

sum

43

'

hi

@,

I

lli,

ll)''' tri(**l lli*ll)ä"(a*,i;v I

llill)

_ » /(d) (hrDE)"

(*

,l lldlt*'-'l

)

lld lle (min {yr ,*1"' ,...,x!-l* } do lt rn*Lr...rDu

. . . (

h*oE)"

(*

*/

lld ll*'- "*

)U,

Aks)" (Ä* ,, d; y llld ll) ,

» "' » s*:r(tf"',''',iI:*''n**1:''',"';")

rri'lr

s'r

''ä'ä"Jt

tli, ll)

" 'tri(**/ lli*ll)

- » /(d )g(, ldXä,

DE)" (,

,l

lldllkL-" ) . . .

":llf#l,f,i" ;oåiä'

Proof.

Let L

denote the left-hand side of (7). Then, using the notation of

x

given

in

the introduction, we can write

L-»...»»

Ili,ll

sr,

lli,-ll 10,n llill<u

orr_,1,il:j: t,...,n7

./(d)g6ld) » h,(b,)... » h*(b*) » ä(").

llbl ll<c1lllil

ll

llb-

ll<z-llli-ll ll.lfl{lill

Now we shall change the order of summation.

It

can be proved that the rule

("r,.

. . tcmty td, br, . . .,

b-,

a) --+ (c1/b rr. . .,

c*lb*rv

/ ard,

bl,

. . .,

b-,

a) defines abijection from the set of (2rn+3)-tuples

("r,... ,cm,Y,d,br,...,b-,a)

satisfying

ll"rll S tt;.

. ., 11"-ll

1 t*, ll"ll

S y,

d

e

.46(v), dr'-o' l"r,

. . .

,6&'-"*

1c-, b1lcr61-&1-",..

-,b*|"*d-nt-"-,

a e A*(v

/d)

onto the set

of

(2m

*

3)-tuples (ir, . . .,

i*, j,

d, br, . . .,

b-, a)

satisfying

x((,,**1:..., t r);d*)

lli,

ll<117...,11i*ll 1n*, lljll 1y,

(8)

44 Pentti Haukkanen

d

,at6),

det-"t lil ,...,d*t-cln.,

li*,

llb,

ll 1xrlllirll,...,llb*ll sr*llli*ll, ll"ll <yllljll, a€A*0*).

Thus we obtain

L- » » » » x((t,,*r,...,n,.)iao)/(a)

ll"rll(r' llc-llS,-,,r,,=r"rr_"tjlj:l,,*

h{b1)... »

t- o1

br, l"rrrd- e L- arn

h*(b*) » h@)s((.,/a)1")

»

d-&

br l"r a€Ar Q ld)

X((nnz*r, . . ., r,.);

d*)f(a)

_»...»»»

ll"rll<r,

llc*ll(c_

"r,,=,

o.r_"1ij:j:I,...,_

. (fu o E) (c14-&r- "r ) . . . @* o a) (",,,

6-r'

- "

*

) (h e,'/.)O / d).

Further,

it

can be proved that the rule

("r,

. . . ,e

^rtrd)

-+ (e1dfr'-o' , . . . r

€-d&l-o-

, td, d)

defines.a bijection from the set of (rn

*

2)-tuples

("r,... ,e*,t d)

satisfying

lldllo

< *ir,{uft,

*1"' ,. . .

,*li^ },

ll"rll <rrllldlle'-"',...,11"-ll < *^/lldll*'-"* , lltll Sylllall, t€L&(td),

onto the set

of

(rn

+

2)-tuples

("r,... tcrn,ysd)

satisfying

ll"rll < &.,t...,11"-ll lomt ll"ll Sy, de,41(v), 6&1-o11"r,...,6&'-"-;c_.

Thus

L_ » x((nm*l

1. .

.1n,-);d*)f(a)

lldll& (min {yk ,rl"t ,...tt#," }

» (fu»EX"') "' » (h*DE)("-)

It.' ll 1r t /lldllo' - "'

. »

Qree.ext)

lltll< y /lldll

t 6 Ao 1ta;

11.,, ll <, ,- llld ll e L - a rn

/(dXä,

DE)n(*, llldll*1-o1 ) . . . lldll& (min {yu ,*r"' s...st** }

do lrr-*r r...,ru

.

(h*,DE)^(, *llldll

kL-o* X he1,s)"(A*, d; v llldll).

This proves

(7).The

proof of (8) goes through on similar lines.

(9)

Arithmetical identities involving

a

generalization of Ramanujan's

sum

45

Theorem 5.

Suppose

hr, hz, ..., h* (0 < * 1u)

are quasi'D-multipli- cative functions,

h

is

a

quasi-Ap-multiplicative functioa

ffid f , g

ate arbitraty

a,rithmeticalfunctions. Thenfor

tLt ...t

om,,y

)0 (q,...;onty € R)t an*rt ,.,, \u, t

e

G, dtt... ra* : 0rl

llir ll

Sr,

lli".ll 1x,n llj llSY

.hr(ir)

-..

,h-(i-)

ä6)

I /(d)ä(d) fu(dk'-"') "'h*(dtr'-"^

)

llall& §rnin{ sk,*f "t , ...,rfi* I d* lt **1r.,.rru

.

hl (*, llldll*'-"'

) . . .

hh@*

llldllo'-orn

)kD" (l*,

d; y

I

lldll),

(10)

(ä,

...ä-X1) » »

stÅg:u$|"'

,... ,ilå^, rrn*r,..., n,,ir)

lli,

ll<rr

lli_ll<o_

.är(ir)...h*(i^)

: » f(d)s(rld)hr(6t'-").'.ä-1dt'-'-,

llalll <-i.{,f "1 ,...,,#^ t

dL ln-11,...,n';d€A* (r)

.

äl(lrr/lldllo'-"') .'.hi(r-llldlln'-'-), m27.

Theorem 5 can be proved

in

a similar way to Theorem 4.

Theorem 6.

Suppose

ztt zzt ...,

zs

€ C (1 ( s ( u)

and denote

zt*

zz*...*2": z. Let f beanarithmeticalfunctionsuchthat f(m)*0

foraJl

m€G.Thenforn,r€G

nf' ,F.

Si,i*o*

(*,

) . . ., hu;

r) -

s'o',trtltA1'(', : lls*1 7''', [?ri dr )''' dr,...'d. ۀ* (r)

[d1,...,d!l=t

.

Sli,'r''oo(ne, nsarr . . .,

nri dr),

where the symbol

[...] i"

used for the least common multiple.

Proof. Let .B(r)

denote the right-hand side of the identity

of

Theorem 6.

(10)

46

Then

Pentti Haukkanen

» rr(d)- »

S'o,'rtqA7'(rr, r

[s*1,

. . .,

[ri dr)

. . . d€A&(r) d€Al(r) dr,...,d,€är(d)

[d1, " ',d6 ]=d

' s'i.,"0''o*(trs, ne+t,

'''

,

n,ridr)

il »

s'i.,to'ro'(ny,

n,.u1,..., n,idj)

j=1 d; §ä1(r)

: fI

I

x(("i, rs*r,

. . . ,

n,)i ,k)f

i

(r) :

x((n;)

;ru)f '(r),

i=t that

is,

(nerE)(r) : x((r,); r&).f'("),

where X is the function defined in the iutroduction. Thus

.R(r)

: (x((",); (.)u)l'ootro*) (") : Sr;,:{"*(rr,..., n,ir).

This completes the proof.

Remark. It

is easy to see that the value of the sum

sj,l(rrr,...,n,ir)

is independent of the order of the variables n1 , . . . , Du

.

Thus Theorems 1, 4, 5 and 6 can be further generalized by rearranging'the

first u

lariables into an arbitrary order.

Theorem 7.

Suppose g

, h

a,nd

H

a,re arithmetical functions such that h,

H

a,re quasi-Ap-multiplicative and he1,gH

: (hgH)(L)Es,

where Eo(1)

:

'J- and

Eo(n) : 0 for n + l. Let f

be

an

arbitrary a,rithmetical

function.

Then for

r€Gro:0,

1

(11) » St;lo(@n";r/d)å.(d)Il(r/d):e(r)(/ä)(m)ä(mk'-")

dۀe(r)

if r-

rnk,--"+l

,rn

.46(r),

and,

- 0

otherwise.

Proof. Denote

by L

the left-hand side of (11). Then

L-» » f?)g(rl(dd)) h(d)H("/d).

d€.a*(r) 6ee*G/d)

6'* ;6u "

(11)

Arithmetical identities involving a generalization of Ramanujan's

sum

47

It

can be proved that

de.4*(r), 6 eA1,(rld),

6k14r'

if,

and only if,

6

e.41(r),

6&1-"+r

€.41(r), d:6å'-oe, eeA1,(r/6*'-"*1).

Therefore

T

»»

6e ao

(")

ee Ax$ /6o1- " +1)

6*t-o*1€Ar(r)

f(6)g(("/C*'-o+t)/") h(60'

e)H (,

l(6*'-" "))

: \- gäX6) h(60'-"),,

-L Wfffn^r tr)(rl6k'-"+r1

6eA*(") 6*r_ " *,

a o* 1,y

: » UH)(6)h(60'-")n(t)Er(r/ak'-"+t;.

6ee.(') 6*t-" *'€,4* (")

We thus arrive at our result.

Theorem 8.

Suppose

f is a

quasi-Ap-multiplicative function and

a, b,

r€G witha, be -41(r).

?åen

sr;:{- (("/a)*;*)

sr;:r"- ((

rlb)*;d) :

{ {,r)/(") ',lri}l'

d€,,a.3 (r)

Theorem 9.

Suppose

f is a

quasi-Ap-multiplicative function such that

f(r) * 0

for aJl

r

e

G.

Then foraJ.l

n, r

e

G

and integers

a,

b

»

Sro,{"r

6k ;r1sl,{o

(n;

r/d) : /'(r)/(1)u(1"-u o,tro-X6)/å-"(6),

d€Ar(r)

where 6ft

: (r,

rk),+,x.

Theorem 10.

Suppose

/ is an

Ax-multiplicative function

with

(f elp'a*)

(") I

O for aJI

reG.

Thenfor

all nt, n, r

G

.L (f nuFAxXd)

(f er

FA.X"/6)

dۀr (r)

if (r,

rk

)o,r -

(m, rfr )o,*

:

6r

,

and

- 0

otherwise.

(12)

48 Pentti Haukkanen

Theorem 11.

Suppose

f

is

a

quasi-Ap-multiplicative function ar'd

n, r

e

G.

Denote

a:rf1ar(r), be: (r,Z(r)o)o,1,,where 1,Ab(L):L

ar.dfor

r{1,

7e*(r)

is the product

of

distinct prime divisors of

r.

Then

ItlSt;i{r

(a&n;r)

:

f

(a)per(tor!)) po*(b)(/a"ra*

Xb).

By

quasi-multiplicativity Theorems 8-1L can be proved

by

considering the case in which

r

is a prime power. We omit the details.

Theorem

12. Suppose

f

,

g,

h and

H

are adthmeticalfunctions and

n

e G.

Let w

denote the arithmetical function such

that

u.,(f)

: 0

andfor

r t' 1,

ur(r)

is tåe number

of

distinct pfime divisors of

r.

Then

»

srÅi(d, ,. ..r du;e)

h(e)H(nl") - /(1)(("- H)u(gh))(*),

d1,...,dr,e

where

the

summation

is

over

d1,...,d'e € G

sueh

that

d1

...dr,e : n

and

dr,..

., dr,

are pairwise relatively prime,

Proof. The left-hand side of the identity

in

Theorem 12 is

» /(1)g(") h(")ä( nle) - /(1) »

u-('/e)g(e)

h(e)H("/")

d1,.,,,dr,e e€U(n)

: /(1) ((eh)u(u-ä))

(n);

hence the theorem is valid.

Theorem L3. Let f , 9, h

and

H

be

afithmeticil

functions and

n €

G.

Then

» S*i(d,

, . . . ,

d,;

e) h(u)H (:nle)

- /(1)

((8"

H)u(gh))("),

d1"'d11e:n

(dr "'d.r,e):1

where

Eu: EDEry... DE (u

factors).

Proof. The left-hand side of the identity is

/(1)g(")h(u)H(nle)-/(1) I ( » ,), G)h(")a( nle)

e€U(n) d1"'du:n/e

- /(1) » E,(nle)g(e)ä(e)ä( nle) -

f

(1)((E uH)u(gä))(*).

e€U(n)

d1...dse=n

(dr...d.,,e):1

We thus arrive at our result.

(13)

Arithmetical identities involving

a

generalization

of

Ramanuian's sum 49

Remark. A

large number

of

special cases

of

our results can be found in the literature.

In

fact, special cases of Theorem L can be found

in

[33, Corollary (2.1.5),

p.

170, Theorem

(2.2.6),p.

774), [38,

pp.

15 and 721 ar,d {40, Chapter

i.t].

special cases of Theorem 2 can be found

in

[2, equation (2.7)], [20, equation (6)], [33, Theorem (2.2.72),

p.

176], [34, Theorem 3.1], [35, equation (4.3)], [41, Theorem

3]

alrd [44, Theorem

5.3].

special cases

of

Theorem

3

can be found

in

[1, Theorems 1-4], [2, equations (2.8), (2.10)], [4, Theorem 8], [5, Corollaries 2,

i, 4, 5,

LO.z and 10.4], [6, equation (5'4)], [8, equations (3.1), (5.1)], [10, p.

2031,l12,equation (3.16)], [18, equation (2.3),

p.

194], [20, equations (4), (5)], [23, Lemma U, [28, Theorem 1l,l2g, equation (1a) and Theorem 8], [30, equation (2.6)], [31, Theorern 2.4], [33, Theorem (2.1.8),

p.

772, Theorem (2.2-77),

p.

176], [34, Theorems 3.2, 3.3], [36, equation (3.3)], [41, Theorems 1, 2] and [44, Theorem 5.4].

Special cases of Theorem 4 can be found

in

[1, Theorems 5, 6], [28, Theorem 2]

and [2g, Theorem (1b)]. special cases of Theorem 5 can be found

in

[1, Theorems

7,

81, 12, Theorem 3.21, [3, Corollary 2.7], 177, Lemma 2.61, 129, Theorem 3], [40, Theorem 4.1.2] and [44, Theorem 5.5]. Special cases of Theorem 6 can be found in [7, Lemma 4], U4, Lemma 3] and [25, Theorem 8]. Special cases of Theorem 7 can be found

in

[2, Theorem 2.6], [L6, Theorem 1], [20, equation (3)], [37' equations (2.10), (2.11)] and [40, equation (4.14)]. special cases of Theorem 8 can be found

in

[3, Theorem 2], [8, equation (4.2)], [15,

Theore*

1], [18, Lemma 2.2,

p.

1941,

[21, Theorem

5],

[24, Theorem

3],

[26, equation (4.1.6)] and [32, Theorem 7.2].

A

special case of Theorem 9 can be found

in

[37, equation (2.1,2)1. special cases of Theorem 10 can be found

in

[4, Theorem 6], [8, equation (4.5)], [9, Theorem 3.3], [21, Theorem 41, 132, Theorem 7.4] and [34, Theorem

3.4]'

Special cases

of

Theorem 11 can be found

in

[11, Theorem 3] and [25, Theorem

3].

FinallS Theorem 6 of [25] is a special case of Theorems 12 and 13.

4. Totally l.-k-even functions (modr)

Let r € G

be

fixed.

Then an arithmetical

function /(";r) of

one vari-

able is said

to

be A-k-even

(modr) if /(n;r): /((n,rk)e,x;r) fot all n €

G.

An

arithmetical function

"f(nr,...rruir) of u

variables is said

to

be

totally

.4-

fr-even

(modr) if

there exists

an

A-la-even function

g(n;r) (modr)

such that

.f(rr,...,r,ir) :

g((n1

,...,n,)i r) for all

n1

,...,nu e G.

The concept

of

a

totally

A-k-even function

(modr)

originates from [14]

in

the case of the arith- metical semigroup of positive integers.

It

can be proved

(cf.

[14, Theorem

f])

that an arithmetical function

/(tr,.. .,ll,ir)

is

totally

.4.-&-even

(modr)

if, and only

if, it

has a unique representation of the form

/(rr,

. . . : ilu;

r) - »

o(d ;r)Ce,*(nr? . . . r ru; d),

where

d€An (r)

(14)

50 Pentti Haukkanen

o(d;

r) : *-ku » gek l6r;r)Ce,r(rk ldr,... ,tk

ldr; 6).

6eao1";

The

coefi.cients

o(d;r)

are called

the

Fourier coefEcients

of /(n1,...,n,ir).

It can

also

be

proved

(cf.

[1.4,

Theore* 2]) that an

arithmetical function

.f(tr,...,ruir)

is totally,4.-/c-even

(modr) if,

and only

if, it

has the form (12)

In

this case

a(d;

r) : 1-&u » f'Gl";")ek".

e€A*(r/d)

By (12) we find that the generalized Ramanujan's sum considered in this paper is a

totally

,4.-/c-even function

(modr).

The purpose of this section is to note

that

the equations (8) and (10) can be extended to

totally

A-lc-even functions

(modr).

In fact, if we replace the general- ized Ramanujan's sum by an arbitrary totally ,4.- & -even function

.f(r,

, . . . , n, i

r) (modr)

in the left-hand sides of equations (8) and (10), we must replace the factor

of

f

(d)g(t/d) bv "f'(d;") in

the right-hand sides of the equations.

Referencee

t1] Arosrol,

T.M,: Arithmetical properties of generalized Ramanujan sums.

-

Pacific J.

Math. 41, 1972, 28L-293.

12)

CtttoltvtslnA.swAMy, J.: Generalized Ramauujan's sum.

-

Period. Math. Ilungar. 1.0, L979,7t-87.

t3]

Couutt, E.: An extension of Ramanujan's sum. II. Additive properties. - Duke Math. J.

22, L955,543-550.

t4]

CottoN, E.: An extension of Ramanujan's sum. III. Connections with totient functions. - Duke Math. J.23, 1956, 623-630.

15]

Cottott, E.: Representations of even functions (modr), I. Arithmetical identities. - Duke Math. J. 25, 1958, 401-42L.

t6]

Cottotr, E.: A class of residue systems (modr) and related arithmetical functions, I. A generalization of Möbius inversion. - Pacific J. Math. 9, 1959, 13-23.

17)

CottEN, E.: Ä class of arithmetical functions in several variables with applications to congruences. - Tlans. Amer. Math. Soc. 96, 1960, 355-381.

t8]

CoEEN, E.: On the inversion of even functions of finite abelian groups (modIy'). - J. Reine Angew. Math. 207, 1.961, 192-202.

t9]

CoHoN, E.: Unitary functions (modr). - Duke Math. J. 28, 1961, 475-485.

[10]

DELS.o,RTE, J.: Essai sur l'application de la theorie des fonctions presque p6riodiques a I'arithm6tique. - Ann. Sci. Iicole Norm. Sup. 62, Lg45,185-204.

tl1]

DoNovAN, G.S., and D. RpaRrcx: On Ramanujan's sum. - Norske Vid. Selsk. Forh. 3g, 1966, 1-2.

/(*r,...,ru;r)- » /'(d;

r).

dft €A (««"i),rk )o,*)

(15)

Arithmetical identities involving a generalization of Ramanujan's

surn

51

ll2l

HANUMANTHAoTTART, J., and V.V. SUsnA,HMANYA Snsru: Certain totient functions-

allied Ramanujan sums and applications to certain linear congruences. - Math. Stu- dent 42, 1974,214-222.

[13]

H.l,uxxervEN, P.: Classical arithmetical identities involving a generalization of Ramanu- jan's sum.- Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 68, 1988, 1-69.

[14]

HluKxAr.lolv, P. and P.J. McC.q,ntsv: Sums of values of even functions . - Portugal.

Math. (To appear.)

[15]

HoReoeM, E.M.: Ramanujan's sum for generalised integers. - Duke Math. J. 31, 1964, 697-702.

[16j

HoReolu, E.M.: Exponential functions for arithmetical semi-groups. - J. Reine Angew.

Math. 222, 1966, 14-19.

[17]

JonNSoN, K.R.: Reciprocity and multiplicativity in a class of arithmetic functions. - Ph.

D. thesis, University of Colorado, 1980.

[18]

KNoprMAcHEn, J.: Abstract analytic number theory. - North-Ilolland, Amsterdam-New York, 1975.

[19]

LAHTRI, D.B.: Hypo-multiplicative number-theoretic functions. - Aequationes Math. 9, 1973, 184-192.

[20]

McClntnv, P.J.: Some properties of the extended Ramanujan sums. - Arch. Math. L1, 1960, 253-258.

121]

McClRtuv, P.J.: Regular arithmetical convolutions. - Portugal. Math.27, 1968, 1-13.

122)

McC.l,Rruv, P.J.: Introduction to arithmetical functions. - Springer-Verlag, New York- Berlin-Ileidelberg-Tokyo, L 986.

[23]

N.l,cosw,l.Rl Rlo, K.: Unitary class division of integers moda and related arithmetical identities. - J. Indian Math. Soc. 30, 1966, 195-205.

l24l

NecpsweRl Rno, I(.: Some applications of Carlitz's rr-sum.

-

Acta Arith. 12, 1967,

2t3-22t.

125)

N,q,cpswARA. Rao, K.: Some identities involving an extension of Ramanujan's sum, - Norske Vid. Selsk. Forh. 40, 1967, 18-23.

[26]

Nlooswa.Ra Rlo, K., and R. SrveRlvr,lxRrsHNAN: Ramanujan's sum and its applica- tions to some combinatorial problems. - Congr. Numer. 31, 1981, 205-239.

l27l

N.aRrtowIcz, W.: On a class of arithmetical convolutions. - Colloq. Math. 10, 1963, 81-94.

[28]

Nlcor,, C.A.: On restricted partitions and a generalization of the Euler O number and the Moebius functions. - Proc. Nat. Äcad. Sci. U.S.A. 39, 1953, 963-968.

[29]

NIcoL, C.A., and H.S. V.o,NoIvnR: A vou Sterneck arithmetical function and restricted partitions with respect to a modulus. - Proc. Nat. Acad. Sci. U.S.A. 40, L954, 825- 835.

[30]

R.lu.nru.t.lN, S.: On certain trigonometrical sums and their applications in the theory of numbers. - Tlans. Cambridge Philos. Soc. 22, 1918, 259-276.

[31]

SHIDER, L.E.: Arithmetic functions associated with unitary divisors in GFfq,c] , I. - Ann.

Mat. Pura Appl. 86, 1970, 79-85.

[32]

SIU Reltet.lu, V.: Arithmetical surns in regular convolutions. - J. Reine Angew. Math.

303/304, 1978, 265-283.

[33]

Srv.ln.o,rrrlxRrsuNAN, R.: Contributions to the study of multiplicative arithmetic func- tions. - Ph. D. thesis, University of l(erala, 1971.

[34j

StvnRltrtnxRtsuNAN, R.: Multiplicative even functions (modr). II. Identities involving Ramanujan sums. - J. Reine Angew. Math. 302, 1978, 44-50.

(16)

52 Pentti Haukkanen

[35]

Srv.a,RnvrnrRrsHNAN, R.: On abstract Möbius inversion. - Proceedings of the 2nd Confer- ence on Number Theory (Ootacamund, 1980), Matscience Rep. 1.04, 85-100.

[36]

SusnA.HN{vÄ. SlstRI, V. V.: On a certain totient function for generalised integers. - Math.

Student 37, 1969, 59-66.

[37]

SucuNluul, M.: Eckford Cohen's generalizations of Ramanujan's trigonometrical sum

C(n,r). - Duke Math. J. 27, 1960,323-330.

[38]

Suouu.nuu.l,, M.: Contribution to the study of general arithmetic functions. - Ph. D.

thesis, Sri Venkateswara University, Tirupati, 1965.

[39]

Varovlx.ntnlswAMy, R.: The theory of multiplicative arithmetic functions.

-

tans.

Ämer. Math. Soc. 33, 1931, 579-662.

[40] VpNxltlRlultt,

C.S.: A new identical equation for multiplicative functions of two argu- ments and its applications to Ramanujan's sum Cu@). - Proc. Indian Acad. Sci.

Sect. A 24, L946,518-529.

t41]

VpxxltnnlIr,r.r,tt, C.S.: F\uther applications of the identical equation of Ramanujan's sum

Cu(N) and Kronecker's fuuction A(M,N). - J. Indian Math. Soc. 10, 1946, 57-61.

l42l

VprremRltr.tnu, C.S.: The ordinal correspondeuce and certain classes of multiplicative functions oftwo variables. - J. Indian Math. Soc. 10, 1946,81-101.

[43]

VENKATARAM.a,N, C.S.: On von Sterneck-Ramanujan function. - J. Indian Math. Soc. 1.3, t949,65-72.

[44]

VsNrltnRlIllAN, C.S., and R. StvlRnunrRtsHNAN: An extension of Ramanujan's sum.

- Math. Student 40 A,1972,211-216.

[45]

YocoM, K.L.: Totally multiplicative functions in regular convolution rings.

-

Canad.

Math. Bull. 16, 1973, 119-128.

University of Tampere

Department of Mathematical Sciences P. O. Box 607

SF-33101 Tampere Finland

Received 9 December 1988

Références

Documents relatifs

Let X be an algebraic curve defined over a finite field F q and let G be a smooth affine group scheme over X with connected fibers whose generic fiber is semisimple and

The theory of spaces with negative curvature began with Hadamard's famous paper [9]. This condition has a meaning in any metric space in which the geodesic

Motivated by applications in mathematical imaging, asymptotic expansions of the heat generated by single, or well separated, small particles are derived in [5, 7] based on

In the first part, by combining Bochner’s formula and a smooth maximum principle argument, Kr¨ oger in [15] obtained a comparison theorem for the gradient of the eigenfunctions,

A second scheme is associated with a decentered shock-capturing–type space discretization: the II scheme for the viscous linearized Euler–Poisson (LVEP) system (see section 3.3)..

The man-made alterations of the atmosphere, an important part of ma~'s environment which intrudes into his respiratory system, may exceed the normal range of

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

We give a crossed product con- struction of (stabilized) Cuntz-Li algebras coming from the a-adic numbers and investigate the structure of the associated algebras.. In particular,